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Definitions

A real or complex C ∗-algebra

P a self-adjoint projection P = P2 = P∗ ∈ A

UA unitary operators of A, U∗ = U−1

Ask skew-hermitian operators V ∗ = −V

Ah hermitian operators X ∗ = X

Gr(P0) connected component of the Grassmann manifold of A

That is, for fixed P0 = P∗
0 = P2

0 ∈ Ah

Gr = Gr(P0) = {UP0U
∗ : U ∈ UA}.

Gabriel Larotonda (CONICET-UBA) 2024 - Geometric Methods in Physics July 2024, Bialystok 2 / 16



Main points of the talk

1 natural connection ∇ (in different disguises) in Gr ,

2 geodesics are described by γ(t) = etzPe−tz for z∗ = −z and

z = zP + Pz

3 the exponential map of ∇ is then ExpP(Z ) = e [Z ,P]Pe−[Z ,P]

4 compatibility with the metric ∥γ′(t)∥γ(t) = ∥γ′(t)∥∞
5 distance as infima of lengths of paths in Gr

6 conjugate points along geodesics in the Grassmannian:

in the metric sense (cut locus for the Finsler metric induced by

the norm of A)
in the tangent sense (the differential of the exponential map

along γ is not invertible).
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Part 1: linear connection ∇ in Gr

Fix P ∈ Gr , operators A ∈ A as 2× 2 block matrices:

A =

(
PAP PAP⊥

P⊥AP P⊥AP⊥

)
=

(
a11 a12

a21 a22

)
,

and the algebra A decomposed as

A =

(
a11 0

0 a22

)
+

(
0 a12

a21 0

)
= Ad + Ac ,

DP is the P-diagonal part of A,

CP is the P-co-diagonal part of A.
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1 X ∈ DP iff it commutes with P

2 X ∈ CP ⇐⇒ X = XP + PX , here [P, [P,X ]] = X .

3 X ∈ CP then σ(X ) is balanced (λ ∈ σ iff −λ ∈ σ)

4 X ∈ CP ⇐⇒ UXU∗ ∈ CUPU∗ , for any U ∈ UA.

5 Gr ⊂ Ah. Tangent space TPGr = CP ∩Ah

Typical tangent vector at P: XP = [x ,P] with x∗ = −x ∈ CP
Such x is unique, x = [XP ,P]. Correspondence

6 Cp ∩Ask ←→ CP ∩Ah

x =

(
0 −λ
λ∗ 0

)
− adP=[ · ,P ]←−−−−−−−−→

(
0 λ

λ∗ 0

)
= X
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Connection ∇

Project onto the tangent spaces

Ah ∋ V ∗ = V =

(
a λ

λ∗ b

)
7→

(
0 λ

λ∗ 0

)
= ΠP(V ) ∈ TPGr

⟨ , ⟩ If A has a faithful trace, ΠP are the orthogonal projections

for the Riemannian metric

⟨X ,Y ⟩ = Tr(XY ) X ,Y ∈ Ah

µ : [0, 1]→ Gr a vector field along a path γ ⊂ Gr i.e.

µ(t) ∈ Tγ(t)Gr = Cγ(t) for each t ∈ [0, 1].

∇ Dtµ := Πγ(t)(µ
′(t)) covariant derivative of µ

A with trace: Dt is the Levi-Civita connection.
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Geodesics and exponential map

Fix P ∈ Gr , Z = [z ,P] ∈ TPGr , then

δ(t) = etzPe−tz

is the unique geodesic of the connection ∇ i.e

Dtδ
′ = 0 (Euler’s equation)

with

δ(0) = P, δ′(0) = Z = [z ,P]

Thus the exponential map of (Gr ,∇) is

ExpP (Z ) = δ(1) = ezPe−z = e [Z ,P]Pe−[Z ,P]
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Paralell transport and the metric

The paralell transport equation along γ

Dtµ = 0, µ(0) = W ∈ TPGr =⇒ Pt
0(γ)W = µ(t)

is solved explicitly when γ is a geodesic t 7→ etzPe−tz : it is

µ(t) = etzWe−tz

L and

dist

Length of paths γ : [0, 1]→ Gr is L(γ) =
∫ 1
0 ∥γ

′(t)∥dt
∥X∥ is the C ∗-algebra norm of X .

dist(P,Q) = inf{L(γ) : γ(0) = P, γ(1) = Q}.

Compatibility of the connection with the metric:

∥Pt
0(γ)W ∥ = ∥W ∥ dist(UPU∗,UQU∗) = dist(P,Q).
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Part 2: Tangent conjugate locus

Fix P, for each V ∈ TPGr , we have the differential

(D ExpP)V : TPGr → TExpP(V )Gr = TevPe−vGr

We define the tangent conjugate locus at P as

TCL = {V ∈ TPGr : D(ExpP)V is not an isomorphism}

The map D(ExpP)V=0 is a linear isomorphism of TPGr

The first tangent conjugate point is the smaller V in the

tangent conjugate locus of P

The cut locus is the set of point Q ∈ Gr such that geodesics

from P are not minimizing past Q.
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(D ExpP)V : TPGr → TExpP(V )Gr

TCL {V ∈ TPGr : D(ExpP)V is not an isomorphism}

The map D(ExpP)V=0 is a linear isomorphism of TPGr

The first tangent conjugate point is the smaller V in the

tangent conjugate locus of P

The cut locus is the set of point Q ∈ Gr such that geodesics

from P are not minimizing past Q.

In the classical (Riemannian, finite dimensional) setting:

Thm Q = ExpP(t0V ) is in the cut locus iff t0V is the first tangent

conjugate point from P in the direction of V .
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Two formulas for (D ExpP)V

D(ExpP)VW = ev [sinhc(ad v)w ,P]e−v

V = [v ,P], W = [w ,P], ad v(z) = [v , z ]

sinhc(λ) = sinh(λ)
λ = eλ−e−λ

2λ

Now X 7→ evXe−v is invertible

so is z 7→ [z ,P] so we need to understand

w 7→ sinhc(ad v)w , a self-map of Ask

sinhc(t ad v) = Πk≥1

(
1 +

t ad2 v

k2π2

)
by means of the Weierstrass factorization theorem for entire

functions of finite order.
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Conjugate points

T ∈ R, V = [v ,P] ∈ CP , TV tangent conjugate iff

sinhc(T ad v) = Πk≥1

(
1 +

T ad2 v

k2π2

)
is not invertible.

monoconjugate if it is not injective

epiconjugate if it is not surjective

Theorem (Andruchow-L-Recht) Normalize ∥V ∥ = 1, then

Q = δ(T ) = ExpP(TV ) is in TLC only if

T = T (k , s, s ′) =
kπ

|s − s ′|

k ∈ Z̸=0 s ̸= s ′ ∈ σ(V ) ⊆ [−1, 1]
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First conjugate point

T =
kπ

|s − s ′|
First one is at T = π

2 , since s = ±1 both belong to σ(V )

Q = δ(π/2) = e
π
2
vPe−

π
2
v

The polar decomposition of V = u|V | is written by blocks as

V =

(
0 λ

λ∗ 0

)
=

(
0 Ω

Ω∗ 0

)( √
λλ∗ 0

0
√
λ∗λ

)
= u|V |

with a partial isometry Ω : Ran(1− P)→ RanP.

Theorem (Andruchow-L-Recht 2023) First tangent cut locus

TCL = {Ωz − zΩ∗ : z∗ = −z , |λ|z = z}

Moreover, if Q is not monoconjugate, then it is epiconjugate.
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More conjugate points

Theorem : T =
kπ

|s − s ′|
full description

T = kπ
2 is always conjugate

”simple” examples, A = B(H) with H = L2[−1, 1] where Q

1 is monoconjugate but not epiconjugate

2 is epiconjugate but not monoconjugate

3 both monoconjugate and epiconjugate

For other T = T (k , s, s ′): if A is a von Neumann factor or a

prime C ∗-algebra, it is always conjugate.

Nice description in projective spaces (dim(Ran(P)) = 1)
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Less conjugate points A = M2(C)⊕M2(C)

Fix 0 < α < 1. Let

P =

(
1 0

0 0

)
⊕

(
1 0

0 0

)
V =

(
0 1

1 0

)
⊕

(
0 α

α 0

)

Then V is P-codiagonal, σ(V ) = {−1,−α, α, 1}.
There are four family of candidates to conjugate points,

T1 =
kπ

2
, T2 =

kπ

1 + α
, T3 =

kπ

1− α
, T4 =

kπ

2α
.

For the first family we know that γ(T1) is conjugate to P.

But none of the other points γ(Ti ) are conjugate to P
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Thank you!
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