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Introduction

Graphene is a single layer of carbon atoms placed in a
hexagonal configuration

It is the thinnest, strong and flexible material ever
known
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Introduction

Several structures arise from graphene: graphite,
carbon nanotubes, fullerenes

Theoretical interest: is a two-dimensional system

Low energy electrons in graphene behave as massles
Dirac fermions

Relativistic quantum mechanics can be imitated for
velocities 300 times lower than c

Electron confinement is produced by magnetic fields
which are orthogonal to the layer

Darboux transformation (DT) is the natural tool to
address the electron motion in graphene
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Dirac-Weyl equation and graphene

The graphene description is made in terms of two
non-equivalent triangular lattices of atoms A and B:

The tight binding model considers that the two atoms in the
unit cell of graphene interact just with its nearest neighbors
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Dirac-Weyl equation and graphene

H(k) =

(

0 γ0S(k)

γ0S̄(k) 0

)

where γ0 ≈ −2.97 eV is the hopping parameter,

S(k) =
∑

δ

eik·δ = 2exp
(

ikxa

2
√
3

)

cos
(

kya

2

)

+ exp
(−ikxa√

3

)

a/
√
3 = 1.42 Å is the nearest-neighbor distance. The

eigenvalues of H(k) are given by

E(k) = ±γ0|S(k)| = ±γ0
√

3 + f(k)

f(k) = 2cos (kya) + 4cos
(

kya

2

)

cos

(√
3kxa

2

)
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Dirac-Weyl equation and graphene

Around the so-called Dirac point K− it turns out that:

H−(p) = vF

(

0 px − ipy
px + ipy 0

)

= vFσ · p
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Dirac-Weyl equation and graphene

The Dirac-Weyl equation for low energy electrons in
graphene placed in a magnetic field is

HΨ(x, y) = υFσ ·
[

p+
eA

c

]

Ψ(x, y) = EΨ(x, y)

– vF ∼ 8× 105m/s is the Fermi velocity

– σ = (σx, σy) are the Pauli matrices

– p = −i~(∂x, ∂y)T is the 2-dim momentum operator

– −e is the electron charge

– A is the vector potential

– B = ∇×A is the external magnetic field
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Dirac-Weyl equation and graphene

For magnetic fields orthogonal to the graphene layer,
which change just along x-direction, the vector
potential in the Landau gauge reads

A = A(x)êy, B = B(x)êz, B(x) = A′(x)

The translation invariance of H along y-axis suggests
that

Ψ(x, y) = eiky
[

ψ+(x)

iψ−(x)

]

where k is the wavenumber in y direction, ψ±(x) are
the electron amplitudes on the two adjacent sites A, B
in the unit cell of graphene
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Dirac-Weyl equation and graphene

Thus
(

± d

dx
+

e

c~
A+ k

)

ψ∓(x) =
E

~υF
ψ±(x)

This resembles what happens in DT:

H±ψ±(x) = Eψ±(x)

H± = − d2

dx2
+ V ±,

V ± =

(

eA
c~

+ k

)2

± e

c~
A′

E =
E2

~2υ2F
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DT and graphene

The following relations are fulfilled:

H− = L+
0 L

−
0 , H+ = L−

0 L
+
0 factorizations

H+L−
0 = L−

0H
−, H−L+

0 = L+
0H

+ intertwining relations

L−
0 = d

dx
+W0(x), L+

0 = − d
dx

+W0(x) intertwining operators

W0(x) =
eAy(x)

c~
+ k superpotential

V −(x) = W 2
0 (x)−W ′

0(x) initial potential

V +(x) = V −(x) + 2W ′
0(x) SUSY partner potential
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DT and graphene

The eigenfunctions of H± are connected to each other as:

ψ+
n (x) =

L−
0 ψ

−
n+1(x)

√

E−
n+1

ψ−
n+1(x) =

L+
0 ψ

+
n (x)

√

E+
n

ψ−
0 (x) ∼ e−

∫

W0(x)dx

The eigenvalues of H± are E+
n = E−

n+1, E−
0 = 0. Note that

L−
0 ψ

−
0 (x) = 0 ⇒ W0(x) = −ψ

−
0
′
(x)

ψ−
0 (x)

= −[ln(ψ−
0 )]

′
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DT and graphene

The magnetic field applied to graphene is

B0(x) = A′
y(x) =

c~

e
W ′

0(x) = −c~
e
{ln[ψ−

0 (x)]}′′

The eigenfunctions and eigenvalues for the Dirac electron
in graphene are

E0 = ~vF
√

E−
0 = 0, En+1 = ~vF

√

E−
n+1

Ψ0 = eiky
[

0

i ψ−
0 (x)

]

, Ψn+1 = eiky
[

ψ+
n (x)

i ψ−
n+1(x)

]
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Shape invariant case

For some special forms of B0(x) the auxiliary
potentials V ±(x) become shape invariant (Infeld-Hull,
Gendenshtein), i.e., when deleting the ground state of
V −(x) the produced potential V +(x) can be obtained
as well from V − by just changing their parameters (up
to an energy displacement)

This approach was explored by Kuru, Negro, Nieto [J.
Phys. Cond. Matt. 21 (2009) 455305]
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Shape invariant case

Example. For a constant homogeneous magnetic field
B = B0 > 0 we must take A = êyB0x

The superpotential is W0(x) =
ω
2
x+ k, ω = 2eB0

c~

The two shape invariant potentials are
V ±(x) = ω2

4

(

x+ 2k
ω

)2 ± ω
2

The eigenfunctions and eigenvalues of H± are

E−
0 = 0, E−

n+1 = E+
n = ω(n+ 1), n = 0, 1, 2, . . .

ψ−
n = ψ+

n = Nn e
−ω

4
(x+ 2k

ω
)2 Hn

[√

ω
2

(

x+ 2k
ω

)]

Nn =

√

1
2nn!

(

ω
2π

)
1
2 , Hn are Hermite polynomials
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General DT

Next we follow [Midya, Fdez, J Phys A 47 (2014) 285302],
[Castillo-Celeita, Fdez, J Phys A 53 (2020) 035302], based
on [Mielnik, J Math Phys 25 (1984) 3387]

In order to generate new magnetic fields for which the
problem is exactly solvable, let us displace up H−:

1. H̃0 ≡ H− − ǫ1 = − d2

dx2
+ V −(x)− ǫ1, ǫ1 ≤ E−

0 = 0

2. From H̃0 we build a new Hamiltonian H1 through

H1L
+
1 = L+

1 H̃0

H1 = − d2

dx2
+ V1(x, ǫ1)

L+
1 = − d

dx
+W1(x, ǫ1)
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General DT

Thus

W 2
1 (x, ǫ1) +W ′

1(x, ǫ1) = Ṽ0(x)

V1(x, ǫ1) = Ṽ0(x)− 2W ′
1(x, ǫ1)

By changing W1(x, ǫ1) = u
(0)′

1 /u
(0)
1 it is obtained

−u(0)′′1 + Ṽ0(x)u
(0)
1 = 0 SE for H̃0

The generated magnetic field becomes

B1(x, ǫ1) =
c~

e
W ′

1(x, ǫ1) = −B0(x) +
c~

e

{

ln

[

u
(0)
1 (x)

ψ−
0 (x)

]}′′
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General DT

3. The auxiliary eigenvalues and eigenfunctions are

Ẽ (0)
n = E−

n − ǫ1, ψ−
n (x)

E (1)
0 = 0, ψ

(1)
0 (x) ∼ e−

∫

W1(x,ǫ1)dx =
1

u
(0)
1

E (1)
n+1 = Ẽ (0)

n , ψ
(1)
n+1(x) =

1
√

Ẽ (0)
n

L+
1 ψ

−
n (x), n = 0, 1, . . .

The new solutions for graphene become

E0 = ~vF

√

E (1)
0 = 0, En+1 = ~vF

√

E (1)
n+1

Ψ0 = eiky

[

0

i ψ
(1)
0 (x)

]

, Ψn+1 = eiky

[

ψ−
n (x)

i ψ
(1)
n+1(x)

]
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General DT

Example. The general solution of the SE for
Ṽ0 = V −(x)− ǫ1 with zero energy is (a = −ǫ1/2ω):

u
(0)
1 = e−

ω
4
(x+ 2k

ω
)2
{

1F1[a,
1
2
, ω
2
(x+ 2k

ω
)2]

+2ν1
Γ(a+ 1

2
)

Γ(a)

√

ω
2
(x+ 2k

ω
)1F1[a+

1
2
, 3
2
, ω
2
(x+ 2k

ω
)2]

}

In particular, for ǫ1 = −ω/5, ν1 = 0 it is obtained

V1(x, ǫ1) = Ṽ0 − 2
[

ω
2
(x+ 2k

ω
)
(

− 1 + 2
5

1F1[
11
10
, 3
2
,ω
2
(x+ 2k

ω
)2]

1F1[
1
10
, 1
2
,ω
2
(x+ 2k

ω
)2]

)]′

B1(x, ǫ1) = −B0 +
2B0

5

[

(x+ 2k
ω
) 1F1[

11
10
, 3
2
,ω
2
(x+ 2k

ω
)2]

1F1[
1
10
, 1
2
,ω
2
(x+ 2k

ω
)2]

]′
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General DT
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Iterative DT

1. Now let us displace up H1 as

H̃1 ≡ H1 − ǫ2, ǫ2 < ǫ1 ⇒ Ẽ (1)
0 = −ǫ2 ≥ 0

2. From H̃1 a new Hamiltonian H2 is constructed

H2L
+
2 = L+

2 H̃1

H2 = − d2

dx2
+ V2(x, ǫ2)

L+
2 = − d

dx
+W2(x, ǫ2)

Thus

W 2
2 (x, ǫ2) +W ′

2(x, ǫ2) = Ṽ1(x, ǫ1)

V2(x, ǫ2) = Ṽ1(x, ǫ1)− 2W ′
2(x, ǫ2)
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Iterative DT

By making W2(x, ǫ2) = u
(1)′

2 /u
(1)
2 :

−u(1)′′2 + Ṽ1(x, ǫ1)u
(1)
2 = 0

u
(1)
2 arises from acting L+

1 onto an appropriate solution of
H−:

u
(1)
2 ∝ L+

1 u
(0)
2 = −W(u

(0)
1 , u

(0)
2 )/u

(0)
1

−u(0)′′2 + V −(x)u
(0)
2 = (ǫ1 + ǫ2)u

(0)
2

The new potential and external magnetic field are

V2(x, ǫ2) = V −(x)− 2{ln[W(u
(0)
1 , u

(0)
2 )]}′′ − (ǫ1 + ǫ2)

B2(x, ǫ2) =
c~

e
W ′

2(x, ǫ2) = −B1(x, ǫ1) +
c~

e
{ln[W(u

(0)
1 , u

(0)
2 )]}′′
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Iterative DT

3. The auxiliary eigenvalues and eigenfunctions are

Ẽ (1)
n = E (1)

n − ǫ2, ψ
(1)
n (x)

E (2)
0 = 0, ψ

(2)
0 (x) ∼ e−

∫

W2(x,ǫ2)dx = 1

u
(1)
2

E (2)
n+1 = Ẽ (1)

n , ψ
(2)
1 (x) =

L+
2 ψ

(1)
0 (x)

√

Ẽ
(1)
0

, ψ
(2)
n+2(x) =

L+
2 ψ

(1)
n+1(x)

√

Ẽ
(1)
n+1

The new solutions for graphene are

E0 = ~vF

√

E (2)
0 = 0, En+1 = ~vF

√

E (2)
n+1

Ψ0 = eiky

[

0

i ψ
(2)
0 (x)

]

, Ψn+1 = eiky

[

ψ
(1)
n (x)

i ψ
(2)
n+1(x)

]

The procedure can be continued at will!
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Iterative DT
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Iterative DT

Example. In the second SUSY step V1(x) is moved up
by −ǫ2:

Ṽ1(x, ǫ1) =
ω2

4

(

x+ 2k
ω

)2 − ω
2
− 2W ′

1(x, ǫ1)− ǫ1 − ǫ2

The second-order potential and magnetic field are

V2(x, ǫ2) = Ṽ0 − 2{ln[W(u
(0)
1 , u

(0)
2 )]}′′ − ǫ2

B2(x, ǫ2) = −B1(x, ǫ1) +
c~

e
{ln[W(u

(0)
1 , u

(0)
2 )]}′′

u
(0)
2 arises from u

(0)
1 by changing ǫ1 → ǫ1 + ǫ2

For ǫ1 = −ω/5, ǫ2 = −3ω, ω = 1, ν1 = 0, ν2 = 3
2
:
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Iterative DT
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Singular DT

Real seed solutions with nodes can be used in the first
step ⇒ singularities arise in W1(x, ǫ1), V1(x, ǫ1) and
B1(x, ǫ1)

An appropriate transformed seed solution of H− with
nodes is used in the second step to cancel some
singularities induced in the first step. At the end
singularities still appear in W2(x, ǫ2) and in B2(x, ǫ2) but
disappear from V2(x, ǫ2)

A third non-singular Darboux transformation is required
to cancel completely the singularities remaining of the
second step
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Singular DT

ǫ1 = 1.7, ν1 = 0.1, ǫ2 = 1.5, ν1 = 1.1
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Singular DT

ǫ1 = 1.7, ν1 = 0.1

ǫ2 = 1.5, ν2 = 1.1

ǫ3 = −0.5, ν3 = 0.5
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Complex DT

Seed solutions for ǫ ∈ C can be used, such that after 3
steps a Hermitian graphene Hamiltonian is obtained:

– A complex seed solution u(0) for ǫ ∈ C, vanishing at one
of the ends of the x-domain, is chosen
– Then, the (transformed) seed solution −iu∗(x) associated
to ǫ∗ is used, such that −iW(u(0), u∗(0)) is real nodeless

– A real nodeless (transformed) seed solution u(0)3 for
ǫ3 ≤ E−

0 = 0 is used. At the end a real potential and
magnetic field are obtained,

V3(x, ǫ3) = V −(x)− 2
{

ln
[

W

(

u(0),−iu∗(0), u(0)3

)]}′′

− ǫ3

B3(x, ǫ3) =
c~

e

{

ln

[

W(u(0),−iu∗(0), u(0)3 )

W(u(0),−iu∗(0))

]}′′
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Complex DT

-6 -4 -2 0 2 4 6

-5

0

5

10

x

V(x)

-2 0 2 4 6

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

x

B(x)

ǫ1 = −1
2
+ i

10

ǫ2 = −1
2
− i

10

ǫ3 = −1
2
, Λ = 1

10
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Periodic DT
Finally, let us consider a periodic magnetic field,

B(x) = B0
m−1+dn(x|m)4

dn(x|m)2

The superpotential is,

W0(x) = m sn(x|m)cn(x|m)
dn(x|m)

The two self-isospectral periodic Lamé potentials are:

V −(x) = 2m sn(x|m)2 −m

V +(x) = 2m sn(x+K|m)2 −m

sn(x|m), cn(x|m), dn(x|m) are Jacobi elliptic functions,
0 ≤ m ≤ 1 is the modulus, 2K(m) is the period of V ±,

K(m) =
∫ π/2

0
dθ/
√

1−m sin2(θ)

(x|m)
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Periodic DT

The bande edge eigenfunctions and eigenvalues are

E−
0 = 0 E−

1 = 1−m E−
1′ = 1

ψ−
0 = dn(x|m) ψ−

1 = cn(x|m) ψ−
1′ = sn(x|m)

ψ+
0 = dn(x+K|m) ψ+

1 = cn(x+K|m) ψ+
1′ = sn(x+K|m)

The band edge solutions for electrons in the graphene
periodic magnetic superlattice:

E−
0 = 0 Ψ0 = eiky

[

A1 dn(x+K|m)

i A2 dn(x|m)

]

E−
1 =

√
1−m Ψ1 = eiky

[

cn(x+K|m)

i cn(x|m)

]

E−
1′ = 1 Ψ1′ = eiky

[

sn(x+K|m)

i sn(x|m)

]
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Quasi-periodic DT

By applying the general DT, it is possible to create a
bound state at zero energy departing from
Ṽ0 = V − − ǫ1. Thus, a new potential V1(x, ǫ1) is
generated, which is not longer periodic but it is
quasiperiodic. The same property is acquired by the
new magnetic field
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Conclusions

We have analyzed the behavior of graphene in external
magnetic fields orthogonal to the layer through DT. The
seed solutions employed can produce either shape
invariant or more general potentials

Non-singular DT and their iterations have been
proposed as an algorithm to generate magnetic field for
which the graphene Hamiltonian admits exact solutions

Singular DT and their iterations producing non-singular
potentials and associated magnetic field (after 3 steps)
have been explored

Complex DT and their iterations generating real SUSY
partner potentials and associated magnetic field (after
3 steps) have been studied

– p. 35/38



Conclusions

Complex DT involving complex magnetic fields and
leading to non-Hermitian graphene Hamiltonians start
to be explored

The second-order DT emerges as the natural tool to
address a similar study for bilayer graphene in the
so-called Bernal stacking

We would like to explore if for twisted bilayer graphene
it is possible to implement a similar study

The coherent states approach to graphene is a feasible
study, that we started in 2017 and it is still in progress
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