XLII Workshop on Geometric Methods in Physics Białystok, 30.06–5.07.2025 XIV School on Geometry and Physics Białystok, 23–27.06.2025

Haydar Uncu



In this study, we investigate the bound state analysis of a one dimensional nonlinear version of the Schrodinger equation for the harmonic oscillator potential perturbed by a
$\delta$ potential, where the nonlinear term is taken to be proportional to $\delta(x) |\psi(x)|^2 \psi(x)$. The bound state wave functions are explicitly found and the bound
state energy of the system is algebraically determined by the solution of an implicit equation. Then, we apply this model to the Bose-Einstein condensation of a Bose gas in a harmonic trap with a dimple potential. We propose that the many-body interactions of the Bose gas can be effectively described by the nonlinear term in the Schr\"{o}dinger equation. Then, we investigate the critical temperature, the condensate fraction, and the density profile of this system numerically.
Event sponsored by
University of Białystok
University of Białystok