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Basic definitions (for this lecture)

Definition (differential geometric)

A field of endomorphisms L = (LJ’) is called a Nijenhuis operator, if

Nu(€m) = L2[,m] = LILE n] — LI&, L] + [L€, L] = 0
for all vector fields &, 7.

Definition (algebraic)
An operator L: V — V, dimV = n, is called gl-regular, if either of the
following conditions holds:
» there is a vector £ such that &, L, ..., L' are linearly
independent (such a vector is called cyclic);
» the operators Id, L, ..., L"! form a basis of the centraliser of L;
» for each eigenvalue of L there is only one eigenvector;

» [ can be reduced to the first (or second) companion form.



Basic definitions and facts

Theorem
Let f be a regular conservation law of L. Set d f, = (L*)*~1d f and
consider fi,...,f, as a (local) coordinate system. In these coordinates:
0 1
fome2 = | g gy
On ... 02 O1
Conversely, if L = Leomp2 in some coordinates uq, ..., up, then uy is a

regular conservation law and uj = (L*)*~'d u;.
Let M = giL" Y+ -+ g,_1L + g,ld be a regular symmetry of L and

consider g1, ..., g, as a (local) coordinate system. In these coordinates:
o1 1
Lcompl = oz 0
: : .1
on, 0 ... O
Conversely, if L = Leomp1 in Ssome coordinates uq, ..., u,, then

M=u "'+ +u,_1L+ u,ld is a regular symmetry.



Basic definitions (for this talk)

Let A= (A7) be an operator (not necessarily Nijenhuis).

Definition

A function f is a conservation law for A, if the form A*d f is closed.
(Today all the constructions are local so that this condition is equivalent
to the existence of a function g such that d g = A*df.)

Definition .
An operator B = (B)) is called a strong symmetry (resp. just symmetry)
for the operator A, if

> AB = BA
» (i) strong symmetry:
(A, B)(&m) = Al¢, Bn] + BIAE, n] — [A€, BE] — AB[E, 1] = 0,
(it) symmetry:

(A, B)(&,€) = Al¢, BE] + BIAC, ] — [AS, BE] = 0.



Symmetries and conservation laws in dynamical systems

Instead of an operator A, consider a vector field £ and the corresponding
dynamical system

du _ . " duf eir1 n
T &(u) in more detail: e E(u,. ., u). (1)
Definition

A first integral of & (or of the dynamical system (1)) is a function f such

that £(f) = 3¢ 2L = 0. In other words, L¢f = 0.

Definition
A symmetry (or symmetry field) of the system (1) is a vector field 7 such
that [£,n] = 0. In other words, L¢n = 0.
Properties.
» If nis a symmetry and f is an integral = f7 is a symmetry and 7(f)
is an integral.
> Let 7,...,n be linearly independent symmetries.
The linear combination n = > fin; is a symmetry if and only if
fi,..., fx are first integrals.



Comments

d . .
The equation d—l: = &(u) describes an evolution of a point on the
manifold.

Wo
f is an integral & 7 is a symmetry <
f(u(t)) = f(uo) for any point ug
there is a surface u(t, s)
ou ou

such that 9 =¢, a5 =



Comments

.0 0 : :
The equation 9u A(u)a—u describes an evolution of curves on the
X

Jud) ?A?

\

manifold.

~—

uo(m

5@ >

) ~

> fis a conservation law < § f(u(x, t))dx = ¢ f(up(x))d x, i.e. does
not change under evolution.

> B is a symmetry < for any initial curve up(x) there is a “surface in
the space of curves u(t, s, x) such that

ou ou ou B @

ar ~Alg n 55 =Blug



Splitting theorem

Theorem

Assume that the characteristic polynomial x(\) = det(Ald — L(p)) of a
Nijenhuis operator L at a point p splits into a product of two polynomials
x1(A) and x2(\) with no common roots. Then there exists a coordinate
system ut, ..., u™ v, ... v™ such that

u \4

L L(u,v) = Llc()u) ch()v)

and x1,(A\) = xi(A), i =1,2.

2. Each conservation law f has the form f(u,v) = fi(u) + f2(v), where
f; is a conservation law for L;, i = 1,2.

, where each L; is a Nijenhuis operator

3. Each symmetry (resp. strong symmetry) has the form

w0 = (M3t )

where M; is a symmetry (resp. strong symmetry) for L;, i =1,2.



Symmetries and conservation laws for a diagonal Nijenhuis

operator

If L = diag(uy,...u,) or more generally

L = diag(\1(u1), ... An(up)),

where \;(-) are some functions (perhaps constant), satisfying
Ai(ui) # Aj(uj) almost everywhere, then the conservation laws and
symmetries are very simple

f(u) = ) + H(u2) + - - + folun)

and
ml(ul)

M(u) = ma(t2)

mn(un)



gl-regular Nijenhuis operators

Theorem (Real analytic case)

Let L be a gl-regular Nijenhuis operator. Then there exist local
coordinate systems u = (uy,...,uU,) and v =(vq,...,Vv,) in which L
reduces to the first and second companion forms:

o1 1 0 1

=| 2 fend k=]
Opn—1 : . 1
On 0o ... 0 Op Op—1 ... O1

where o; are the coefficients of the characteristic polynomial of L in the
corresponding coordinate system.

Open problem. Does the statement of this theorem still hold in the
C°-smooth case?



Symmetries of gl-regular Nijenhuis operators

If L is gl-regular, then every symmetry M can be uniquely written as
M=gL" '+ +g,ld, (2)

where g; are some functions. We say that a symmetry M is regular at a
point p, if the differentials d g; are linearly independent at this point.

Theorem
Let L be a gl-regular Nijenhuis operator in a neighbourhood of p. Then

1. Every symmetry M of L is strong.

2. For any two symmetries My and M,, their product My M, is also a
symmetry. In particular, the symmetries of a gl-regular operator L
form an algebra w.r.t. pointwise matrix multiplication.

3. For any two symmetries My and My, one has (My, M) = 0. In
particular, every symmetry of L is a Nijenhuis operator.

4. Regular (local) symmetries of L are in one-to-one correspondence
with the systems of first companion coordinates in the sense that
the coefficients g, . . ., g, of expansion (2) are first companion
coordinates for L if and only if M is a regular symmetry.



Conservation laws of gl-regular Nijenhuis operators

Important property of Nijenhuis operators:
If d(L*d f) =0, then all the forms (L*)*d f are closed too.

This implies that (locally) f generates a hierarchy of conservation laws
f="f,fhf,..., where

(L*)d fy = fiyq or, equivalently, L*dfi =d fiyy, i=1,...,n—1.

We say that a conservation law f (and the corresponding hierarchy) is
regular, if d f1,...,df, are linearly independent.

Theorem
Let L be a gl-regular Nijenhuis operator in a neighbourhood of p. Then

1. Every conservation law d f of L is a conservation law for all of its
symmetries, that is, d (M*d f) = 0 for any symmetry M.

2. Regular (local) hierarchies of conservation laws of L are in
one-to-one correspondence with systems of second companion
coordinates, in the sense that f, f, f3,... is a regular hierarchy if
and only if fi, ..., f, are second companion coordinates for L.



Explicit parametrisation for symmetries and conservation

laws and relationship between them

Theorem
Let L be a real analytic Nijenhuis operator, gl-regular at a point p. Then

1. There exists a regular symmetry U centred at p, and a regular
conservation law f.

2. For any collection of functions v; analytic in a neighbourhood of
0 € R, and any regular symmetry U centred at p, the operator

M=vi(U)L" 7t 4+ + v (U)L + v, (V) (3)

is a symmetry. Moreover, every symmetry of L can be written in this
form with an appropriate choice of functions v;.

3. Given a regular conservation law f, for any conservation law h there
exists a symmetry M such that d h = M*d f.



Jordan block in dimension 3 (example)

Useful formula from Linear Algebra:

Us 2t Flus) F(us)n  f'(us)un + 0002
f([—nc):f 0 us uz = 0 f(U3) f’(U3)UQ =

0 0 u3 0 0 f(U3)
f g h f=f(us)
0 f g, where g = g(UQ, U3) - f/(U3)U2 7
00 f h= h(ur, up, uz) = £ (us)uy + —B 2

Symmetry of general type:

 g@+h hi+g+h
M = ﬂ(an)Lg+fé(an)Lc+é(an) =1|0 3 g3+f2
0 0 fz

Conservation law of general type:

fur, up,u3) = hs + g + i = £ (uz)uy + 36 (us)u3 + £ (us) 2 + fi(us)



Symmetries and conservation laws of a gl-regular Nijenhuis operator L
possess several remarkable properties:

P1. Each symmetry of L is strong.
P3. Each symmetry of L is Nijenhuis.

P2. If My and M, are symmetries of L, then their product Mi M, is a
symmetry also.

P4. Symmetries M; and M, commute is the algebraic sense, i.e.,
Mi M, = MMy, and are symmetries of each other.

P5. Every conservation law f of the operator L is a conservation law for
each of its symmetry M, that is, d (M*d f) = 0.

P6. Let f be a regular conservation law of L. Then any other
conservation law h can be obtained from d g = M*d f, where M is a
suitable symmetry of L.



gl-regularity is essential: Example

010
Consider the constant operator L= |0 0 0] in R3(x,y, z), which
0 0O

consists of two nilpotent Jordan blocks of size 2 and 1.

The symmetries of L have the following form

f xt,+g xf;+a
M=1{0 f 0 ,
0 b c

where the functions f, g, a, b, ¢ depend on y and z only.
Strong symmetries have a similar form with the additional condition that
f =f(y) (i.e., f does not depend on z).

The conservation laws are xu(y) + v(y, z).

None of the properties P1 — P5 are met.



Applications to geodesically equivalent metrics

Definition

Two (pseudo)-Riemannian metrics g and g are called geodesically
equivalent if they share the same geodesics viewed as unparameterized
curves.

A manifold endowed with a pair of such metrics carries a natural
Nijenhuis structure

1
n+1

detg 1

detg

In terms of L, the geodesic equivalence condition is given by the PDE
equation

1
anZE(n@;dtrLJr(n@dtrL)*)’ (4)

where 7 is an arbitrary vector field.

Definition
If (4) holds, then the metric g and Nijenhuis operator L are said to be
geodesically compatible.



Why is L a Nijenhuis operator?

Proposition
Let L be g-symmetric and satisfy V, L = %(77 @dtrl+(nedtr L)*)
Then L is Nijenhuis.

Proof.

The NijenhUiS torsion NL(fa 77) = L2[f,77] - L[Lgan] - L[g, L77] + [Lga LU]
can be naturally expressed in terms of any symmetric connection V.
Namely,

Ni(§,m) = (LVyl = Vi L) = (LVeL = Viel)n.
It remains to substitute (we denote § = d tr L and 6% = g~10)
2N(&,m) = (L@ 0+ (1 0)*) = (L@ 0+ (Ln @ 0)") )¢
— (Lo +(E©0)) — (Ls@ o+ (L8 6)))n
Lin® )¢ — L(E®0)'n— (Ln@6) )¢+ (LE@ ) )n
g

(n,€) LO* — g(&,m) L6* — g(Ln, &) n* + g(LE, n)n* = 0.
as required. O



Splitting-gluing theorem

Theorem

Let h; (metric) and L; (Nijenhuis operator) be geodesically compatible,
i =1,2, and x; be the characteristic polynomial of L;.
Then

L_<L1(()X) ch()y)) and g_<hl(X)X20(L1(X)) hz(y)xf)(Lz(y))>

Notice that gi(x,y) = hi(x)x2(L1(x)) and ga2(x,y) = ha(y)x1(L2(y)) so
that the variables x and y are mixed in g1 and g.

Conversely, assume that L and g are geodesically compatible and L splits
into direct product L(x,y) = L1(x) @ La(y). Then g has the above form
for some hy and h, geodesically compatible with Ly and L, respectively.



In dimension 1: h = f(x)dx?, L = xdx ® 2 are always compatible.
Taking two copies of this trivial exampe

hy = f(x)dx?, L1 = xdx ® % and h=g(y)dy% Lh=ydy® agy
or in matrix form

= (1) 1= () ond = at). 1= ()

Applying the gluing procedure gives

=G5 = ("% o)

or, in more standard form,
g=(y—x)(fl)ax - g(y)ay?)

and using g = ;A gl

g = <11> (f(x)dx2gi/y)dy2>

X y X




Levi-Civita theorem

Theorem

Let g and g be geodesically equivalent and such that the operator gg~*
has different non-constant eigenvalues. Then

[osi(xi — xa)
and
X1
1
det L

X2

g= gLt withL =

Xn



Integrability: from L to the integrals of the geodesic flow

Simple observation. If L and g are geodesically compatible, then

L —t-Id and g are geodesically compatible also. A metric g may admit
many geodesically compatible operators. They form a finite-dimensional
vector space.

Theorem (Benenti, Matveev, Topalov, Tabachnikov, ...)

Let L be geodesically compatible with g. Then the geodesic flow of g
admits a (quadratic in momenta) first integral of the form

F(x,p) =detL-g *((L*)"'p, p)

More generally, any function of the form (we just replace L with L—t1d)
det(L—tId) - g~ *((L*—t1d)~ ZFk x, p)t"k

is a first integral too.
The functions Fy, ..., F, Poisson commute and are independent if L is
gl-regular. In particular, if L is gl-regular, then the geodesic flow of L is
completely integrable.



We identify T*M with TM by setting p; = gjix and verify that
F(x,p) = F(x,€) = g(det L- L71¢,€) is a first integral of the geodesic
flow of g by straightforward computation:

% g(detL - L71¢ &) = Veg(det L L71¢,€) = g(Ve(det L- L71)¢),€)

Next,
Ve(detl L71) = (Ledetl) L7 —detL- VL™

= detL ((Lelndet) - L0 = L7H(Vel)L ™).

Finally, we use the following general property of Nijenhuis operators
LyIndetL = £;-1,tr L and the geodesic compatibility condition (4) in
the form g((VeLl)n,n) = L, tr Lg(€,n) to get

g ((VedetL- L71)E ) =
detL- (Ligtrl g (L76,€) — g ((Vel)L ¢ L7%¢) ) =

—detL- (LytrL-g(€m) ~g(VeL)n,n)) =0,

as required.



Proof (continued....)

To verify Poisson commutativity, we may use the following fact

Lemma

Let A and B be Killing (1,1)-tensors for a metric g, i.e., the quadratic
functions Fp = g~1(A*p, p) and Fg = g~1(B*p, p) are first integrals of
the geodesic flow of g. Assume that A and B are symmetries of each
other, then F5 and Fg Poisson commute.

In our situation, it can be checked that the operators
Ar = det(L—tId)(L — tId)*

are all symmetries of each other. Hence, the Poisson commutativity
follows.



Why not to add a potential?

Theorem
Let L and g be geodesically compatible. Assume that L is gl-regular and
consider an arbitrary symmetry M of L:

M= UiL" ™Y + UpL" 2 4 - 4 U,ld, (5)

where the coefficients Uy, ..., Uy are uniquely defined smooth functions.
Then the geodesic flow g with the potential Uy, i.e., the Hamiltonian
system with the Hamiltonian

H(x,p) = 387 (p.p) + U1(x) = Fi(x, p) + Ui(x) (6)

is completely integrable by means of the following commuting first
integrals (quadratic in momenta)

Fie(p,x) = Fu(p, x) + Ue(x), k=1,....n. (7)



Some useful formulas

We deal with the following objects:

>
>
>
>
>
>

We

metric g = (gj)

Hamiltonian of the geodesic flow H = 3g=1(p, p) = 3 3" g% (x)pip;
Killing 2-tensor K = (Kjj): ViKjx + VKii + ViKij =0

quadratic first integral F = fi(x)p;p;: {H,F} =0

geodesically equivalent metric g = (gj;)

Nijenhuis operator L geodesically compatible with g:

may think of these objects as n x n-matrices. They are related to

each other in a certain way...

>
>
>

F=g'Kg!
K = det L. gl
g = detL gL '
det
L= (5) g
L = (det g det F)nflg_lF_:l



Even simpler formulas for the standard Euclidean metric

in dimension 2

Let g = dx? 4 d y? be the standard Euclidean metric.
In matrix form g = Id.

We consider
> first integral F = ap2 + 2bpxp, + cp}Z,
» Killing 2-tensor K = ki1 dx? + 2kio dxdy + koo dy?
» geodesically equivalent g = g1 dx? + 2812 dxdy + go» dy?

1 1
> geodesically compatible L = (22 %)

Then, thinking of F, K, g, L as (symmetric) 2 x 2 matrices, we get
> det F = det K = det L = (detg) ™3
> K=F= 7(det1_)2/3g=detL-L_1 =adjlL
> &= F:tl_l‘_l = (detF)ZF
> [ =(detg)ig l=detF-F!=adjF



Simple example: verification

Example

Let g = dx? 4 d y? be the standard Euclidean metric. Then
F = ap2 + 2bp.p, + cp§ is a first integral of the geodesic flow of g if and

onlyif L=adjF = (
Verification:

{H,F} ={5(p% + p3), ap; + 2bpupy + cp;}
= a.p} + (2bx + a,)pipy + (2b, + c)pep] + /Py =0

C

b :) is geodesically compatible with g,

if and only if a, =0, 2bi+a, =0, 2b,+¢c =0, ¢, =0.
On the other hand, V,L =1 (n@d trL+ (n®d trL)") with arbitrary
n = (n1,72) gives

N1Cx + M2Cy _2(7]1bx + 772by) — 771(a>< + Cx) %(nZ(ax + Cx) + nl(ay + Cy)
* Max + 123y * m2(ay + ¢)

leading to the same conditions a, = 0, 2b, +a, =0, 2b, + ¢ =0,
¢, =0.



Further useful formulas in dimension 2

Let g = d x? + d y? be the standard Euclidean metric. In matrix form
g =Id.
A quadratic Hamiltonian of the geodesic flow of g is an arbitrary
quadratic form with constant coefficients of the linear integrals (Killing
vector fields)

Px, Py, XPy — ¥YPx-
(Recall that in this setting, the operators L must be invertible, and this
property is easy to achieve by L — L+ cld.)

Case 1. F =2p,(xp, — ypPx) or, in matrix form, F = (_Oy E)}:)

L:detF-F_lzade:(zx y>
y 0
y2 o —xy

Case 2. F = (xp, —ypy)? or, in matrix form, F = <—xy 2 )
2

—detF-Fl=adjF=(" 7
yx y



Geodesically equivalent metrics for dx? + dy?

Proposition
Let F = ap? + 2bpxp, + cpf, be a first integral for the geodesic flow of
the standard Euclidean metric dx? + dy?. Then the metric

1

— m(adx2 + 2bdxdy + cdy?)

ds?

is geodesically equivalent to dx? + dy?.

Two specific examples related to Case 1 and Case 2.

Case 1. cdx? — 2y dxdy + (2x + ¢) dy2)

1
m(

Case 2. —L1—; ((c + y2)dx? — 2xy dxdy + (¢ + x?) dyz)
(e +y?))



Singularities in the context of geodesically equivalent metrics

Singular points are those at which the algebraic type of L changes, e.g.,
the eigenvalues of L collide.

Open problem. What kind of singular points can appear in the context
of geodesically equivalent metrics?

X y\ . x 0).
Example. (y 0) is allowed, <0 y) is not.

If L is a gl-regular operator, then its eigenvalues can still collide without
violating the gl-regularity condition. In the Nijenhuis geometry, scenarios
of such collisions can be very different. However, regardless of any
particular scenario, we have the following general local result.

Theorem

Let L be a gl-regular real analytic Nijenhuis operator. Then (locally)
there exists a pseudo-Riemannian metric g geodesically compatible with
L. Moreover, such a metric g can be defined explicitly in terms of the
second companion form of L.



Magic formula (Konyaev)

Fix second companion coordinates u?, ..., u" of L so that
0 1
L= Lcomp2 = : B R )
0O ... 0 1
Op Op—1 ... O1
Let p1,...,pn, u%, ..., u" be the corresponding canonical coordinates on

the cotangent bundle and consider the following algebraic identity
2

hlL”_1+-~-+hnId:(p,,L”_1+~--+p1Id) (8)

Since L is gl-regular, the functions hy, ..., h, are uniquely defined. They
are quadratic in pq, ..., p, and their coefficients are polynomials in o;'s.
Proposition

The function hy(u, p) = 3_ h$?(u)paps defines a non-degenerate
(contravariant) metric which is geodesically compatible with L.



How to describe all geodesically compatible partners for L?

Let L be an admissible Nijenhuis operator (in the context of geodesic
equivalence), i.e. there is at least one (pseudo)-Riemannian metric g
geodesically compatible with L.

Open problem. Describe all geodesically compatible partners for L.

Theorem

Let L and g be geodesically compatible. Assume that M is g-symmetric
and is a strong symmetry of L, then L and gM := (gisM?) are
geodesically compatible.

Moreover, if L is gl-regular, then every metric § geodesically compatible
with L is of the form g = gM, where M is a (strong) symmetry of L.



Quasilinear systems related to Nijenhuis operators

For a given Nijenhuis operator L, we define the operator fields A; by the
following recursion relations

Aozld7 A,‘+1:LA,'—O','|d, i:O,...,n—l, (9)

where functions o; are coefficients of the characteristic polynomial of L
numerated as below:

xe(A) =detAld = L) = X" = A" — - — 0. (10)
Equivalently, the operators A; can be defined from the matrix relation
det(Ald — L) - (Md — L)t = A" 2Ag + AN"2A + -+ AA, o + Ay

Consider the following system of quasilinear PDEs defined by these
operators
utl - Al UX)

(11)

ug, , = An_1 uy,

with u’ = u(x, t1, ..., t,_1) being unknown functions in n variables and
u=(ut,...,u")T".



Finite dimensional reductions

Informally, a finite-dimensional reduction of an integrable PDE system is
a subsystem of it, which is finite-dimensional and still integrable.

It appears that such a reduction of (11) can be naturally obtained by
fixing a metric g geodesically compatible with L.

Theorem

Consider any metric g geodesically compatible with L and take any
geodesic y(x) of this metric. Let u(x, ty, ..., t,—1) be the solution of (11)
with the initial condition u(x,0, ...,0) = v(x). Then for any (sufficiently
small) ty, ..., t,_1, the curve x — u(x, ty, ..., t,_1) is a geodesic of g.

In other words, the evolutionary system corresponding to any of the
equations from (11) sends geodesics of g to geodesics.

Explanation. The integrals of the geodesic flow of g are closely related
to the operators A; (V. Matveev). Namely, if g is geodesically compatible
with L, then its geodesic flow (as a Hamiltonian system on T*M) admits
n commuting first integrals Fg, ..., F,_1 of the form

Fi(u,p) =58 '(Aip.p). (12)



Finite dimensional reductions (continued...)

Let us consider the space & of all g-geodesics (viewed as parameterised
curves). Then system (11) defines a local action of R” on &:

Yot t-1 2 g5y Qj, (t(), t1,..., t,,_l) cR".

More precisely, if ¥ = v(x) € & is a g-geodesic, then we set

Yoot t-1(4) to be the geodesic Y(x) = u(x + to, t1, ..., ta_1), where
u(x, t1, ..., ta—1) is the solution of (11) with the initial condition
u(x,0,...,0) = y(x).

Theorem

The action V is conjugate to the Hamiltonian action of R" on T*M
generated by the flows of the integrals Fy, ..., F,_1 defined by (12). The
conjugacy is given by v € & — (v(0), g;%'(0)) € T*M.

Remark. Let L be a gl-regular real analytic Nijenhuis operator, then for
every curve v with a cyclic velocity vector there exists a metric g
geodesically compatible with L such that v is a g-geodesic. Thus, the
above finite-dimensional reductions of (11) ‘cover’ almost all (local)
solutions of the Cauchy problem.



Symmetries and conservation laws of (11)

Theorem
If L is gl-regular, then

1. For any hierarchy of conservation laws fi, ..., f, of L, the operator
B = 7‘SI./L\n‘F“‘fn/Al

is a common symmetry for A;. Moreover, every common symmetry
of A;'s can be written in this way.

2. For any symmetry M = g1 "~ +--- + g, Id of L, the first function
g1 is a common conservation law of A;.
Moreover, every common conservation law of A;'s can be obtained
in this way.



Exercises

>

>

Prove the equivalence of all the conditions from Definition of
gl-regular operators.

Let L = (f(x,y) 1). Find necessary and sufficient conditions for
glx,y) 0

L to be a Nijenhuis operator in terms of f and g.

Let L = (g()?, y) f(Xl, y)> Find necessary and sufficient
conditions for L to be a Nijenhuis operator in terms of f and g.
Give an example of a (non-Nijenhuis) operator A that cannot be
reduced to a companion form.

The proof of the Splitting Theorem for conservation laws and
symmetries uses the following algebraic fact. Let A and B be square
matrices of sizes n x n and k x k. Prove that the matrix equation
AX = XB (for an unknown n x k matrix X) has only trivial solution
X =0 if and only if A and B have no common eigenvalues.

Prove the ‘recursion property’ of Nijenhuis operators: let f be a
conservation law of a Nijenhuis operator L, i.e. the form d (L*d f) is
closed. Then there locally exist functions f1, f, f3, ... such that

dfe =L*d 1.



Exercises

» Let L be a Nijenhuis operator and f = tr L. Find g such that
dg = L*d f and construct the hierarchy of conservation laws
generated by f = tr L.

» Let L be a differentially non-degenerate Nijenhuis operator in
dimension n=2. Construct a second companion coordinate system in
terms of the coefficient of the characteristic polynomial of L. The
same question for n = 3 and arbitrary n.

> Let L= <8 ;) Check that L is Nijenhuis and describe all

conservation laws and symmetries of L. Prove that each symmetry of
L is strong.



