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Restricted Grassmannian

• fix an orthogonal decomposition (called polarization) of the Hilbert
space H

H = H+ ⊕H−

onto infinite dimensional Hilbert subspaces H±.

• P+, P−: the orthogonal projectors onto H+ and H−

• block decomposition of an operator A acting on H:

A =

(
A++ A+−
A−+ A−−

)
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Definition

The restricted Grassmannian Grres is defined as a set of Hilbert
subspaces W ⊂ H such that:

the orthogonal projection p+ : W → H+ is a Fredholm operator;

the orthogonal projection p− : W → H− is a Hilbert–Schmidt
operator.

• identify the Hilbert subspace W with a projector PW onto this
subspace.

Proposition

W ∈ Grres ⇐⇒ PW − P+ ∈ L2
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• Banach Lie group: unitary restricted group Ures(H) acting
transitively on Grres:

Ures(H) := {u ∈ U(H) | [u, P+] ∈ L2}

• its Banach Lie algebra

ures(H) := {A ∈ u(H) | [A,P+] ∈ L2}

• Grres can be seen as a smooth homogenous space Ures(H)/(U+ × U−)
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Banach Lie–Poisson space

• u1res(H) := {µ ∈ L∞(H) | µ∗ = −µ, µ−+, µ+− ∈ L2, µ++, µ−− ∈ L1} is
a predual space to ures(H)

⟨µ ; A⟩ := Trres(µA),

where Trres is the restricted trace defined on u1
res(H) by

Trres µ := Tr(µ++ + µ−−)

• Trres is defined on a larger domain than L1(H) and it coincides with
the standard trace Tr there.

• It is a Banach Lie–Poisson space with respect to the Poisson bracket

{f, g}0(µ, γ) = Trres

(
µ[Df(µ), Dg(µ)]

)
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Central extensions

• Cocycle — Schwinger term

s(X,Y ) = Tr(X+−Y−+ − Y+−X−+)

X,Y ∈ ures(H)

ũres(H) := ures(H) ⊕ iR

[(X, γ), (Y, γ′)] =
(
[X,Y ],−s(X,Y )

)

• predual of ũres(H)

ũ1
res(H) := u1

res(H) ⊕ iR

⟨(µ, γ) ; (X, γ)⟩∼ = Trres(µX) + γλ,

µ ∈ u1
res(H), X ∈ ures(H), γ, λ ∈ iR.

Tomasz Goliński Integrable system related to Grres . . . 7 / 24



Central extensions

• Cocycle — Schwinger term

s(X,Y ) = Tr(X+−Y−+ − Y+−X−+)

X,Y ∈ ures(H)
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Pencil of Poisson brackets

• Poisson bracket on ũ1
res(H)

{F,G}(µ, γ) = ⟨(µ, γ) ; [DF (µ, γ), DG(µ, γ)]⟩∼ =

= Trres

(
µ[D1F (µ, γ), D1G(µ, γ)]

)
− γs(D1F (µ, γ), D1G(µ, γ)),

where D1 is the derivation with respect to the first argument of
functions F,G ∈ C∞(ũ1

res(H)).

• The extension is central, there is no derivative with respect to γ in
this Poisson bracket. We consider the variable γ as a parameter and
obtain a pencil of Poisson brackets on u1

res(H)

{f, g}γ(µ) = {f, g}0(µ) − γ{f, g}s(µ)

for f, g ∈ C∞(u1
res(H))

{f, g}s(µ) = s(Df(µ), Dg(µ)) = Tr
(
Df(µ)[Dg(µ), P+]

)
Tomasz Goliński Integrable system related to Grres . . . 8 / 24



Formal remark

{f, g}s(µ) = Tr
(
Df(µ)[Dg(µ), P+]

)

Forgetting about convergence one might be tempted to write

{f, g}s(µ) = −γ Trres

(
P+[DF (µ), DG(µ)]

)
.

It looks just like a Mishchenko–Fomenko “frozen bracket”.

Regretfully, that expression doesn’t make sense, but allows us to guess
the Casimirs.
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Casimirs

Inγ (µ) := in+1 Trres

(
(µ− γP+)n+1 − (−γ)n(µ− γP+)

)
Inγ (µ) = in+1

n∑
k=0

(−γ)k TrresW
n+1
k (µ) + in+1(−γ)n Trres µ

where

(µ+ γP+)n =

n∑
k=0

γkWn
k (µ)

Hamiltonians in involution on u1
res(H)

hnk(µ) = in+1 TrresW
n+1
k (µ), 0 ⩽ k ⩽ n

{hnk , hml }0 = {hnk , hml }s = 0
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Magri chain

{hnk , ·}0 = {hnk+1, ·}s

∂

∂τnk
µ = −in+1(n+ 1)[µ,Wn

k (µ)]

or equivalently

∂

∂τnk
µ = in+1(n+ 1)[P+,W

n
k−1(µ)],
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Wn
n = P+

Wn
n−1 = µP+ + P+µ+ (n− 2)P+µP+ n ⩾ 2

Wn
n−2 = µ2P+ + µP+µ+ P+µ

2+

+ (n− 3)
(
P+µ

2P+ + P+µP+µ+ µP+µP+

)
+

+
(n− 3)(n− 4)

2
P+µP+µP+ n ⩾ 4

...

Wn
1 = P+µ

n−1 + µP+µ
n−2 + . . .+ µn−1P+

Wn
0 = µn
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• homogeneous polynomials

Hn
k (µ) :=

∑
i0,i1,...in∈{0,1}

i0+...+in=k

P i0
+ µP

i1
+ µ . . . µP

in
+

of the degree n ∈ N in the operator variable µ ∈ u1
res and degree k in

P+, where k ⩽ n+ 1.

• hierarchy of commuting equations (Lax form)

∂

∂tnk
µ = in+1[µ,Hn

k (µ)]
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Proposition

The diagonal blocks µ++ and µ−− are constant

∂

∂tnk
µ++ = 0

∂

∂tnk
µ−− = 0

Proof.

Follows from considering symplectic leaves of { · , · }s or computing the
momentum map of the action of the group U(H+) × U(H−) ⊂ Ures(H)
on the Poisson manifold (u1

res(H), { · , · }0):

J(µ) = pD(µ),

where pD is the projection onto block-diagonal part

pD(µ) = P+µP+ + P−µP− ∈ u1(H+) ⊕ u1(H−)
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Proposition

In the case µ++ = 0 the modulus |µ−+| is constant along the
bihamiltonian flows for all tnk , n ∈ N, k ⩽ n+ 1.

Proof.

For k = 1 one can compute that

∂

∂tn1
(µ+−µ−+) = in+1[(µn+1)++, µ++]

Now if we assume that the block µ++ = 0 for all tn1 , we see that |µ−+|
is constant.

For k > 1 the computations are a bit more involved but still
straightforward.
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Consider the polar decomposition of µ−+ = uB.

Proposition

Assume that µ++ = 0 and |µ−+| is partially invertible. The equations
for the evolution of the partial isometry u assume the form

∂

∂tnk
u = in+1(µHn−1

k−1 )−−u

for n ∈ N, k ⩽ n+ 1.

For k = 1
∂

∂tn1
u = in+1(µn)−−u.
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µ =

(
0 −Bu∗
uB D

)

∂

∂t11
u = −Du

∂

∂t21
u = i(uB2 −D2u)

∂

∂t31
u = −DuB2 − uB2u∗Du+D3u

∂

∂t32
u = −DuB2 − uB2u∗Du

∂

∂t42
u = i(2uB4 −D2uB2 − uB2u∗D2u−DuB2u∗Du)
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Partial isometry u : H+ → H− evolves in such a way that its initial
space is constant and final space evolves with time.

∂

∂tn1
(uu∗) = −in+1[uu∗, (µn)−−]

Remark

The partial isometry u can be extended trivially to a partial isometry
in H. In this way we obtain differential equations on the Banach Lie
groupoid of partial isometries U(H) generating a flow on
s−1((kerB)⊥) ∩ t−1(Gr(H−)) ⊂ U(H), where Gr(H−) is the
Grassmannian of all closed subspaces of H−.
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Example: rank u = 1

B = b|e1⟩⟨e1|, R ∋ b > 0

u = |ψ⟩⟨e1|, ψ ∈ H−, ∥ψ∥ = 1

D =
∑

di|fi⟩⟨fi|, di ∈ iR

ψ =

∞∑
i=1

αifi

Proposition

Evolution of the coefficients α1, α2, . . . of the vector ψ:

∂

∂tnk
αj = ifnj,k(|α1|2 , |α2|2 , . . . )αj ,

where fnj,k are smooth real-valued functions depending on the
eigenvalues of the matrices b and di.
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αj = rje
iφj

{
∂

∂tnk
rj = 0

∂
∂tnk

φj = fnj,k(r2
1, . . . , r

2
M )

Theorem

The solution for the case of partial isometries of rank one is the
following

αj(t
1
1, t

2
1, t

2
2, . . . ) = α0

j exp

i ∑
n,k⩽n/2+1

fnj,k(
∣∣α0

1

∣∣2 , . . . , ∣∣α0
M

∣∣2)tnk

 ,

where α0
j ∈ C are the initial values.
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Restricted Grassmannian as a coadjoint orbit

Ad∗
Γ(µ, γ) = g−1µg + γ(P+ − g−1P+g),

where Γ ∈ Ũres(H) projects down to g ∈ Ures(H).

Diffeomorphism

Φγ : Grres ∋W −→ µ = γ(PW − P+) ∈ O(0,γ) ⊂ u1
res(H)

Proposition

An element µ ∈ u1
res(H) belongs to the coadjoint orbit O(0,γ) if and only

if 1
γµ+ P+ is an orthogonal projection.
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ΩH+ = {W ∈ Grres | PW ++ is invertible in H+}

An inverse of the chart φH+ on Ω H+ ⊂ Grres is

φ−1
H+

(A) = Γ(A),

where Γ(A) is the graph of an operator.

Composing the chart φ−1
H+

with the diffeomorphism Φγ one obtains a
parametrization of the restricted Grassmannian realized as a coadjoint
orbit inside u1

res(H):

Φγ ◦ φ−1
H+

(A) = γ

(
(1 +A∗A)−1 − 1 (1 +A∗A)−1A∗

A(1 +A∗A)−1 A(1 +A∗A)−1A∗

)
,

where A ∈ L2(H+,H−).
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(
(1 +A∗A)−1 − 1 (1 +A∗A)−1A∗

A(1 +A∗A)−1 A(1 +A∗A)−1A∗

)

Proposition

For initial conditions in the affine coadjoint orbit O(0,γ), the equations
are linear when expressed in the chart φH+.
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Proposition

For initial conditions in the coadjoint orbit O(0,γ), the equations (13)
are linear.

Proof.

p := 1
γµ+ P+ and p2 = p implies

µ2 = γ(µ− µP+ − P+µ) = γ(µ−− − µ++).

µ2 is constant and block diagonal. Moreover:
µ++µ+− = −µ+−µ−−
µ−+µ++ = −µ−−µ−+

µ−+µ+− = const
µ+−µ−+ = const
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