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Barycentric coordinates

Let Ω ⊆ Rd be an arbitrary polytope with vertices v1, . . . , vn.

Barycentric coordinates with respect to Ω are the functions bi : Ω → R,
i = 1, . . . , n s.t.

1
∑n

i=1 bi (v) = 1 (partition of unity);

2
∑n

i=1 bi (v)vi = v (linear precision);

3 bi (vj) = δij (Lagrange property).

BC can be used as basis functions for barycentric interpolation: the
function

f (v) =
n∑

i=1

bi (v)fi

interpolates the data fi at the vertices vi .
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Non-negativity

The property
bi (v) ≥ 0

is required or just beneficial in many applications:

convex combinations instead of affine ones;

f (v) lies inside the convex hull of the data fi .
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Barycentric coordinates cont.

Introduced by A.F. Möbius, Der Baryzentrische Calcul, Barth, Leipzig,
1827.

Unique for simplices;

Convenient way to linearly interpolate data;

Can be generalized in several ways to arbitrary polygons, polyhedra,
higher dimensional polytopes, curves;

Applications: numerical analysis (geometric modelling and computer
graphics).

1. J. Warren, S. Schaefer, A.N. Hirani, M. Desbrun, Barycentric cordinates for convex
sets, Adv. Comput. Math. 27 (2007), 319–338.

2. M.S. Floater, Generalized barycentric coordinates and applications, Acta Numer. 24

(2015), 161–214.
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(Abstract) Algebra

(A,F )

A ̸= ∅, F - set of operations f : Ak → A, k ∈ N.

groups, rings, fields;

vector spaces

Here we are interested in:

affine spaces

convex sets

barycentric algebras
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Affine spaces of Rn

The line Lx ,y through x , y ∈ Rn:

Lx ,y = {p(x , y) := (1− p)x + py ∈ Rn | p ∈ R}.

A subset A ⊆ Rn is a (non-trivial) affine subspace of Rn if together with
any two different points x and y it contains the line Lx ,y .

Affine spaces as algebras: (A,R), where R = {p | p ∈ R}
Elements of the affine hull of a set {x1, . . . , xn} of affinely independent
elements as affine combinations:

x =
n∑

i=1

rixi with
n∑

i=1

ri = 1,

where ri ∈ R. They may be obtained by composing basic binary operations
p and they form an affine space isomorphic to Rn.
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Convex sets of Rn

Let I ◦ be the open interval ]0, 1[⊂ R.

The line segment Ix ,y joining the points x , y of Rn:

Ix ,y = {p(x , y) | p ∈ I ◦}.

A subset C ⊆ Rn is a (non-trivial) convex subset of Rn if together
with any two different points x and y it contains the line segment Ix ,y .

Convex sets as algebras: (C , I ◦), where I ◦ = {p | p ∈ I ◦}.

Convex polytopes = finitely generated convex sets.
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Barycentric algebras

Let R be a subfield of R, I = [0, 1] closed unit interval of R,
I ◦ = I − {0, 1} =]0, 1[ open unit interval in R.

On R define:

1 complementation: r ′ = 1− r ;

2 dual multiplication: p ◦ r = p + r − p · r = (p′ · r ′)′.

Barycentric algebra over R is an algebra (A, I ◦) equipped with binary
operations p : A× A → A, (a, b) 7→ p(a, b) satisfying the identities:

1 idempotence: p(a, a) = a;

2 skew commutativity: p(a, b) = p′(b, a);

3 skew associativity: p(r(a, b), c) = p ◦ r(a, p
p◦r (b, c)).
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Barycentric algebras and convex sets

The class B of barycentric algebras over a given field R forms a variety of
algebras.

Convex sets are cancellative barycentric algebras, i.e. they satisfy the
quasi-identities:

p(a, b) = p(a, c) ⇒ b = c

for all operations p of I ◦.

W.D. Neumann, On the quasivariety of convex subsets of affine spaces, Arch. Math. 21
(1970) 11–16:
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Some history

convex sets, convex modules, convexors, semiconvex sets, convex spaces...

K. Keimel, G.D. Plotkin, Mixed powerdomains for probability and nondeterminism,

Log. Methods Comput. Sci. 13 (2017) - Remark 2.9 Historical Notes and

References:

M.H. Stone (1949) and H. Kneser (1952) - axiomatization of convex
sets embaddable into vector spaces over linearly ordered skew fields
(for barycentric algebras to have such property one has to add a
cancellation axiom). Abstract convex sets = barycentric algebras.

A.B. Romanowska, J.D.H. Smith, Modal Theory (1985) and Modes (2002).
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Examples

1 Let R = R and V - a vector space over R.
Let p : V × V → V for p ∈ I ◦ be the weighted mean operation:

p(u, v) = (1− p) · u + p · v .

We obtain the algebra (V , I ◦) and its subalgebras are the convex sets
of the real vector space V .

2 Let (A,∨) be a (join) semilattice: a ∨ b = b ⇔ a ≤ b.

It becomes a barycentric algebra (A, I ◦) if one defines:

p(a, b) = a ∨ b

for all p ∈ I ◦ - iterated semilattice.
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Applications

Barycentric algebras unify ideas of convexity and order .

Natural applications can be found in:

the modeling of systems that function on (potentially incomparable)
multiple levels.

J.D.H. Smith, On the Mathematical Modeling of Complex Systems, Center

for Advanced Studies, Warsaw University of Technology, Warsaw, 2013.

theoretical computer science: both nondeterministic and probabilistic
systems for verification.

F. Bonchi, A. Sokolova, V. Vignudelli, The Theory of Traces for Systems

with Nondeterminism, Probability, and Termination, Log. Methods Comput.

Sci. 18 (2022).

thermostatic systems.

J.C. Baez, O. Lynch, J. Moeller, Compositional thermostatics, J. Math.

Phys. 64, 023304 (2023).

in computational geometry to analyze systems of barycentric
coordinates.
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Simplices

n-dimensional simplex ∆n = a polytope with n + 1 affinely independent
vertices: v0, . . . , vn.

Each x ∈ ∆n may be expressed uniquely as a convex combination of
vertices

x = r0v0 + · · ·+ rnvn with ri ∈ I and
n∑

i=0

ri = 1,

ri - barycentric coordinates of x .

If x and vi are given by Cartesian coordinates of Rn, the barycentric
coordinates ri may be calculated by solving the above equation.

Every polytope P with n + 1 vertices is a homomorphic image of the
simplex ∆n. Hence each of its elements can also be presented by the
above convex combination, however not in a unique way.
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Simplices and free algebras

W. Neumann (1970): n-dimensional simplex is the free barycentric
algebra over a set of n + 1 free generators, i.e.

each function f : V → C from the generating set V of ∆n to (the
underlying set of) a barycentric algebra C has a unique extension to a
barycentric homomorphism f : ∆n → C .

Any n-dimensional polytope P with k > n + 1 vertices is a homomorphic
image of the simplex ∆k .
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Main goals

bring an algebraic perspective to barycentric coordinates, based on
barycentric algebras;

introduce a general framework for coordinate systems on polytopes;

compare different coordinate systems on convex polygons;

introduce new coordinate systems on convex polygons.
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Function spaces

(B, I ◦) ∈ B, X - set. BX - the space of all functions X → B,
inherits barycentric algebra structure carried by B:

for a ∈ X , p ∈ I ◦, f , g : X → B

(p(f , g))(a) = p(f (a), g(a)).
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Polygon coordinate systems

Let Π be a polygon: (Π, I ◦) ≤ (R2, I ◦), with ordered vertex set
V = {v1, . . . , vn}. A coordinate system for Π is a map

λ : V → IΠ; v 7→ λv

such that a =
∑

v∈V λv (a)vi (linear precision property) holds, for all
a ∈ Π.

Partition of unity property:
∑

v∈V λv (a) = 1 follows from linear
precision property;

BA: ((IΠ)V , I ◦) ≃ (IΠ×V , I ◦) ∈ B.
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Polygon coordinate systems

Theorem

The set KΠ of cooordinate systems on a polygon Π with vertex set V
forms a convex subset of IΠ×V under pointwise barycentric operations.

Tools for

comparing different coordinate systems (discrepancy fields);

introducing new coordinate systems (cartographic coordinates)
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Sparse BC

Local approach: cartographic coordinates.

The key idea:

1 decompose the polytope into simplices (regions)

2 take the volumetric coordinates for the region within which a given
point of the polytope lies.

Any bias introduced by a particular decomposition may be removed
by taking the average of a point’s coordinates in each of the
decompositions appearing in the orbit of a symmetry group.
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Mathematical description

Cyclic graph Cn constituted by the vertices and undirected edges of
the polygon: skeleton of the polygon Π.

Chord in Cn: edge connecting vertices which are not adjacent.

Chordal decomposition: system of n − 3 non-crossing chords of Cn

that decompose Π as a union of n − 2 simplices (triangles) whose
vertices are vertices of Π.

The n − 2 triangles constitute the regions of the decomposition.

Given any one chordal decomposition, we obtain others by the action
of the dihedral group Dn as the automorphism group of the graph Cn.

Leaving fixed the vertex set V of the polygon Π, the elements of Dn

act on the n − 3 chords of the decomposition.
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Oriented, non-crossing chordal decompositions of hexagons

133

v1

v2v3

v4

v5 v6

1222

v1

v2v3

v4

v5 v6

23

v1

v2v3

v4

v5 v6

3 distinct decompositions of a hexagon into 4 triangles by means of
three non-crossing chords;

full set of representatives for the orbits of the dihedral group D6 on
the chordally subdivided graph C6.
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Cartographic coordinates

Definition

Let δ be a chordal decomposition of Π with a specified CDS. Then the
formula

κv =
1

2n

∑
g∈Dn

gδv

gives the cartographic coordinate function of that CDS at a vertex v of
Π.

Theorem

For each chordal decomposition δ of Π, Definition above specifies a
coordinate system κ of Π.
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C−C discrepancy fields
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Contour plot of the norm of the CDS 1222 − 23 discrepancy vector for a hexagon.
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Further research

cartographic coordinates as bounds on polygonal BC.

M.S. Floater, K. Hormann, G. Kós, A general construction of barycentric

coordinates over convex polygons, Adv. Comput. Math. 24 (2006), 311–331.

use of BC to compute the electrostatic potential that is created by a
charged triangular plate and analysis of the case of a charged
polygonal plate by means of the principle of superposition, based on a
single triangular decomposition of the polygon.

U.-R. Kim, W. Han, D.-W. Jung, J. Lee, Ch. Yu, Electrostatic potential of a

uniformly charged triangle in barycentric coordinates, Eur. J. Phys. 42 (2021),

045205 (24pp.).
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