
Q-manifolds and sigma models

Noriaki Ikeda
Ritsumeikan University

Kyoto, Japan

Bia lystok ’24



§1. Introduction

Applications of graded manifolds and Q-manifolds, to physical

theories, especially, to BV-formalism.

This talk is related to Vladimir Salnikov’s lecture in the next week.

Purpose

Quantum field theories are not completely formulated as

mathematics yet.

→ Toward mathematical formulations
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Examples and applications of graded manifolds

• Fermions, supersymmetry

• Ghosts in gauge theories (BRST-BV-BFV formalism)

→ Canonical, path integral quantizations

• Poisson brackets、Lie algebras → Analytic mechanics

• Homological algebras and topological invariants based on

differential complexes (anomalies, topological effects)

• L∞-algebras, A∞-algebras, (string field theory, etc.)

• Deformation quantizations and formality
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• T-, S-, U-dualities in string theories

• Current algebras

• Variational principle (variational bicomplex)

etc.

Basic examples

In supersymmetry, yµ = xµ + iθσµθ

Ghosts and BRST-BV formalism in quantum field theories

A vector bundle and differential forms are not sufficient!

3



Non-graded formulation ←→ Graded formulation

Analytical mechanics and gauge theories

Lagrangian formalism ←→ Batalin-Vilkovisky (BV) formalism

Hamiltonian formalism ←→ Batalin-Fradkin-Vilkovisky (BFV)

formalism

Quantum field theories

Dirac quantizations ←→ BRST-BV quantizations
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Plan of Talk

Batalin-Vilkovisky formalism (Poisson sigma model)

Q-manifolds (differential graded manifolds) and QP-manifolds

Geometry induced from graded manifolds

Recent developments
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§2. BRST formalism to BV formalism
Yang-Mills (nonabelian gauge) theory

S = −1
4

∫
tr(F ∧ ∗F ), F = dA+A ∧A.

Infinitesimal gauge transformations are

δϵA = dϵ+ [A, ϵ],

where ϵ is a gauge parameter. Then,

δϵS = 0, [δϵ, δϵ′]A = δ[ϵ,ϵ′]A. (off-shell)
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Historical developments of quantizations of gauge theories

Gauge fixing, Gupla-Bleuler, Faddev-Popov (FP) ghosts, ’t-Hooft-

Veltman, Becchi-Rouet-Stora-Tyutin (BRST), Kugo-Ojima. . .

BRST transformations Change ϵ(σ) to a Grassman odd field (FP

ghost) c(σ),

sA = dc+ [A, c].

ghost number: ghA = 0, gh c = 1. s is of ghost number one. If

sc = −1
2[c, c], we obtain

sS = 0, s2 = 0. (off-shell)
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BRST quantization Introduce the antighosts, odd and even c̄, b

such that sc̄ = ib and sb = 0, and consider the gauge fixing,

Sq =

∫ (
tr(F ∧ ∗F ) + b ∗ d ∗A+ ∗α

2
tr(bb)− ic̄ ∗ d ∗Dc

)
.

sSq = 0 and s2 = 0 (off-shell).

Z =

∫
L
DADbDcDc̄ e

i
ℏSq

is BRST invariant. L is a Lagrangian submanifold of the space of

fields. Physical states are defined by s|phys⟩ = 0.
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Problems of BRST formalism

General consistency conditions of a classical gauge theory are

δϵS = 0 (off shell), [δϵ, δϵ′] = δ[ϵ,ϵ′] + (equations of motion).

In the BRST formalism,

sS = 0 (off shell), s2 = (equations of motion).

However, gauge fixings change the EOMs because the action

functional changes S to Sq. s2 = (equations of motion) does

not hold. The physical condition s|phys⟩ = 0 is inconsistent!
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Batalin-Vilkovisky (BV) formalism Batalin-Vilkovisky ’83,’85

By introducing auxiliary fields, we modify the action functional S to

SBV satisfying

sSBV = 0 (off shell), s2 = 0 (off shell),

without changing physics, and quantize it. Quantization with gauge

fixing is consistent,

Z =

∫
L
DADbDcDc̄ e

i
ℏSBV q

We can consistently impose the physical condition, s|phys⟩ = 0.
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§3. Poisson sigma model NI ’93, Schaller and Strobl ’94

A sigma model is a mechanics on a mapping space.

It is a sigma model from Σ in two dimensions with local coordinate

σµ to a target manifold M in d dimensions.

Xi : Σ→M , Ai = Aµi(σ)dσ
µ: gauge field

S =

∫
Σ

(
Ai ∧ dΣX

i + 1
2π

ij(X)Ai ∧Aj

)
=

∫
Σ

d2σ
(
ϵµνAµi∂νX

i + 1
2ϵ

µνπij(X)AµiAνj

)
where πij(X) = −πji(X) is an antisymmetric tensor.
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This model describes

• two dimensional dilaton gravity (deformed JT gravity)

• A-model, B-model (topological string theory)

• BF type theories are used in generalized symmetries.

• Tree (disc) open string amplitude gives the Kontsevich’s formula

of the deformation quantization on a Poisson manifold.

Kontsevich ’97, Cattaneo, Felder ’99
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The action functional is gauge invariant under the following gauge

transformations,

δϵX
i = −πij(X)ϵj, δϵAi = dϵi +

1
2
∂πjk(X)

∂Xi Ajϵk,

iff π is a Poisson structure,

∂πij

∂Xm
πmk +

∂πjk

∂Xm
πmi +

∂πki

∂Xm
πmj = 0 (1)

Equation (1) is the Jacobi identity of the target space Poisson

bracket,

{F (X), G(X)}PB ≡ 1
2π

ij(X) ∂F
∂Xi

∂G
∂Xj .
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The gauge algebra is an open algebra,

[δϵ1, δϵ2]X
i = δ[ϵ1,ϵ2]X

i,

[δϵ1, δϵ2]Aµi = δ[ϵ1,ϵ2]Aµi + ϵ1jϵ2k
∂πjk

∂Xi∂X l
(X)

δS

δAµl
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§4. Batalin-Vilkovisky formalism

1, Replace the gauge parameter ϵi to the Grassmann odd FP ghost

ci with ghost number one.

A gauge transformation δϵ is replaced to the BRST transformation

s of degree one and define sci = −1
2
∂πjk

∂Xi cjck, to satisfy s2 ≈ 0

(on-shell).

2, Introduce antifields Φ∗ = (X∗, A∗, c∗) for each field Φ =

(X,A, c) in BRST formalism such that gh Φ + gh Φ∗ = −1.
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3, Introduce the BV bracket (an odd Poisson bracket)

{F,G} ≡
∑
Φ

∫
Σ

(
F

←−
∂

∂Φ(σ)

−→
∂

∂Φ∗(σ′)
G− F

←−
∂

∂Φ∗(σ)

−→
∂

∂Φ(σ′)
G

)
δ2(σ − σ′)

4, Batalin-Vilkovisky (BV) action functional SBV is determined by

imposing the condition, {SBV , SBV } = 0 in off-shell, (the classical

master equation), where SBV is expanded by Φ∗,

SBV = S + (−1)ghΦ
∫
Σ

Φ∗sΦ+ S2(Φ
∗2) + S3(Φ

∗3) + . . . .

16



Solution

SBV =

∫
Σ

[
Ai ∧ dXi + 1

2π
ij(X)Ai ∧Aj

−X+iπijcj +A+i ∧
(
dci +

∂πjk

∂XiAjck

)
+ 1

2
∂πjk

∂Xi c
+icjck

−1
4

∂2πkl

∂Xi∂XjA
+i ∧A+jckcl

]
,

where Ai ≡ dσµAµi, A
+i ≡ dσµϵµνA

∗νi, X+
i ≡ 1

2dσ
µ ∧ dσνϵµνX

∗
i ,

c+i ≡ 1
2dσ

µ ∧ dσνϵµνc
∗i
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5, The BRST transformation is defined by

sf [Φ,Φ∗] = {SBV , f [Φ,Φ
∗]}

6, Since {SBV , SBV } = 0,

i) SBV is gauge invariant because sSBV = {SBV , SBV } = 0,

ii) s2 = 0 (off-shell) because s2F = {SBV , {SBV , F}} =
1
2{{SBV , SBV }, F} = 0.
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§4-2. Quantum BV

The partition function

Z =

∫
L
DΦ e

i
ℏSBV q

must be invariant under changing of the Lagrangian submanifold

L′ = L+ δL. The quantum master equation

−2iℏ∆SBV q + {SBV q, SBV q} = 0.

Here ∆ is the BV Laplacian, ∆ ≡
∫

∂
∂ΦI

∂
∂Φ∗

I
.
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§5. QP-manifolds (Differential graded symplectic
manifolds)

Physics −→ Mathematics

BV formalism −→ QP-manifold (differential graded symplectic

manifold)

1, fields + ghosts + antifields −→ graded manifold

2, BV bracket −→ graded symplectic form and odd Poisson bracket

3, BV action functional and the classical master equation −→
Homological vector field and its Hamiltonian function
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Definition 1. The triple (M, ω,Q) is called a QP-manifold of

degree n

1, M: graded manifolds

A graded manifold M = (M,OM) on a smooth manifold M is a

ringed space which structure sheaf OM is Z–graded commutative

algebras over M , locally isomorphic to C∞(U) ⊗ S•(V ), where U

is a local chart on M , V is a graded vector space and S•(V ) is a

free graded commutative ring on V .

Grading is called degree. We denote OM = C∞(M).
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2. ω: (P-structure) a graded symplectic form of degree n on M.

3. Q: (Q-structure) (Homological vector field)

A graded vector field of degree +1 such that Q2 = 0, and LQω = 0.

Note: (M, Q) is called a Q-manifold if Q2 = 0.

Note: A graded Poisson bracket {−,−} of degree −n is induced

from ω.

{f, g} = −(−1)(|f |−n)(|g|−n){g, f},
{f, gh} = {f, g}h+ (−1)(|f |−n)|g|g{f, h},
{f, {g, h}} = {{f, g}, h}+ (−1)(|f |−n)(|g|−n){g, {f, h}}.
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Note: If degree n ̸= 0, there exists a Hamiltonian function (a

homological function) Θ ∈ C∞(M) of degree n + 1 such that

Q(−) = {Θ,−}.

Q2 = 0 is equal to the equation, {Θ,Θ} = 0.
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BRST-BV formalism of gauge theory
� �
A (classical) BRST-BV formalism is a QP-manifold of degree −1
on the mapping space of two graded manifolds.� �
BV of Poisson sigma model

M = Map(T [1]Σ, T ∗[1]M) ≃ T ∗[−1]Map(T [1]Σ,M)

ω induce the BV bracket.

Θ = SBV is the homological function.
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§6. Geometry of Q(P)-manifolds

Lie algebras Let g be a vector space.

1. M = T ∗[2]g[1] ≃ g[1]⊕ g∗[1]. Let ca and ba be odd coordinates

of g[1] and g∗[1].

2. The symplectic form is ω = δca ∧ δba and {ca, bb} = δab .

3. Θ = 1
2C

c
abc

acbbc. {Θ,Θ} = 0 is equivalent that Cc
ab is a structure

constant of a Lie algebra with [ba, bb] := Cc
abbc.

C∞(T ∗[2]g[1]) ≃ ∧•(g ⊕ g∗) with Q is the Chevalley-Eilenberg

complex of g.
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§6-1. Q-manifold and QP-manifold of degree one

Shifted vector bundles E[1] and Lie algebroids

Let E be a vector bundle over a smooth manifold M . Let (xi, qa)

be a local coordinates on E[1] of degree (0, 1).

Let Q be a homological vector field of degree one such that Q2 = 0.

A general form is

Q = ρia(x)q
a ∂

∂xi
− 1

2
Ca

bc(x)q
bqc

∂

∂qa
.

Proposition 1. A Q-manifold (E[1], Q) induces a Lie algebroid

structure on E.
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Definition 2. A Lie algebroid (E, ρ, [−,−]) is a vector bundle E

over M with a bundle map ρ : E → TM called the anchor map, and

a Lie bracket [−,−] : Γ(E) × Γ(E) → Γ(E) satisfying the Leibniz

rule,

[e1, fe2] = f [e1, e2] + ρ(e1)f · e2,

where ei ∈ Γ(E) and f ∈ C∞(M).

Define ρ(ea) := ρia(x)∂i and [ea, eb] := Cc
ab(x)ec for the basis ea of

E.
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Example 1. [Lie algebras] Let a manifold M be one point M =

{pt}. Then it is a Lie algebra g.

Example 2. [Tangent Lie algebroids] E = TM and ρ = id,

[−,−] is a normal Lie bracket on the space of vector fields X(M).

Example 3. [Poisson Lie algebroid] Let (M,π) be a Poisson

manifold.

A Poisson structure is defined by the bivector field π = 1
2π

ij(x) ∂
∂xi ∧

∂
∂xj ∈ Γ(∧2TM) with [π, π]S = 0, where [−,−]S is the Schouten

bracket.
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Then, T ∗M is a Lie algebroid.

A bundle map π♯ is defined as π♯ : T ∗M → TM by ⟨π♯(α), β⟩ =
π(α, β) for all β ∈ Ω1(M).

A Lie bracket on Ω1(M) is given by

[α, β]π = Lπ♯(α)β − Lπ♯(β)α− d(π(α, β)),

where α, β ∈ Ω1(M).

Proposition 2. A QP-manifold (T ∗[1]M,ω,Q) induces a Poisson

structure on M .
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§6-2. QP-manifold of degree two

1. A graded manifold is M = T ∗[2]E[1] = (M,OM), where E is a

vector bundle on M .

Assume a fiber metric ⟨−, −⟩ = k to identify E and E∗.

A local coordinate is (xi, ηa) of degree (0, 1) and the conjugate

coordinate is (ξi, kabη
b) of degree (2, 1).

2. graded symplectic form of degree two

ω = δxi ∧ δξi +
1
2δ(kabη

a) ∧ δηb.
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3. A general homological function of degree 3 is

Θ = ρia(x)ξiη
a + 1

3!Habc(x)η
aηbηc.

and is imposed {Θ,Θ} = 0.

Structure sheaf OM = C∞(M) is not described by a space of

sections of a vector bundle.

We decompose C∞(M) =
∑

i≥0Ci(M), where Ci(M) is the space

of functions of degree i, and take C0(M)⊕ C1(M).
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Theorem 1. Roytenberg ’99

A QP manifold of degree 2 induces aCourant algebroid structure

on E.

Courant sigma model

We can construct a sigma model with a Courant algebroid structure.

NI ’02, Roytenberg ’06
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Definition 3. [Courant algebroids] Liu, Weinstein, Xu ’97,

Kosmann-Schwarzbach ’07

Let E be a vector bundle over M equipped with a pseudo-Euclidean

inner product ⟨−, −⟩, a bundle map ρ : E −→ TM and a binary

bracket [−,−]D on Γ(E). The bundle is called the Courant

algebroid if three conditions are satisfied,

[e1, [e2, e3]D]D = [[e1, e2]D, e3]D + [e2, [e1, e3]D]D,

ρ(e1)⟨e2, e3⟩ = ⟨[e1, e2]D, e3⟩+ ⟨e2, [e1, e3]D⟩,
ρ(e1)⟨e2, e3⟩ = ⟨e1, [e2, e3]D + [e3, e2]D⟩,

where e1, e2, e3 ∈ Γ(E).

33



Derived bracket construction of Courant algebroids

C0(M) and C1(M) make a closed algebra by the derived bracket

{{−,Θ},−}. (Count degree!)

C0(M) ≃ C∞(M), f(x).

C1(M) ≃ Γ(E), αa(x)η
a ∈ C1(M) ≃ e = αa(x)e

a ∈ Γ(E).

The operations on E are defined by Poisson brackets and derived
brackets.

For f, g ∈ C0(M), e, e1, e2 ∈ C1(M),

34



Poisson brackets

C0 × C0, 0 = {f, g}

C1 × C0, 0 = {e, f}

C1 × C1, ⟨e1, e2⟩ = {e1, e2} (inner product)

Derived brackets

C0 × C0→ 0, 0 = {{f,Θ}, g}

C1 × C0→ C0, ρ(e)f = −{{e,Θ}, f} (anchor map)

C1 × C1→ C1, [e1, e2]D = −{{e1,Θ}, e2} (Dorfman bracket)

35



Example 4. For general n, we call the structure on the vector

bundle E induced by the derived brackets on the corresponding QP

manifold of degree n, a Lie n-algebroid.

A Lie 1-algebroid is a Poisson-Lie algebroid.

A Lie 2-algebroid is a Courant algebroid.

A corresponding global object to a Lie n-algebroid is called a Lie

n-groupoid.
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Example: bc-βγ system in superstring theory

It is a QP-manifold of degree two, T ∗[2]E[1].

(ba, ca, βi, γ
i) are local coordinates of degree (1, 1, 2, 0). Graded

Poisson brackets {ba, cb} = δab , {βi, γ
j} = δji are induced from ω.

Local coordinate transformations on a QP-manifold of degree 2 are

equal to canonical transformations on the bc-βγ system,

γ′i = γ′i(γ), b′a = Ma
b (γ)b

b, c′a = M b
a(γ)cb,

β′
i =

∂γj

∂γ′iβj +
1

2
M c

b

∂Md
c

∂γ′i b
bcd.
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§7. Geometric constructions of BV
NI-Strobl ’21, Chatzistavrakidis-NI-Šimunić ’22, Chatzistavrakidis-NI-Jonke ’24

The BV action functional is constructed using geometric quantities

of Lie and higher algebroids.

Two differentials in Lie algebroids

d : Γ(∧lT ∗M)→ Γ(∧l+1T ∗M),

Ed : Γ(∧mE∗)→ Γ(∧m+1E∗).

d is the de Rham differential.
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E-differential (Lie algebroid differentials)

Γ(∧•E∗) is the space of E-differential forms.

Definition 4. For α ∈ Γ(∧mE∗) and ei ∈ Γ(E), an E-differential
Ed : Γ(∧mE∗)→ Γ(∧m+1E∗) such that (Ed)2 = 0 is defined by

Edα(e1, . . . , em+1) =

m+1∑
i=1

(−1)i−1ρ(ei)α(e1, . . . , ěi, . . . , em+1)

+
∑

1≤i<j≤m+1

(−1)i+jα([ei, ej], e1, . . . , ěi, . . . , ěj, . . . , em+1).
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Two connections

Definition 5. A connection on a vector bundle E′ is a R-linear

map ∇ : Γ(E′)→ Γ(E′ ⊗ T ∗M) satisfying

∇v(fe
′) = f∇ve

′ + (vf)e′,

for v ∈ Γ(TM), e′ ∈ Γ(E′) and f ∈ C∞(M).

Definition 6. An E-connection on a vector bundle E′ with respect

to a Lie algebroid E is a R-linear map E∇ : Γ(E′) → Γ(E′ ⊗ E∗)

satisfying

E∇e(fe
′) = fE∇ee

′ + (ρ(e)f)e′,
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for e ∈ Γ(E), e′ ∈ Γ(E′) and f ∈ C∞(M).

For a given (normal) vector bundle connection ∇ : Γ(E) →
Γ(E ⊗ T ∗M) on E, an E-connection called the basic E-connection

on TM , E∇ : Γ(TM)→ Γ(TM ⊗ E∗) is defined by

E∇ev := Lρ(e)v + ρ(∇ve) = [ρ(e), v] + ρ(∇ve).

The basic E-connection on E, E∇ : Γ(E)→ Γ(E ⊗ E∗) is defined

by

E∇ee
′ := ∇ρ(e′)e+ [e, e′],

for e, e′ ∈ Γ(E).
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Another torsions and curvatures
Let e, e′ ∈ Γ(E), v, v′ ∈ X(M). The E-torsion and the E-

curvature,

T (e, e′) = ∇ρ(e)e
′ −∇ρ(e′)e+ [e, e′] ∈ Γ(E ⊗ ∧2E∗)

ER(e, e′) = [E∇e,
E∇′

e]− E∇[e,e′] ∈ Γ(∧2E∗ ⊗ E ⊗ E∗)

The basic curvature, S ∈ Γ(T ∗M ⊗ E ⊗ ∧2E∗) Blaom ’06

S(e, e′)(v) = ∇v[e, e
′]− [∇ve, e

′]− [e,∇ve
′]−∇E∇e′v

e+∇E∇ev
e′
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Geometric form of BV action functional

The Poisson sigma model in two dimensions,

SBV =

∫
Σ

[
⟨A,dXX⟩+ 1

2(π ◦X)(A,A)

+⟨A+,∇c− (T ◦X)(A, c)⟩ − (π ◦X)(X+, c)

−1
2⟨c

+, (T ◦X)(c, c)⟩+ 1
4⟨A

+, (S ◦X)(A+, c, c)⟩
]
.

Note: SBV does not depend on the connection ∇ (and E∇), but

each term does.
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Other results

Geometric BV formalism of a (pre-)Courant sigma model is

analyzed.

The BV action functional is constructed using the E-torsion, the

basic curvature of the (pre-)Courant algebroid.

Chatzistavrakidis-NI-Šimunić, ’22, Chatzistavrakidis-NI-Jonke, ’23
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§Further applications
• Σn+1: higher dimensional worldvolume, higher Lie n-algebroid,

applications to n-brane geometry, M-theory, T-duality, U-duality

• Geometry of gauged nonlinear sigma models and generalizations

of momentum maps on multisymplectic manifolds NI ’18, Hirota-NI ’22

• Construction of current algebras induced from QP manifolds

NI-Koizumi ’13, NI-Xu ’14, Arvanitakis ’21, Hayami ’23

• Applications to mathematics, noncommutative geometry,

deformation quantization, geometry of algebroids, connections,

curvatures, momentum maps, localizations
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§. Outlook

• The constraint algebra in the general relativity in four dimensions

is a Lie algebroid. Blohmann-Fernandes-Weinstein ’13

• higher degree QP-manifolds and analysis of higher dimensional

theories

• Quantization (deformation quantizations, path integral

quantizations)
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Thank you for your attention!
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