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§1. Introduction

Applications of graded manifolds and Q-manifolds, to physical
theories, especially, to BV-formalism.

This talk is related to Vladimir Salnikov's lecture in the next week.

Purpose

Quantum field theories are not completely formulated as
mathematics yet.
— Toward mathematical formulations



Examples and applications of graded manifolds

e Fermions, supersymmetry

e Ghosts in gauge theories (BRST-BV-BFV formalism)
— Canonical, path integral quantizations

e Poisson brackets, Lie algebras — Analytic mechanics

e Homological algebras and topological invariants based on
differential complexes (anomalies, topological effects)

o [ -algebras, A..-algebras, (string field theory, etc.)

e Deformation quantizations and formality



e T-, S-, U-dualities in string theories

e Current algebras

e Variational principle (variational bicomplex)

etc.

Basic examples

In supersymmetry, y* = z* + i6oH6

Ghosts and BRST-BV formalism in quantum field theories

A vector bundle and differential forms are not sufficient!



Non-graded formulation <— Graded formulation
Analytical mechanics and gauge theories
Lagrangian formalism <— Batalin-Vilkovisky (BV) formalism

Hamiltonian formalism <— Batalin-Fradkin-Vilkovisky (BFV)
formalism

Quantum field theories

Dirac quantizations +— BRST-BV quantizations



Plan of Talk

Batalin-Vilkovisky formalism (Poisson sigma model)
Q-manifolds (differential graded manifolds) and QP-manifolds
Geometry induced from graded manifolds

Recent developments



§2. BRST formalism to BV formalism
Yang-Mills (nonabelian gauge) theory

S:—i/tr(F/\*F), F=dA+ANANA.

Infinitesimal gauge transformations are
0A =de+ A, €,
where € Is a gauge parameter. Then,

563 — O, [56, 56/]14 — (5[6’6/]14. (off—shell)



Historical developments of quantizations of gauge theories

Gauge fixing, Gupla-Bleuler, Faddev-Popov (FP) ghosts, 't-Hooft-
Veltman, Becchi-Rouet-Stora-Tyutin (BRST), Kugo-Ojima. ..

BRST transformations Change ¢(0) to a Grassman odd field (FP
ghost) c(o),

sA =dc+ [A,c].

ghost number: gh A =0, ghc =1. s is of ghost number one. If

sc = —z[c, ], we obtain

sS =0, s* = 0. (off-shell)



BRST quantization Introduce the antighosts, odd and even ¢, b
such that sc = b and sb = 0, and consider the gauge fixing,

S, = /(tr(F/\*F)—I—b*d*A+*§tr(bb) —ic*d*Dc) .
sS, = 0 and 5% = 0 (off-shell).
Z = / DADYDDE e
c

is BRST invariant. £ is a Lagrangian submanifold of the space of
fields. Physical states are defined by s|phys) = 0.



Problems of BRST formalism

General consistency conditions of a classical gauge theory are
0¢S =0 (off shell), e, 0¢r| = d1e e + (equations of motion).
In the BRST formalism,

sS =0 (off shell), s* = (equations of motion).

However, gauge fixings change the EOMs because the action

functional changes S to S,. s* = (equations of motion) does

not hold. The physical condition s|phys) = 0 is inconsistent!



Batalin-Vilkovisky (BV) formalism Batalin-Vilkovisky ‘83,85

By introducing auxiliary fields, we modify the action functional S to
Sy satisfying

sSpy = 0 (off shell), s> =0 (off shell),

without changing physics, and quantize it. Quantization with gauge
fixing is consistent,

7 = / DADVDcDE efSBVa
L

We can consistently impose the physical condition, s|phys) = 0.
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§3. Poisson sigma model NI '93, Schaller and Strobl '94
A sigma model i1s a mechanics on a mapping space.

It is a sigma model from X in two dimensions with local coordinate
ot to a target manifold M in d dimensions.

X": ¥ — M, A; = A,(0)dot: gauge field
S = / (Ai Ads X" + 277 (X) A; A Aj)
>
= / d%c (6" A0, X" + 26" m (X) A Ay
>

where 7% (X) = —77*(X) is an antisymmetric tensor.
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This model describes

e two dimensional dilaton gravity (deformed JT gravity)
e A-model, B-model (topological string theory)

e BF type theories are used in generalized symmetries.

e Tree (disc) open string amplitude gives the Kontsevich's formula
of the deformation quantization on a Poisson manifold.
Kontsevich '97, Cattaneo, Felder '99
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The action functional is gauge invariant under the following gauge
transformations,

5 X! = —m(X)ej,  0A; =de;+ 15 A ey

iff 7w 1s a Poisson structure,

orv N omik N okt
r r
oxm oxm oxXm

™ =0 (1)

Equation (1) is the Jacobi identity of the target space Poisson
bracket,

{F(X),G(X)}re =577 (X) 5557
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The gauge algebra is an open algebra,
[5617 562]Xi — 5[61,62]Xi7

[5617 562]14/”' — 5[61,62]Aui + €15€2k

oIk

00X 0X!

(X)

58
A,
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§4. Batalin-Vilkovisky formalism

1, Replace the gauge parameter ¢; to the Grassmann odd FP ghost
c; with ghost number one.

A gauge transformation 0. is replaced to the BRST transformation

_ 107k
2 00Xt

s of degree one and define sc; = cicg, to satisfy s? ~ 0

(on-shell).

2, Introduce antifields ®* = (X*, A*,c¢*) for each field & =
(X, A,c) in BRST formalism such that gh & + gh &* = —1.
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3, Introduce the BV bracket (an odd Poisson bracket)

B R I , ,
tG) = ;/E (Faq>(a)ac1>*(gf)G B Facp*(a)acp(af)G) ACE

4, Batalin-Vilkovisky (BV) action functional Spy is determined by
imposing the condition, {Spyv, Spy} = 0 in off-shell, (the classical
master equation), where Spy is expanded by &*,

Spy = S + (-1)%“’/ P*s® 4 So(D*?) 4 S3(P*%) + ...
by
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Solution

Sy = / [Az AdX* —F%?TZ](X)AZ /\Aj
>

.. : ik Jjk ;
—X+Z7T7’]Cj -+ A""Z A\ (dC,L —+ %A]Ck) %%7;(% C"‘ZCjCk

197k a4i n p+d
_ZﬁXianA NA e,

where A; = do*A,;, AT = dote,, A, X = 2dot AdoVe,, X,
S %dg“ A doVe,, c*
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5, The BRST transformation is defined by
Sf[(I), (I)*] — {SBV7 f[q)a (I)*]}
6, Since {SB‘/; ng} — 0,

i) Spyv is gauge invariant because sSgy = {Spy, Sy} =0,

i) s° = 0 (off-shell) because s?’F = {Spv,{Spv,F}} =
s1{Spv,Spv}, F} =0.
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§4-2. Quantum BV

_ / DP h5BVa
c

must be invariant under changing of the Lagrangian submanifold
L' =L+ L. The quantum master equation

The partition function

—QihASBVq + {SBVQ7 SBVq} = 0.

Here A is the BV Laplacian, A = f 8(1)18@*
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§5. QP-manifolds (Differential graded symplectic
manifolds)

Physics — Mathematics

BV formalism — QP-manifold (differential graded symplectic
manifold)

1, fields + ghosts + antifields — graded manifold
2, BV bracket — graded symplectic form and odd Poisson bracket

3, BV action functional and the classical master equation —
Homological vector field and its Hamiltonian function
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Definition 1. The triple (M,w,Q) is called a QP-manifold of
degree n

1, M: graded manifolds

A graded manifold M = (M, Oj;) on a smooth manifold M is a
ringed space which structure sheaf O,; is Z—graded commutative
algebras over M, locally isomorphic to C*°(U) ® S*(V'), where U
is a local chart on M, V is a graded vector space and S*(V) is a
free graded commutative ring on V.

Grading is called degree. We denote Oy, = C*°(M).
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2. w: (P-structure) a graded symplectic form of degree n on M.

3. Q: (Q-structure) (Homological vector field)
A graded vector field of degree +1 such that Q% = 0, and Low = 0.

Note: (M, Q) is called a Q-manifold if Q* = 0.

Note: A graded Poisson bracket {—, —} of degree —n is induced
from w.

{f,g}——( )(Ifl n)(|g|— n>{gjf}
{f,gh} = {f, gth+ (—1) W I=slg{ £ R},
{f.{g,h}} = {{f. g}, h} + (=)W I=mgl=m g L f h}}.
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Note: If degree n # 0, there exists a Hamiltonian function (a
homological function) © € C°°(M) of degree n 4+ 1 such that

@ = 0 is equal to the equation, {©,0} = 0.
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BRST-BV formalism of gauge theory

A (classical) BRST-BV formalism is a QP-manifold of degree —1
on the mapping space of two graded manifolds.

|

BV of Poisson sigma model
M = Map(T[1|3, T*[1|M) ~ T*|—1|Map(T'|1]>, M)
w induce the BV bracket.

© = Spy is the homological function.
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§6. Geometry of Q(P)-manifolds

Lie algebras Let g be a vector space.

1. M =T*2]g|l] ~ g[1] ® g*[1]. Let ¢* and b, be odd coordinates
of g[1] and g*[1].

2. The symplectic form is w = dc* A b, and {c?, by} = J.

3. © = 2C¢,c""b.. {©,0} = 0is equivalent that C¢, is a structure

a

constant of a Lie algebra with [b,, by] := C¢,be.

C>(T*2]g[1]) ~ A*(g @ g*) with @ is the Chevalley-Eilenberg
complex of g.
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§0-1. Q-manifold and QP-manifold of degree one
Shifted vector bundles E|1] and Lie algebroids

Let F be a vector bundle over a smooth manifold M. Let (z?, ¢%)
be a local coordinates on E[1] of degree (0,1).

Let Q be a homological vector field of degree one such that Q* = 0.
A general form is

_ ) a 0 1 a b _c 0
Q — pa(aj)q Ot zcbc(z)q q aqa°

Proposition 1. A Q-manifold (E[1],Q) induces a Lie algebroid
structure on E .
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Definition 2. A Lie algebroid (E, p,|—,—]) is a vector bundle E

over M with a bundle map p : EE — T'M called the anchor map, and
a Lie bracket |—,—| : I'(F) x I'(F) — I'(F) satisfying the Leibniz
rule,

e1, fea] = flei,ea] +pler)f - e,
where e; € I'(F) and f € C°(M).

Define p(e,) := p'(2)0; and [eq, ep] := CC,(x)e. for the basis e, of
E.
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Example 1. [Lie algebras] Let a manifold M be one point M =
{pt}. Then it is a Lie algebra g.

Example 2. [Tangent Lie algebroids] £ = TM and p = id,
|—, —| is a normal Lie bracket on the space of vector fields X(M).

Example 3. [Poisson Lie algebroid] Let (M,w) be a Poisson
manifold.

A Poisson structure is defined by the bivector field m = %Wij (x) aii A

% c T(A*TM) with |, 7]lg = 0, where [—, —|g is the Schouten
bracket.
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Then, T*M is a Lie algebroid.

A bundle map w* is defined as % : T*M — TM by (r*(a), 8) =
(o, B) for all B € QY (M).

A Lie bracket on Q(M) is given by
@, Blr = Loty — Lrzgya — d(w(a, B)),
where o, 8 € QY (M).

Proposition 2. A QP-manifold (T*|1]M,w, Q) induces a Poisson
structure on M .
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§0-2. QP-manifold of degree two

1. A graded manifold is M = T*2|E|1] = (M, Oyy), where E is a
vector bundle on M.

Assume a fiber metric (—, —) = k to identify E' and E*.

A local coordinate is (z*,1%) of degree (0,1) and the conjugate
coordinate is (&;, kapn®) of degree (2,1).

2. graded symplectic form of degree two

w=0x" N 6&; + %5(/€ab77a) A dnd.
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3. A general homological function of degree 3 is
O = p'a(2)&in® + giHape()nn"n°.
and is imposed {O,0} = 0.

Structure sheaf O); = C°°(M) is not described by a space of
sections of a vector bundle.

We decompose C*°(M) =} ;5 Ci(M), where C;(M) is the space
of functions of degree 7, and take Cy(M) & C(M).
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Theorem 1. Roytenberg '99

A QP manifold of degree 2 induces a Courant algebroid structure
on I .

Courant sigma model

We can construct a sigma model with a Courant algebroid structure.
NI '02, Roytenberg '06
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Definition 3. [Courant algebroids] Liu, Weinstein, Xu '97,
Kosmann-Schwarzbach '07

Let E/ be a vector bundle over M equipped with a pseudo-Euclidean
inner product (—, —), a bundle map p : E — T'M and a binary

bracket |—,—|p on I'(E). The bundle is called the Courant
algebroid if three conditions are satisfied,

le1, le2, es3]p]p le1, e2] b, es|p + |e2, le1, es] b D
ple1){ez, e3)

p(e1)(ez, e3) = (e1, |e2, e3]p + [e3, €2] D),

(le1, ea] p, €3) + (e2, |e1,e3]D),

where eq,e2,e3 € I'(E).
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Derived bracket construction of Courant algebroids

Co(M) and C;(M) make a closed algebra by the derived bracket
{{—,0},—}. (Count degree!)

Co(M) = C*(M),  f(z).
Ci(M) ~2T(F), au(z)n® e Ci(M)~e=ay(x)e* € '(F).

The operations on E are defined by Poisson brackets and derived
brackets.

For f,g € Co(M), e, eq,es € C1 (M),
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Poisson brackets

Cox Co, 0={f9g}

Ci1xCy 0=A{e, f}

C1 x Ci, (e1, ea) =A{eq,ea} (inner product)

Derived brackets

Cox Co—0, 0={{f,0} g}

Cy x Cop— Cy, ple)f=—{{e, 0} f} (anchor map)

Cy xCy— C1, e, ealp=—{{e1,0},e2} (Dorfman bracket)
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Example 4. For general n, we call the structure on the vector
bundle E induced by the derived brackets on the corresponding QP
manifold of degree n, a Lie n-algebroid.

A Lie 1-algebroid is a Poisson-Lie algebroid.
A Lie 2-algebroid is a Courant algebroid.

A corresponding global object to a Lie n-algebroid is called a Lie
n-groupoid.
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Example: bc-5v system in superstring theory
It is a QP-manifold of degree two, T*[2| E[1].

(b%, cq, Bi,v") are local coordinates of degree (1,1,2,0). Graded
Poisson brackets {b%, ¢y} = 6%, {B:,7?} = &) are induced from w.

Local coordinate transformations on a QP-manifold of degree 2 are
equal to canonical transformations on the bc-(3y system,

VI o= 4(y), V= ME)Y, = M2 (y)e,

67] 1 caMg b
5; — a,y/z'ﬁj + §Mb O/ b ca.
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§7. Geometric constructions of BV
NI-Strobl '21, Chatzistavrakidis-NI-Simunié '22  Chatzistavrakidis-NI-Jonke '24

The BV action functional is constructed using geometric quantities
of Lie and higher algebroids.

Two differentials in Lie algebroids

d:T(ANT*M) = T (AT M),
Ed:T(A™E*) — T(A™TIE™).

d is the de Rham differential.
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FE-differential (Lie algebroid differentials)
['(A®E*) is the space of E-differential forms.

Definition 4. For a € I'(A™E*) and e; € I'(F), an E-differential
Ed: T(AmE*) — T'(A™TLE*) such that (¥d)? = 0 is defined by

m—+1
Bdaler,...,emp1) = Z (=1)" ples)aler, ..., €. s emet)
i=1

z—l— 1 >’
-+ g ja 62763] 617°"76737°"7€j7"'76m+1)'
1<z<]<m—|-1
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Two connections

Definition 5. A connection on a vector bundle E' is a R-linear
map V : I'(F') — T'(E' ® T*M) satisfying

Vu(fe') = fVe' + (vf)e,

forv e I'(TM), e e I'(E') and f € C>*(M).
Definition 6. An E-connection on a vector bundle E’ with respect
to a Lie algebroid E is a R-linear map YV : T'(E') — I'(E' @ E*)
satisfying

"Ve(fe') = fPVee + (ple) f)e,
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fore c I'(E), e e T'(E') and f € C°(M).

For a given (normal) vector bundle connection V : I'(E) —
I'(E®T*M) on E, an E-connection called the basic E-connection
on TM, BV : T(TM) — T(TM ® E*) is defined by

BV 1= L+ p(Vee) = [p(e),v] + p(Vye).

The basic E-connection on E, *V : T'(E) — I'(E ® E*) is defined
by

Evee’ = Vp(ef)e + [6, 6/],

for e,e’ € I'(E).
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Another torsions and curvatures
Let e,/ € T'(E), v,v' € X(M). The E-torsion and the E-
curvature,

T(e, 6/) — Vp(e)e' — Vp(e/)e -+ [6, 6/] S F(E & /\2E*)
ER(ea 6/) — [ Ve, Ev/e] _ Ev[e,e’] < F(/\QE* QL ® E*)

The basic curvature, S € T'(T*M @ E @ N\*E*) Blaom '06

S(e,e)(v) = Ve €] —[Vye, €] —[e,Vie']| = Vg e+ Vig, €
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Geometric form of BV action functional

The Poisson sigma model in two dimensions,

Spy = / [<A, d)(X> + %(ﬂ' O X)(A,A)
+{AT,Ve— (T o X)(A,c)) — (o X)(XT,¢)
(T, (T oX)(c,c)) +1{AT, (S0 X)(AT,¢c, c)}] .

4

1
2

Note: Spy does not depend on the connection V (and £V), but
each term does.

43



Other results

Geometric BV formalism of a (pre-)Courant sigma model is
analyzed.

The BV action functional is constructed using the [E-torsion, the
basic curvature of the (pre-)Courant algebroid.
Chatzistavrakidis-NI-Simunié, '22. Chatzistavrakidis-NI-Jonke, '23
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§Further applications

® >, 1. higher dimensional worldvolume, higher Lie n-algebroid,
applications to n-brane geometry, M-theory, T-duality, U-duality

e Geometry of gauged nonlinear sigma models and generalizations
of momentum maps on multisymplectic manifolds NI '18, Hirota-NI '22

e Construction of current algebras induced from QP manifolds
NI-Koizumi 13, NI-Xu "14, Arvanitakis '21, Hayami '23

e Applications to mathematics, noncommutative geometry,
deformation quantization, geometry of algebroids, connections,
curvatures, momentum maps, localizations
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§. Outlook

e The constraint algebra in the general relativity in four dimensions
Is a Lie algebroid. Blohmann-Fernandes-Weinstein '13

e higher degree QP-manifolds and analysis of higher dimensional
theories

e Quantization (deformation quantizations, path integral
quantizations)
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Thank you for your attention!
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