Q-manifolds and sigma models

Noriaki Ikeda

Ritsumeikan University Kyoto, Japan

§1. Introduction

Applications of graded manifolds and Q-manifolds, to physical theories, especially, to BV-formalism.

This talk is related to Vladimir Salnikov's lecture in the next week.

Purpose

Quantum field theories are not completely formulated as mathematics yet.

→ Toward mathematical formulations

Examples and applications of graded manifolds

- Fermions, supersymmetry
- Ghosts in gauge theories (BRST-BV-BFV formalism)
- → Canonical, path integral quantizations
- ullet Poisson brackets. Lie algebras o Analytic mechanics
- Homological algebras and topological invariants based on differential complexes (anomalies, topological effects)
- \bullet L_{∞} -algebras, A_{∞} -algebras, (string field theory, etc.)
- Deformation quantizations and formality

- T-, S-, U-dualities in string theories
- Current algebras
- Variational principle (variational bicomplex)
 etc.

Basic examples

In supersymmetry, $y^{\mu}=x^{\mu}+i\theta\sigma^{\mu}\overline{\theta}$

Ghosts and BRST-BV formalism in quantum field theories

A vector bundle and differential forms are not sufficient!

Non-graded formulation \longleftrightarrow Graded formulation

Analytical mechanics and gauge theories

Lagrangian formalism \longleftrightarrow Batalin-Vilkovisky (BV) formalism

Hamiltonian formalism \longleftrightarrow Batalin-Fradkin-Vilkovisky (BFV) formalism

Quantum field theories

Dirac quantizations ←→ BRST-BV quantizations

Plan of Talk

Batalin-Vilkovisky formalism (Poisson sigma model)

Q-manifolds (differential graded manifolds) and QP-manifolds

Geometry induced from graded manifolds

Recent developments

§2. BRST formalism to BV formalism

Yang-Mills (nonabelian gauge) theory

$$S = -\frac{1}{4} \int \operatorname{tr}(F \wedge *F), \qquad F = dA + A \wedge A.$$

Infinitesimal gauge transformations are

$$\delta_{\epsilon} A = \mathrm{d}\epsilon + [A, \epsilon],$$

where ϵ is a gauge parameter. Then,

$$\delta_{\epsilon}S = 0, \qquad [\delta_{\epsilon}, \delta_{\epsilon'}]A = \delta_{[\epsilon, \epsilon']}A. \qquad \text{(off-shell)}$$

Historical developments of quantizations of gauge theories

Gauge fixing, Gupla-Bleuler, Faddev-Popov (FP) ghosts, 't-Hooft-Veltman, Becchi-Rouet-Stora-Tyutin (BRST), Kugo-Ojima...

BRST transformations Change $\epsilon(\sigma)$ to a Grassman odd field (FP ghost) $c(\sigma)$,

$$sA = dc + [A, c].$$

ghost number: gh A = 0, gh c = 1. s is of ghost number one. If $sc = -\frac{1}{2}[c,c]$, we obtain

$$sS = 0,$$
 $s^2 = 0.$ (off-shell)

BRST quantization Introduce the antighosts, odd and even \bar{c} , b such that $s\bar{c}=ib$ and sb=0, and consider the gauge fixing,

$$S_q = \int \left(\operatorname{tr}(F \wedge *F) + b * d * A + *\frac{\alpha}{2} \operatorname{tr}(bb) - i\overline{c} * d * Dc \right).$$

 $sS_q = 0$ and $s^2 = 0$ (off-shell).

$$Z = \int_{\mathcal{L}} \mathcal{D}A\mathcal{D}b\mathcal{D}c\mathcal{D}\bar{c} \ e^{\frac{i}{\hbar}S_q}$$

is BRST invariant. \mathcal{L} is a Lagrangian submanifold of the space of fields. Physical states are defined by $s|phys\rangle = 0$.

Problems of BRST formalism

General consistency conditions of a classical gauge theory are

$$\delta_{\epsilon}S = 0$$
 (off shell), $[\delta_{\epsilon}, \delta_{\epsilon'}] = \delta_{[\epsilon, \epsilon']} + (\text{equations of motion}).$

In the BRST formalism,

$$sS = 0$$
 (off shell), $s^2 =$ (equations of motion).

However, gauge fixings change the EOMs because the action functional changes S to S_q . $s^2 = (\text{equations of motion})$ does not hold. The physical condition $s|\text{phys}\rangle = 0$ is inconsistent!

Batalin-Vilkovisky (BV) formalism Batalin-Vilkovisky '83,'85

By introducing auxiliary fields, we modify the action functional S to S_{BV} satisfying

$$sS_{BV} = 0$$
 (off shell), $s^2 = 0$ (off shell),

without changing physics, and quantize it. Quantization with gauge fixing is consistent,

$$Z = \int_{\mathcal{L}} \mathcal{D}A\mathcal{D}b\mathcal{D}c\mathcal{D}\bar{c} \ e^{\frac{i}{\hbar}S_{BVq}}$$

We can consistently impose the physical condition, $s|phys\rangle = 0$.

§3. Poisson sigma model

NI '93, Schaller and Strobl '94

A $sigma\ model$ is a mechanics on a mapping space.

It is a sigma model from Σ in two dimensions with local coordinate σ^{μ} to a target manifold M in d dimensions.

$$X^i:\Sigma \to M$$
, $A_i=A_{\mu i}(\sigma)\mathrm{d}\sigma^\mu$: gauge field

$$S = \int_{\Sigma} \left(A_i \wedge d_{\Sigma} X^i + \frac{1}{2} \pi^{ij}(X) A_i \wedge A_j \right)$$
$$= \int_{\Sigma} d^2 \sigma \left(\epsilon^{\mu\nu} A_{\mu i} \partial_{\nu} X^i + \frac{1}{2} \epsilon^{\mu\nu} \pi^{ij}(X) A_{\mu i} A_{\nu j} \right)$$

where $\pi^{ij}(X) = -\pi^{ji}(X)$ is an antisymmetric tensor.

This model describes

- two dimensional dilaton gravity (deformed JT gravity)
- A-model, B-model (topological string theory)
- BF type theories are used in generalized symmetries.
- Tree (disc) open string amplitude gives the Kontsevich's formula of the deformation quantization on a Poisson manifold.

Kontsevich '97, Cattaneo, Felder '99

The action functional is gauge invariant under the following gauge transformations,

$$\delta_{\epsilon} X^{i} = -\pi^{ij}(X)\epsilon_{j}, \qquad \delta_{\epsilon} A_{i} = d\epsilon_{i} + \frac{1}{2} \frac{\partial \pi^{jk}(X)}{\partial X^{i}} A_{j}\epsilon_{k},$$

iff π is a Poisson structure,

$$\frac{\partial \pi^{ij}}{\partial X^m} \pi^{mk} + \frac{\partial \pi^{jk}}{\partial X^m} \pi^{mi} + \frac{\partial \pi^{ki}}{\partial X^m} \pi^{mj} = 0 \tag{1}$$

Equation (1) is the Jacobi identity of the target space Poisson bracket,

$$\{F(X), G(X)\}_{PB} \equiv \frac{1}{2}\pi^{ij}(X)\frac{\partial F}{\partial X^i}\frac{\partial G}{\partial X^j}.$$

The gauge algebra is an open algebra,

$$[\delta_{\epsilon_1}, \delta_{\epsilon_2}] X^i = \delta_{[\epsilon_1, \epsilon_2]} X^i,$$

$$[\delta_{\epsilon_1}, \delta_{\epsilon_2}] A_{\mu i} = \delta_{[\epsilon_1, \epsilon_2]} A_{\mu i} + \epsilon_{1j} \epsilon_{2k} \frac{\partial \pi^{jk}}{\partial X^i \partial X^l} (X) \frac{\delta S}{\delta A_{\mu l}}$$

§4. Batalin-Vilkovisky formalism

1, Replace the gauge parameter ϵ_i to the Grassmann odd FP ghost c_i with ghost number one.

A gauge transformation δ_ϵ is replaced to the BRST transformation s of degree one and define $sc_i=-\frac{1}{2}\frac{\partial\pi^{jk}}{\partial X^i}c_jc_k$, to satisfy $s^2\approx 0$ (on-shell).

2, Introduce antifields $\Phi^* = (X^*, A^*, c^*)$ for each field $\Phi = (X, A, c)$ in BRST formalism such that $gh \Phi + gh \Phi^* = -1$.

3, Introduce the BV bracket (an odd Poisson bracket)

$$\{F,G\} \equiv \sum_{\Phi} \int_{\Sigma} \left(F \frac{\overleftarrow{\partial}}{\partial \Phi(\sigma)} \frac{\overrightarrow{\partial}}{\partial \Phi^*(\sigma')} G - F \frac{\overleftarrow{\partial}}{\partial \Phi^*(\sigma)} \frac{\overrightarrow{\partial}}{\partial \Phi(\sigma')} G \right) \delta^2(\sigma - \sigma')$$

4, Batalin-Vilkovisky (BV) action functional S_{BV} is determined by imposing the condition, $\{S_{BV}, S_{BV}\} = 0$ in off-shell, (the classical master equation), where S_{BV} is expanded by Φ^* ,

$$S_{BV} = S + (-1)^{gh\Phi} \int_{\Sigma} \Phi^* s \Phi + S_2(\Phi^{*2}) + S_3(\Phi^{*3}) + \dots$$

Solution

$$S_{BV} = \int_{\Sigma} \left[A_i \wedge dX^i + \frac{1}{2} \pi^{ij} (X) A_i \wedge A_j - X^{+i} \pi^{ij} c_j + A^{+i} \wedge \left(dc_i + \frac{\partial \pi^{jk}}{\partial X^i} A_j c_k \right) + \frac{1}{2} \frac{\partial \pi^{jk}}{\partial X^i} c^{+i} c_j c_k - \frac{1}{4} \frac{\partial^2 \pi^{kl}}{\partial X^i \partial X^j} A^{+i} \wedge A^{+j} c_k c_l \right],$$

where $A_i \equiv d\sigma^{\mu}A_{\mu i}$, $A^{+i} \equiv d\sigma^{\mu}\epsilon_{\mu\nu}A^{*\nu i}$, $X_i^+ \equiv \frac{1}{2}d\sigma^{\mu} \wedge d\sigma^{\nu}\epsilon_{\mu\nu}X_i^*$, $c^{+i} \equiv \frac{1}{2}d\sigma^{\mu} \wedge d\sigma^{\nu}\epsilon_{\mu\nu}c^{*i}$

5, The BRST transformation is defined by

$$sf[\Phi, \Phi^*] = \{S_{BV}, f[\Phi, \Phi^*]\}$$

- 6, Since $\{S_{BV}, S_{BV}\} = 0$,
- i) S_{BV} is gauge invariant because $sS_{BV} = \{S_{BV}, S_{BV}\} = 0$,
- ii) $s^2 = 0$ (off-shell) because $s^2F = \{S_{BV}, \{S_{BV}, F\}\} = \frac{1}{2}\{\{S_{BV}, S_{BV}\}, F\} = 0$.

§4-2. Quantum BV

The partition function

$$Z = \int_{\mathcal{L}} \mathcal{D}\Phi \ e^{rac{i}{\hbar}S_{BVq}}$$

must be invariant under changing of the Lagrangian submanifold $\mathcal{L}' = \mathcal{L} + \delta \mathcal{L}$. The quantum master equation

$$-2i\hbar\Delta S_{BVq} + \{S_{BVq}, S_{BVq}\} = 0.$$

Here Δ is the BV Laplacian, $\Delta \equiv \int \frac{\partial}{\partial \Phi^I} \frac{\partial}{\partial \Phi_I^*}$.

§5. QP-manifolds (Differential graded symplectic manifolds)

Physics → Mathematics

BV formalism \longrightarrow QP-manifold (differential graded symplectic manifold)

- 1, fields + ghosts + antifields \longrightarrow graded manifold
- 2, BV bracket graded symplectic form and odd Poisson bracket
- 3, BV action functional and the classical master equation \longrightarrow Homological vector field and its Hamiltonian function

Definition 1. The triple (\mathcal{M}, ω, Q) is called a QP-manifold of degree n

1, \mathcal{M} : graded manifolds

A graded manifold $\mathcal{M}=(M,\mathcal{O}_M)$ on a smooth manifold M is a ringed space which structure sheaf \mathcal{O}_M is \mathbf{Z} -graded commutative algebras over M, locally isomorphic to $C^\infty(U)\otimes S^\bullet(V)$, where U is a local chart on M, V is a graded vector space and $S^\bullet(V)$ is a free graded commutative ring on V.

Grading is called **degree**. We denote $\mathcal{O}_M = C^{\infty}(\mathcal{M})$.

- 2. ω : (P-structure) a graded symplectic form of degree n on \mathcal{M} .
- 3. Q: (Q-structure) (Homological vector field) A graded vector field of degree +1 such that $Q^2=0$, and $\mathcal{L}_Q\omega=0$.

Note: (\mathcal{M}, Q) is called a Q-manifold if $Q^2 = 0$.

Note: A graded Poisson bracket $\{-,-\}$ of degree -n is induced from ω .

$$\{f,g\} = -(-1)^{(|f|-n)(|g|-n)} \{g,f\},$$

$$\{f,gh\} = \{f,g\}h + (-1)^{(|f|-n)|g|} g\{f,h\},$$

$$\{f,\{g,h\}\} = \{\{f,g\},h\} + (-1)^{(|f|-n)(|g|-n)} \{g,\{f,h\}\}.$$

Note: If degree $n \neq 0$, there exists a Hamiltonian function (a homological function) $\Theta \in C^{\infty}(\mathcal{M})$ of degree n+1 such that $Q(-) = \{\Theta, -\}$.

 $Q^2 = 0$ is equal to the equation, $\{\Theta, \Theta\} = 0$.

BRST-BV formalism of gauge theory

A (classical) BRST-BV formalism is a QP-manifold of degree -1 on the mapping space of two graded manifolds.

BV of Poisson sigma model

$$\mathcal{M} = \operatorname{Map}(T[1]\Sigma, T^*[1]M) \simeq T^*[-1]\operatorname{Map}(T[1]\Sigma, M)$$

 ω induce the BV bracket.

 $\Theta = S_{BV}$ is the homological function.

§6. Geometry of Q(P)-manifolds

Lie algebras Let \mathfrak{g} be a vector space.

- 1. $\mathcal{M} = T^*[2]\mathfrak{g}[1] \simeq \mathfrak{g}[1] \oplus \mathfrak{g}^*[1]$. Let c^a and b_a be odd coordinates of $\mathfrak{g}[1]$ and $\mathfrak{g}^*[1]$.
- 2. The symplectic form is $\omega = \delta c^a \wedge \delta b_a$ and $\{c^a, b_b\} = \delta^a_b$.
- 3. $\Theta = \frac{1}{2}C_{ab}^c c^a c^b b_c$. $\{\Theta, \Theta\} = 0$ is equivalent that C_{ab}^c is a structure constant of a Lie algebra with $[b_a, b_b] := C_{ab}^c b_c$.
- $C^{\infty}(T^*[2]\mathfrak{g}[1]) \simeq \wedge^{\bullet}(\mathfrak{g} \oplus \mathfrak{g}^*)$ with Q is the Chevalley-Eilenberg complex of \mathfrak{g} .

§6-1. Q-manifold and QP-manifold of degree one

Shifted vector bundles E[1] and Lie algebroids

Let E be a vector bundle over a smooth manifold M. Let (x^i, q^a) be a local coordinates on E[1] of degree (0,1).

Let Q be a homological vector field of degree one such that $Q^2=0$. A general form is

$$Q = \rho_a^i(x)q^a \frac{\partial}{\partial x^i} - \frac{1}{2}C_{bc}^a(x)q^bq^c \frac{\partial}{\partial q^a}.$$

Proposition 1. A Q-manifold (E[1],Q) induces a Lie algebroid structure on E.

Definition 2. A Lie algebroid $(E, \rho, [-, -])$ is a vector bundle E over M with a bundle map $\rho: E \to TM$ called the anchor map, and a Lie bracket $[-, -]: \Gamma(E) \times \Gamma(E) \to \Gamma(E)$ satisfying the Leibniz rule,

$$[e_1, fe_2] = f[e_1, e_2] + \rho(e_1)f \cdot e_2,$$

where $e_i \in \Gamma(E)$ and $f \in C^{\infty}(M)$.

Define $\rho(e_a) := \rho_a^i(x)\partial_i$ and $[e_a, e_b] := C_{ab}^c(x)e_c$ for the basis e_a of E.

Example 1. [Lie algebras] Let a manifold M be one point $M = \{pt\}$. Then it is a Lie algebra \mathfrak{g} .

Example 2. [Tangent Lie algebroids] E = TM and $\rho = \mathrm{id}$, [-,-] is a normal Lie bracket on the space of vector fields $\mathfrak{X}(M)$.

Example 3. [Poisson Lie algebroid] Let (M, π) be a Poisson manifold.

A Poisson structure is defined by the bivector field $\pi = \frac{1}{2}\pi^{ij}(x)\frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j} \in \Gamma(\wedge^2 TM)$ with $[\pi, \pi]_S = 0$, where $[-, -]_S$ is the Schouten bracket.

Then, T^*M is a Lie algebroid.

A bundle map π^{\sharp} is defined as $\pi^{\sharp}: T^{*}M \to TM$ by $\langle \pi^{\sharp}(\alpha), \beta \rangle = \pi(\alpha, \beta)$ for all $\beta \in \Omega^{1}(M)$.

A Lie bracket on $\Omega^1(M)$ is given by

$$[\alpha, \beta]_{\pi} = \mathcal{L}_{\pi^{\sharp}(\alpha)}\beta - \mathcal{L}_{\pi^{\sharp}(\beta)}\alpha - d(\pi(\alpha, \beta)),$$

where $\alpha, \beta \in \Omega^1(M)$.

Proposition 2. A QP-manifold $(T^*[1]M, \omega, Q)$ induces a Poisson structure on M.

§6-2. QP-manifold of degree two

1. A graded manifold is $\mathcal{M} = T^*[2]E[1] = (M, \mathcal{O}_M)$, where E is a vector bundle on M.

Assume a fiber metric $\langle -, - \rangle = k$ to identify E and E^* .

A local coordinate is (x^i, η^a) of degree (0, 1) and the conjugate coordinate is $(\xi_i, k_{ab}\eta^b)$ of degree (2, 1).

2. graded symplectic form of degree two

$$\omega = \delta x^i \wedge \delta \xi_i + \frac{1}{2} \delta(k_{ab} \eta^a) \wedge \delta \eta^b.$$

3. A general homological function of degree 3 is

$$\Theta = \rho^i{}_a(x)\xi_i\eta^a + \frac{1}{3!}H_{abc}(x)\eta^a\eta^b\eta^c.$$

and is imposed $\{\Theta, \Theta\} = 0$.

Structure sheaf $\mathcal{O}_M = C^{\infty}(\mathcal{M})$ is not described by a space of sections of a vector bundle.

We decompose $C^{\infty}(\mathcal{M}) = \sum_{i\geq 0} C_i(\mathcal{M})$, where $C_i(\mathcal{M})$ is the space of functions of degree i, and take $C_0(\mathcal{M}) \oplus C_1(\mathcal{M})$.

Theorem 1.

Roytenberg '99

A QP manifold of degree 2 induces a $Courant \ algebroid \ structure$ on E.

Courant sigma model

We can construct a sigma model with a Courant algebroid structure.

NI '02, Roytenberg '06

Definition 3. [Courant algebroids]

Liu, Weinstein, Xu '97,

Kosmann-Schwarzbach '07

Let E be a vector bundle over M equipped with a pseudo-Euclidean inner product $\langle -, - \rangle$, a bundle map $\rho : E \longrightarrow TM$ and a binary bracket $[-,-]_D$ on $\Gamma(E)$. The bundle is called the **Courant** algebroid if three conditions are satisfied,

$$[e_{1}, [e_{2}, e_{3}]_{D}]_{D} = [[e_{1}, e_{2}]_{D}, e_{3}]_{D} + [e_{2}, [e_{1}, e_{3}]_{D}]_{D},$$

$$\rho(e_{1})\langle e_{2}, e_{3}\rangle = \langle [e_{1}, e_{2}]_{D}, e_{3}\rangle + \langle e_{2}, [e_{1}, e_{3}]_{D}\rangle,$$

$$\rho(e_{1})\langle e_{2}, e_{3}\rangle = \langle e_{1}, [e_{2}, e_{3}]_{D} + [e_{3}, e_{2}]_{D}\rangle,$$

where $e_1, e_2, e_3 \in \Gamma(E)$.

Derived bracket construction of Courant algebroids

 $C_0(\mathcal{M})$ and $C_1(\mathcal{M})$ make a closed algebra by the derived bracket $\{\{-,\Theta\},-\}$. (Count degree!)

$$C_0(\mathcal{M}) \simeq C^{\infty}(M)$$
, $f(x)$.
 $C_1(\mathcal{M}) \simeq \Gamma(E)$, $\alpha_a(x)\eta^a \in C_1(\mathcal{M}) \simeq e = \alpha_a(x)e^a \in \Gamma(E)$.

The operations on E are defined by Poisson brackets and **derived** brackets.

For
$$f,g\in C_0(\mathcal{M})$$
, $e,e_1,e_2\in C_1(\mathcal{M})$,

Poisson brackets

$$C_0 imes C_0, \qquad 0=\{f,g\}$$

$$C_1 imes C_0, \qquad 0=\{e,f\}$$

$$C_1 imes C_1, \qquad \langle e_1,\,e_2 \rangle = \{e_1,e_2\} \qquad \text{(inner product)}$$

Derived brackets

$$C_0 imes C_0 o 0$$
, $0 = \{\{f,\Theta\},g\}$ $C_1 imes C_0 o C_0$, $\rho(e)f = -\{\{e,\Theta\},f\}$ (anchor map) $C_1 imes C_1 o C_1$, $[e_1,e_2]_D = -\{\{e_1,\Theta\},e_2\}$ (Dorfman bracket)

Example 4. For general n, we call the structure on the vector bundle E induced by the derived brackets on the corresponding QP manifold of degree n, a Lie n-algebroid.

A Lie 1-algebroid is a Poisson-Lie algebroid.

A Lie 2-algebroid is a Courant algebroid.

A corresponding global object to a Lie n-algebroid is called a Lie n-groupoid.

Example: bc- $\beta\gamma$ system in superstring theory

It is a QP-manifold of degree two, $T^*[2]E[1]$.

 $(b^a, c_a, \beta_i, \gamma^i)$ are local coordinates of degree (1, 1, 2, 0). Graded Poisson brackets $\{b^a, c_b\} = \delta^a_b$, $\{\beta_i, \gamma^j\} = \delta^j_i$ are induced from ω .

Local coordinate transformations on a QP-manifold of degree 2 are equal to canonical transformations on the bc- $\beta\gamma$ system,

$$\gamma'^{i} = \gamma'^{i}(\gamma), \qquad b'^{a} = M_{b}^{a}(\gamma)b^{b}, \qquad c'_{a} = M_{a}^{b}(\gamma)c_{b},$$

$$\beta'_{i} = \frac{\partial \gamma^{j}}{\partial \gamma'^{i}}\beta_{j} + \frac{1}{2}M_{b}^{c}\frac{\partial M_{c}^{d}}{\partial \gamma'^{i}}b^{b}c_{d}.$$

§7. Geometric constructions of BV

NI-Strobl '21, Chatzistavrakidis-NI-Šimunić '22, Chatzistavrakidis-NI-Jonke '24

The BV action functional is constructed using geometric quantities of Lie and higher algebroids.

Two differentials in Lie algebroids

$$d: \Gamma(\wedge^l T^*M) \to \Gamma(\wedge^{l+1} T^*M),$$

$$Ed: \Gamma(\wedge^m E^*) \to \Gamma(\wedge^{m+1} E^*).$$

d is the de Rham differential.

E-differential (Lie algebroid differentials)

 $\Gamma(\wedge^{\bullet}E^*)$ is the space of E-differential forms.

Definition 4. For $\alpha \in \Gamma(\wedge^m E^*)$ and $e_i \in \Gamma(E)$, an E-differential $E^E d : \Gamma(\wedge^m E^*) \to \Gamma(\wedge^{m+1} E^*)$ such that $(E^E d)^2 = 0$ is defined by

$$^{E} d\alpha(e_{1}, \dots, e_{m+1}) = \sum_{i=1}^{m+1} (-1)^{i-1} \rho(e_{i}) \alpha(e_{1}, \dots, \check{e}_{i}, \dots, e_{m+1})$$

$$+ \sum_{1 \leq i < j \leq m+1} (-1)^{i+j} \alpha([e_{i}, e_{j}], e_{1}, \dots, \check{e}_{i}, \dots, \check{e}_{j}, \dots, e_{m+1}).$$

Two connections

Definition 5. A connection on a vector bundle E' is a \mathbf{R} -linear map $\nabla: \Gamma(E') \to \Gamma(E' \otimes T^*M)$ satisfying

$$\nabla_v(fe') = f\nabla_v e' + (vf)e',$$

for $v \in \Gamma(TM)$, $e' \in \Gamma(E')$ and $f \in C^{\infty}(M)$.

Definition 6. An E-connection on a vector bundle E' with respect to a Lie algebroid E is a \mathbf{R} -linear map ${}^E\nabla:\Gamma(E')\to\Gamma(E'\otimes E^*)$ satisfying

$${}^{E}\nabla_{e}(fe') = f^{E}\nabla_{e}e' + (\rho(e)f)e',$$

for $e \in \Gamma(E)$, $e' \in \Gamma(E')$ and $f \in C^{\infty}(M)$.

For a given (normal) vector bundle connection $\nabla: \Gamma(E) \to \Gamma(E\otimes T^*M)$ on E, an E-connection called the $basic\ E$ -connection on TM, $^E\nabla:\Gamma(TM)\to\Gamma(TM\otimes E^*)$ is defined by

$$^{E}\nabla_{e}v := \mathcal{L}_{\rho(e)}v + \rho(\nabla_{v}e) = [\rho(e), v] + \rho(\nabla_{v}e).$$

The $basic\ E\text{-}connection$ on E , $^E\nabla:\Gamma(E)\to\Gamma(E\otimes E^*)$ is defined by

$$^{E}\nabla_{e}e' := \nabla_{\rho(e')}e + [e, e'],$$

for $e, e' \in \Gamma(E)$.

Another torsions and curvatures

Let $e,e'\in\Gamma(E)$, $v,v'\in\mathfrak{X}(M)$. The E-torsion and the E-curvature,

$$T(e, e') = \nabla_{\rho(e)} e' - \nabla_{\rho(e')} e + [e, e'] \in \Gamma(E \otimes \wedge^2 E^*)$$

$${}^{E}R(e, e') = [{}^{E}\nabla_{e}, {}^{E}\nabla'_{e}] - {}^{E}\nabla_{[e, e']} \in \Gamma(\wedge^2 E^* \otimes E \otimes E^*)$$

The $basic\ curvature$, $\mathcal{S} \in \Gamma(T^*M \otimes E \otimes \wedge^2 E^*)$ Blaom '06

$$\mathcal{S}(e,e')(v) = \nabla_v[e,e'] - [\nabla_v e, e'] - [e, \nabla_v e'] - \nabla_{E_{\nabla_{e'}} v} e + \nabla_{E_{\nabla_e} v} e'$$

Geometric form of BV action functional

The Poisson sigma model in two dimensions,

$$S_{BV} = \int_{\Sigma} \left[\langle A, d_{\mathcal{X}} X \rangle + \frac{1}{2} (\pi \circ X) (A, A) + \langle A^+, \nabla c - (T \circ X) (A, c) \rangle - (\pi \circ X) (X^+, c) - \frac{1}{2} \langle c^+, (T \circ X) (c, c) \rangle + \frac{1}{4} \langle A^+, (\mathcal{S} \circ X) (A^+, c, c) \rangle \right].$$

Note: S_{BV} does not depend on the connection ∇ (and $^{E}\nabla$), but each term does.

Other results

Geometric BV formalism of a $(pre-)Courant\ sigma\ model$ is analyzed.

The BV action functional is constructed using the E-torsion, the basic curvature of the (pre-)Courant algebroid.

Chatzistavrakidis-NI-Šimunić, '22, Chatzistavrakidis-NI-Jonke, '23

§Further applications

- Σ_{n+1} : higher dimensional worldvolume, higher Lie n-algebroid, applications to n-brane geometry, M-theory, T-duality, U-duality
- Geometry of gauged nonlinear sigma models and generalizations of momentum maps on multisymplectic manifolds NI '18, Hirota-NI '22
- Construction of current algebras induced from QP manifolds
 NI-Koizumi '13, NI-Xu '14, Arvanitakis '21, Hayami '23
- Applications to mathematics, noncommutative geometry, deformation quantization, geometry of algebroids, connections, curvatures, momentum maps, localizations

§. Outlook

- The constraint algebra in the general relativity in four dimensions is a Lie algebroid.

 Blohmann-Fernandes-Weinstein '13
- higher degree QP-manifolds and analysis of higher dimensional theories
- Quantization (deformation quantizations, path integral quantizations)

Thank you for your attention!