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Introduction

There is a well-known isomorphism between special orthogonal Lie
algebra so(3) and R3. For the first structure, the Lie bracket is
given by the matrix commutator [X,Y ] = XY − Y X for
X,Y ∈ so(3), and for the second by the cross product × for
vectors from R3. The mapping

X =

 0 −z y
z 0 −x
−y x 0

 7−→ v =

xy
z


gives this isomorphism (so(3), [·, ·]) ∼=

(
R3,×

)
.

The main goal of the paper is to show that one can construct a
similar isomorphism for any Lie algebra. We will show that Lie
algebras have a lot in common with linear maps, and more precisely
with linear maps with a fixed eigenvector.
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Lie algebra

A Lie algebra is vector space over a field R equipped with Lie
bracket [·, ·] : g× g −→ g with is a bilinear, antisymmetric map,
which satisfies the Jacobi identity

[[x, y], z] + [[z, x], y] + [[y, z], x] = 0

for all x, y, z ∈ g.
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The basic ingredient is a pair (F, v) consisting of a linear mapping
F ∈ End(V ) with an eigenvector v. This pair allows to build a Lie
bracket on a dual space to a linear space V .
In our considerations, we will restrict ourselves to the linear space
V over a field R. It means that we will analyze in detail only real
Lie algebras. However, we want to emphasize that the presented
formulas also work for vector spaces over the field of complex
numbers.
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Eigenvalue problem

We present some constructions of a Lie bracket on a space V ∗

having a pair: linear mapping and its eigenvector. A pair (F, v)
gives a Lie bracket on a dual space V ∗:

Theorem

If V is a vector space, F : V −→ V is a linear map and v ∈ V is an
eigenvector of the map F , then (V ∗, [·, ·](F,v)), is a Lie algebra,
where the Lie bracket is given by

[ψ, φ](F,v) = φ(v)F ∗(ψ)− ψ(v)F ∗(φ)

for ψ, φ ∈ V ∗.
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V ' V ∗ ' RN

We can identify V and V ∗ with RN with the canonical basis
{e1, e2, . . . , eN} (i.e. V ' V ∗ ' RN ), so that the pairing between
V and V ∗ is given by the scalar product. Then the Lie bracket can
be rewritten in the form

[u,w](F,v) = 〈w|v〉F Tu− 〈u|v〉F Tw for u,w ∈ RN ,

where 〈·|·〉 is the scalar product in RN .
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Theorem
Let [·, ·](F,v) be given by

[ψ, φ](F,v) = φ(v)F ∗(ψ)− ψ(v)F ∗(φ),

then the Lie algebra (V ∗, [·, ·](F,v)) is solvable.

Proof.
We say that a linear subspace h is an ideal of a Lie algebra g when
[g, h] ⊆ h. Of course the set [h, h] is also an ideal. Then we define
a sequence of ideals (the derived series
g(0) ⊇ g(1) ⊇ · · · ⊇ g(i) ⊇ . . . )

g(0) = g, g(1) = [g, g], g(2) = [g(1), g(1)], . . . , g(i) = [g(i−1), g(i−1)], . . .

A Lie algebra g is called solvable if, for some positive integer i,
g(i) = 0.
In this case we get g(2) = [[g, g](F,v), [g, g](F,v)](F,v) = 0.
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In addition, if we introduce the following sequence of ideals (the
lower central series g(0) ⊇ g(1) ⊇ · · · ⊇ g(i) ⊇ . . . )

g(0) = g, g(1) = [g(0), g], g(2) = [g(1), g], . . . , g(i) = [g(i−1), g], . . . ,

we say that algebra g is called nilpotent if the lower central series
terminates g(i) = 0 for some i ∈ N. Obviously, a nilpotent Lie
algebra is also solvable.

Theorem
If F is a nilpotent operator, then (V ∗, [·, ·](F,v)) is a nilpotent Lie
algebra.
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Lie algebra generalized ax+ b-group

If we look at this bracket we notice that this is a structure of a Lie
bracket for a Lie algebra generalized ax+ b-group

[(w1, t1), (w2, t2)] = (t1Dw2 − t2Dw1, 0),

where V = W nR, W is N − 1-dimensional linear space,
w1, w2 ∈W , t1, t2 ∈ R and D is established endomorphism
End(W ). Identification is given by association V ∼= V ∗ ∼= RN and

putting ψ = (w1, t1), φ = (w2, t2), v = eN , F ∗ =

(
−D 0

0 0

)
[ψ, φ](F,v) = φ(v)F ∗(ψ)− ψ(v)F ∗(φ),

I. Beltiţă, D. Beltiţă, Quasidiagonality of C∗-algebras of
solvable Lie groups, Integr. Equ. Oper. Theory, 90:5, 2018.
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We show that these solvable algebras are the basic bricks of the
construction of all other Lie algebras.
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The linear combination of Lie brackets [·, ·](F,v),
[·, ·](G,w) gives a Lie bracket

Theorem
Let V be a vector space over R. If F,G ∈ End(V ), v, w ∈ V are
such that:

v is an eigenvector of the map F ,
w is an eigenvector of the map G,
the following condition is true

v ∧ w ∧ [F,G]∗ + w ∧Gv ∧ F ∗ + v ∧ Fw ∧G∗ = 0.

Then (V ∗, [·, ·]λF,v,G,w), where

[ψ, φ]λ(F,v),(G,w) = [ψ, φ](F,v) + λ[ψ, φ](G,w)

is a Lie algebra for every λ ∈ R.
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Example – the three-dimensional Lie algebras

Let us take V = R3 with the standard basis {e1, e2, e3}. We will
show how to easily connect three-dimensional real Lie algebras with
the corresponding linear mappings and their eigenvectors. We will
restrict ourselves to the eigenvector v = (0, 0, 1)>. Lie brackets will
be defined in the space V ∗ =

(
R3
)> with the dual base {e∗1, e∗2, e∗3}.

Patera, J., Sharp, R.T., Winternitz, P., Zassenhaus, H.:
Invariants of real low dimension Lie algebras. J. Math. Phys.
17. 986 (1976)
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If we take

F =

λ1 0 0
0 λ2 0
0 0 0

 ,

where λ1, λ2 ∈ R, we obtain the Lie bracket of the form

[ψ, φ](F,v) = λ1 (ψ1φ3 − ψ3φ1) e
∗
1 + λ2 (ψ2φ3 − ψ3φ2) e

∗
2,

where ψ = ψ1e
∗
1 + ψ2e

∗
2 + ψ3e

∗
3 and φ = φ1e

∗
1 + φ2e

∗
2 + φ3e

∗
3. The

commutator rules are following

[e∗1, e
∗
2](F,v) = 0, [e∗1, e

∗
3](F,v) = λ1e

∗
1, [e∗2, e

∗
3](F,v) = λ2e

∗
2.

1 For λ1 = λ2 = 1, we recognize the Lie structure related to the
Lie algebra g3,3.

2 For λ1 = −λ2 = 1, we recognize the Lie structure related to
the Lie algebra g3,4.

3 For λ1 = 1, λ2 = a, we recognize the Lie structure related to
the Lie algebra ga3,5.
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Linear mappings and their eigenvectors giving three
dimensional Lie algebras

F v Casimir Name
G w

F =

0 0 0
1 0 0
0 0 0

 v =

0
0
1

 x1 g3,1

F =

1 0 0
1 1 0
0 0 0

 v =

0
0
1

 x1e
−x2

x1 g3,2

F =

1 0 0
0 1 0
0 0 0

 v =

0
0
1

 x2
x1

g3,3

F =

1 0 0
0 −1 0
0 0 0

 v =

0
0
1

 x1x2 g3,4

F =

1 0 0
0 a 0
0 0 0

 v =

0
0
1

 x1
xa2

ga3,5
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F =

0 −1 0
1 0 0
0 0 0

 v =

0
0
1

 x21 + x22 g3,6

F =

a −1 0
1 a 0
0 0 0

 v =

0
0
1

 (x21 + x22)e
2aarctgx1

x2 ga3,7

F =

0 −2 0
0 0 0
0 0 0

 v =

0
0
1

 x1x3 + x22 g3,8

G =

1 0 0
0 0 0
0 0 −1

 w =

0
1
0


F =

0 −1 0
1 0 0
0 0 0

 v =

0
0
1

 x21 + x22 + x23 g3,9

G =

0 0 1
0 0 0
0 0 0

 w =

0
1
0
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General structure

For a Lie algebra g with the basis {e1, e2, . . . , eN}, given by

commutator relations [ei, ej ] =
N∑
k=1

ckijek, we can assign N -pairs

(F1, eN ), . . . , (FN−i+1, ei), . . . , (FN , e1).
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[ei, eN ] =

N∑
k=1

ckiNek

F1 =


c11N c21N . . . cN−11N 0

c12N c22N . . . cN−12N 0
...

...
. . .

...
...

c1N−1 N c2N−1 N . . . cN−1N−1 N 0

0 0 . . . 0 0

 ,

The mapping F1 corresponds as the vector en. In the above matrix,
the structure constants cNiN , i = 1, . . . , N − 1 do not appear. They
will be placed in the next mappings F2, . . . , FN . To be precise, cNiN
will appear in the mapping FN−i+1.

A new look at Lie algebrass



F1 =


c11N c21N . . . cN−11N 0

c12N c22N . . . cN−12N 0
...

...
. . .

...
...

c1N−1 N c2N−1 N . . . cN−1N−1 N 0

0 0 . . . 0 0

 ,

FN−i+1 =



c11 i c21 i . . . ci−11 i 0 ci+1
1 i . . . cN1 i

c12 i c22 i . . . ci−12 i 0 ci+1
2 i . . . cN2 i

...
...

. . .
...

...
...

. . .
...

c1i−1 i c2i−1 i . . . ci−1i−1 i 0 ci+1
i−1 i . . . cNi−1 i

0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 0 −ci+1
i i+1 . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 0 0 0 −cNi N


,
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FN =


0 0 . . . 0

0 −c21 2 . . . 0
...

...
. . .

...
0 0 0 −cN1 N

 .

Theorem

Every Lie algebra (g, [·, ·]) is isomorphic to the corresponding Lie
algebra (Rn, [·, ·](F1,v1),...,(Fn,vn)).

The isomorphism (g, [·, ·]) ∼= (Rn, [·, ·](F1,v1),...,(Fn,vn)) is not
canonical, we can assign the linear mappings and their eigenvectors
differently.
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Casimir functions

Using relations between the Lie algebra, the Lie–Poisson structure
and the Nambu bracket, we show that the algebra invariants
(Casimir functions) are solutions of an equation which has an
interesting geometric significance.

Theorem

Casimir functions ci, i = 1, . . . , k, for the Lie algebra
(Rn, [ψ, φ](F1,v1),...,(Fn,vn)) satisfy the following equation

∇ci(x) ∧ ?
n∑
j=1

(Fj(x) ∧ vj) = 0.

The Hodge star operator ? :
∧2 V −→

∧n−2 V
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For a pair (F, v) giving a Lie algebra structure, we
always have N−2 Casimir functions

Theorem

Let (RN , [·, ·](F,eN )) be a Lie algebra, then Casimirs
ci, i = 1, 2, . . . , N − 2, of the algebra fulfill the following conditions

〈Fx|∇ci(x)〉 = 0,

〈eN |∇ci(x)〉 = 0

for all x ∈ RN .

A. Dobrogowska, M. Szajewska, Eigenvalue problem versus
Casimir functions for Lie algebras, Anal. Math. Phys. 14
(2024), 1-24.
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Casimir functions

Definition

A non-zero tensor t ∈
N∧
V is s-partially decomposable if there exist

wi, i = 1, 2, . . . , s, vectors and N − s-tensor u ∈
N−s∧

V such that

t = w1 ∧ w2 ∧ . . . ∧ ws ∧ u.
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Finally, the following theorem holds

Theorem

Let pairs (Fj , vj), j = 1, . . . , N , give any Lie algebra g. Functions
ci, i = 1, . . . , s, are functionally independent Casimir functions for g

if and only if ?
N∑
j=1

(Fjx ∧ vj) ∈
N−2∧

RN is s-partially decomposable,

i.e. if there exist wi ∈ RN , i = 1, 2, . . . , s, u ∈
N−s−2∧

RN such that

?

N∑
j=1

(Fjx ∧ vj) = w1 ∧ w2 ∧ . . . ∧ ws ∧ u.

Furthermore, ∇ci ∼ wi.

If we have a single pair (F, eN ), then obviously the tensor Fx ∧ eN

is decomposable, so consequently the tensor ? (Fx ∧ eN ) ∈
N−2∧

RN
is decomposable. Therefore, algebra with this pair must always
have N − 2 Casimir functions.
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If there are N − 2 smooth Casimir functions c1, . . . , cN−2, this
corresponds to the situation that the Poisson bracket arises from
the Nambu bracket by fixing N − 2 functions as Casimir functions.
In this case, the formula has a form

{f, g}Ω = u df ∧ dg ∧ dc1 ∧ . . . ∧ dcN−2, f, g ∈ C∞(RN ),

where Ω = dx1 ∧ . . . ∧ dxN is the standard volume element on RN ,
and u is some function on RN . The case, where there are less
smooth Casimir functions, namely c1, . . . , cs, s < N − 2, then the
Poisson bracket has a form

{f, g}Ω = df ∧ dg ∧ dc1 ∧ . . . ∧ dcs ∧ u.
In details studied in

P.A. Damianou, F. Petalidou, Poisson Brackets with Prescribed
Casimirs, Canad. J. Math. 64 (5), (2012) 991–1018.

It is connected with s+ 2-linear Nambu bracket in dimension N ,
higher than s+ 2.

Chan C. Chandre, A. Horikoshi, Classical Nambu brackets in
higher dimensions, J. Math. Phys. 64, (2023) 052702.
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Thank you for your
attention
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