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Basic definitions (for this lecture)

Definition (differential geometric)

A field of endomorphisms L = (Lij) is called a Nijenhuis operator, if

NL(⇠, ⌘)
def
= L

2[⇠, ⌘]� L[L⇠, ⌘]� L[⇠, L⌘] + [L⇠, L⌘] = 0

for all vector fields ⇠, ⌘.

Definition (algebraic)

An operator L : V ! V , dimV = n, is called gl-regular, if either of the
following conditions holds:
I there is a vector ⇠ such that ⇠, L⇠, . . . , Ln�1⇠ are linearly

independent (such a vector is called cyclic);
I the operators Id, L, . . . , Ln�1 form a basis of the centraliser of L;
I for each eigenvalue of L there is only one eigenvector;
I L can be reduced to the first (or second) companion form.



Basic definitions and facts

Theorem

Let f be a regular conservation law of L. Set d fk = (L⇤)k�1d f and

consider f1, . . . , fn as a (local) coordinate system. In these coordinates:

Lcomp2 =

0
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Conversely, if L = Lcomp2 in some coordinates u1, . . . , un, then u1 is a

regular conservation law and uk = (L⇤)k�1d u1.
Let M = g1L

n�1 + · · ·+ gn�1L+ gnId be a regular symmetry of L and

consider g1, . . . , gn as a (local) coordinate system. In these coordinates:

Lcomp1 =

0
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Conversely, if L = Lcomp1 in some coordinates u1, . . . , un, then

M = u1L
n�1 + · · ·+ un�1L+ unId is a regular symmetry.



Basic definitions (for this talk)

Let A = (Ai
j) be an operator (not necessarily Nijenhuis).

Definition

A function f is a conservation law for A, if the form A
⇤d f is closed.

(Today all the constructions are local so that this condition is equivalent
to the existence of a function g such that d g = A

⇤d f .)

Definition

An operator B = (B i
j ) is called a strong symmetry (resp. just symmetry)

for the operator A, if
I AB = BA

I (i) strong symmetry:

hA,Bi(⇠, ⌘) def
= A[⇠,B⌘] + B[A⇠, ⌘]� [A⇠,B⇠]� AB[⇠, ⌘] = 0,

(ii) symmetry:

hA,Bi(⇠, ⇠) = A[⇠,B⇠] + B[A⇠, ⇠]� [A⇠,B⇠] = 0.



Symmetries and conservation laws in dynamical systems

Instead of an operator A, consider a vector field ⇠ and the corresponding
dynamical system

d u

d t
= ⇠(u) in more detail:

d ui

dt
= ⇠i (u1, . . . , un). (1)

Definition

A first integral of ⇠ (or of the dynamical system (1)) is a function f such
that ⇠(f ) =

P
⇠i @f

@ui = 0. In other words, L⇠f = 0.

Definition

A symmetry (or symmetry field) of the system (1) is a vector field ⌘ such
that [⇠, ⌘] = 0. In other words, L⇠⌘ = 0.
Properties.

I If ⌘ is a symmetry and f is an integral ) f ⌘ is a symmetry and ⌘(f )
is an integral.

I Let ⌘1, . . . , ⌘k be linearly independent symmetries.
The linear combination ⌘ =

P
fi⌘i is a symmetry if and only if

f1, . . . , fk are first integrals.



Comments

The equation
d u

d t
= ⇠(u) describes an evolution of a point on the

manifold.

f is an integral , ⌘ is a symmetry ,
f (u(t)) = f (u0) for any point u0

there is a surface u(t, s)

such that
@u

@t
= ⇠,

@u

@s
= ⌘



Comments

The equation
@u

@t
= A(u)

@u

@x
describes an evolution of curves on the

manifold.

I f is a conservation law ,
H
f (u(x , t))d x =

H
f (u0(x))d x , i.e. does

not change under evolution.
I B is a symmetry , for any initial curve u0(x) there is a “surface in

the space of curves u(t, s, x) such that

@u

@t
= A(u)

@u

@x
и

@u

@s
= B(u)

@u

@x
.



Splitting theorem

Theorem

Assume that the characteristic polynomial �L(�) = det(� Id� L(p)) of a

Nijenhuis operator L at a point p splits into a product of two polynomials

�1(�) and �2(�) with no common roots. Then there exists a coordinate

system u
1, . . . , um1

| {z }
u

, v1, . . . , vm2

| {z }
v

such that

1. L(u, v) =

✓
L1(u) 0
0 L2(v)

◆
, where each Li is a Nijenhuis operator

and �Li (�) = �i (�), i = 1, 2.

2. Each conservation law f has the form f (u, v) = f1(u) + f2(v), where

fi is a conservation law for Li , i = 1, 2.

3. Each symmetry (resp. strong symmetry) has the form

M(u, v) =

✓
M1(u) 0

0 M2(v)

◆
,

where Mi is a symmetry (resp. strong symmetry) for Li , i = 1, 2.



Symmetries and conservation laws for a diagonal Nijenhuis

operator

If L = diag(u1, . . . un) or more generally

L = diag(�1(u1), . . .�n(un)),

where �i (·) are some functions (perhaps constant), satisfying
�i (ui ) 6= �j(uj) almost everywhere, then the conservation laws and
symmetries are very simple

f (u) = f1(u1) + f2(u2) + · · ·+ fn(un)

and

M(u) =

0

BBB@

m1(u1)
m2(u2)

. . .
mn(un)
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gl-regular Nijenhuis operators

Theorem (Real analytic case)

Let L be a gl-regular Nijenhuis operator. Then there exist local

coordinate systems u = (u1, . . . , un) and v = (v1, . . . , vn) in which L

reduces to the first and second companion forms:

L(u) =

0

BBB@
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and L(v) =

0
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where �i are the coefficients of the characteristic polynomial of L in the

corresponding coordinate system.

Open problem. Does the statement of this theorem still hold in the
C

1-smooth case?



Symmetries of gl-regular Nijenhuis operators

If L is gl-regular, then every symmetry M can be uniquely written as

M = g1L
n�1 + · · ·+ gn Id, (2)

where gi are some functions. We say that a symmetry M is regular at a
point p, if the differentials d gi are linearly independent at this point.

Theorem

Let L be a gl-regular Nijenhuis operator in a neighbourhood of p. Then

1. Every symmetry M of L is strong.

2. For any two symmetries M1 and M2, their product M1M2 is also a

symmetry. In particular, the symmetries of a gl-regular operator L

form an algebra w.r.t. pointwise matrix multiplication.

3. For any two symmetries M1 and M2, one has hM1,M2i = 0. In

particular, every symmetry of L is a Nijenhuis operator.

4. Regular (local) symmetries of L are in one-to-one correspondence

with the systems of first companion coordinates in the sense that

the coefficients g1, . . . , gn of expansion (2) are first companion

coordinates for L if and only if M is a regular symmetry.



Conservation laws of gl-regular Nijenhuis operators

Important property of Nijenhuis operators:

If d (L⇤d f ) = 0, then all the forms (L⇤)kd f are closed too.

This implies that (locally) f generates a hierarchy of conservation laws

f = f1, f2, f3, . . . , where

(L⇤)id f1 = fi+1 or, equivalently, L⇤d fi = d fi+1, i = 1, . . . , n � 1.

We say that a conservation law f (and the corresponding hierarchy) is
regular, if d f1, . . . , d fn are linearly independent.

Theorem

Let L be a gl-regular Nijenhuis operator in a neighbourhood of p. Then

1. Every conservation law d f of L is a conservation law for all of its

symmetries, that is, d (M⇤d f ) = 0 for any symmetry M.

2. Regular (local) hierarchies of conservation laws of L are in

one-to-one correspondence with systems of second companion

coordinates, in the sense that f1, f2, f3, . . . is a regular hierarchy if

and only if f1, . . . , fn are second companion coordinates for L.



Explicit parametrisation for symmetries and conservation

laws and relationship between them

Theorem

Let L be a real analytic Nijenhuis operator, gl-regular at a point p. Then

1. There exists a regular symmetry U centred at p, and a regular

conservation law f .

2. For any collection of functions vi analytic in a neighbourhood of

0 2 R, and any regular symmetry U centred at p, the operator

M = v1(U)Ln�1 + · · ·+ vn�1(U)L+ vn(U) (3)

is a symmetry. Moreover, every symmetry of L can be written in this

form with an appropriate choice of functions vi .

3. Given a regular conservation law f , for any conservation law h there

exists a symmetry M such that d h = M
⇤d f .



Jordan block in dimension 3 (example)

Useful formula from Linear Algebra:

f (Lnc) = f

  
u3 u2 u1
0 u3 u2
0 0 u3

!!
=

0

@
f (u3) f 0(u3)u2 f 0(u3)u1 +

f 00(u3)
2 u2

2

0 f (u3) f 0(u3)u2
0 0 f (u3)

1

A =

0

@
f g h

0 f g

0 0 f

1

A , where
f = f (u3)
g = g(u2, u3) = f

0(u3)u2
h = h(u1, u2, u3) = f

0(u3)u1 +
f 00(u3)

2 u
2
2

Symmetry of general type:

M = f1(Lnc)L
2
c + f2(Lnc)Lc + f3(Lnc) =

 
f3 g3 + f2 h3 + g2 + f1
0 f3 g3 + f2
0 0 f3

!

Conservation law of general type:

f (u1, u2, u3) = h3 + g2 + f1 = f
0
3 (u3)u1 +

1
2 f

00
3 (u3)u

2
2 + f

0
2 (u3)u2 + f1(u3)



Summary

Symmetries and conservation laws of a gl-regular Nijenhuis operator L
possess several remarkable properties:

P1. Each symmetry of L is strong.
P3. Each symmetry of L is Nijenhuis.
P2. If M1 and M2 are symmetries of L, then their product M1M2 is a

symmetry also.
P4. Symmetries M1 and M2 commute is the algebraic sense, i.e.,

M1M2 = M2M1, and are symmetries of each other.
P5. Every conservation law f of the operator L is a conservation law for

each of its symmetry M, that is, d (M⇤d f ) = 0.
P6. Let f be a regular conservation law of L. Then any other

conservation law h can be obtained from d g = M
⇤d f , where M is a

suitable symmetry of L.



gl-regularity is essential: Example

Consider the constant operator L =

0

@
0 1 0
0 0 0
0 0 0

1

A in R3(x , y , z), which

consists of two nilpotent Jordan blocks of size 2 and 1.

The symmetries of L have the following form

M =

0

@
f xfy + g xfz + a

0 f 0
0 b c

1

A ,

where the functions f , g , a, b, c depend on y and z only.
Strong symmetries have a similar form with the additional condition that
f = f (y) (i.e., f does not depend on z).

The conservation laws are xu(y) + v(y , z).

None of the properties P1 – P5 are met.



Applications to geodesically equivalent metrics

Definition

Two (pseudo)-Riemannian metrics g and ḡ are called geodesically

equivalent if they share the same geodesics viewed as unparameterized
curves.
A manifold endowed with a pair of such metrics carries a natural
Nijenhuis structure

L =

����
det ḡ

det g

����

1
n+1

ḡ
�1

g .

In terms of L, the geodesic equivalence condition is given by the PDE
equation

r⌘L =
1

2

�
⌘ ⌦ d tr L+ (⌘ ⌦ d tr L)⇤

�
, (4)

where ⌘ is an arbitrary vector field.

Definition

If (4) holds, then the metric g and Nijenhuis operator L are said to be
geodesically compatible.



Why is L a Nijenhuis operator?

Proposition

Let L be g -symmetric and satisfy r⌘L = 1
2

�
⌘ ⌦ d tr L+ (⌘ ⌦ d tr L)⇤

�
.

Then L is Nijenhuis.

Proof.

The Nijenhuis torsion NL(⇠, ⌘) = L
2[⇠, ⌘]� L[L⇠, ⌘]� L[⇠, L⌘] + [L⇠, L⌘]

can be naturally expressed in terms of any symmetric connection r.
Namely,

NL(⇠, ⌘) = (Lr⌘L�rL⌘L)⇠ � (Lr⇠L�rL⇠L)⌘.

It remains to substitute (we denote ✓ = d tr L and ✓] = g
�1✓)

2NL(⇠, ⌘) =
⇣
L(⌘ ⌦ ✓ + (⌘ ⌦ ✓)⇤)� (L⌘ ⌦ ✓ + (L⌘ ⌦ ✓)⇤)

⌘
⇠

�
⇣
L(⇠ ⌦ ✓ + (⇠ ⌦ ✓)⇤)� (L⇠ ⌦ ✓ + (L⇠ ⌦ ✓)⇤)

⌘
⌘

= L(⌘ ⌦ ✓)⇤⇠ � L(⇠ ⌦ ✓)⇤⌘ � (L⌘ ⌦ ✓)⇤)⇠ + (L⇠ ⌦ ✓)⇤)⌘

= g(⌘, ⇠) L✓] � g(⇠, ⌘) L✓] � g(L⌘, ⇠) ⌘] + g(L⇠, ⌘) ⌘] = 0.

as required.



Splitting-gluing theorem

Theorem

Let hi (metric) and Li (Nijenhuis operator) be geodesically compatible,

i = 1, 2, and �i be the characteristic polynomial of Li .

Then

L =

✓
L1(x) 0
0 L2(y)

◆
and g =

✓
h1(x)�2

�
L1(x)

�
0

0 h2(y)�1

�
L2(y)

�
◆

Notice that g1(x , y) = h1(x)�2

�
L1(x)

�
and g2(x , y) = h2(y)�1

�
L2(y)

�
so

that the variables x and y are mixed in g1 and g2.

Conversely, assume that L and g are geodesically compatible and L splits

into direct product L(x , y) = L1(x)� L2(y). Then g has the above form

for some h1 and h2 geodesically compatible with L1 and L2 respectively.



Dini theorem

In dimension 1: h = f (x)dx2, L = x dx ⌦ @
@x are always compatible.

Taking two copies of this trivial exampe

h1 = f (x)dx2, L1 = x dx ⌦ @
@x and h2 = g(y)dy2, L2 = y dy ⌦ @

@y

or in matrix form

h1 =
⇣
f (x)

⌘
, L1 =

⇣
x

⌘
and h2 =

⇣
g(y)

⌘
, L2 =

⇣
y

⌘

Applying the gluing procedure gives

L =

✓
x 0
0 y

◆
, g =

✓
f (x)(y � x) 0

0 g(y)(x � y)

◆

or, in more standard form,

g = (y � x)
⇣
f (x) dx2 � g(y) dy2

⌘

and using ḡ = 1
det LgL

�1:

ḡ =

✓
1

x
� 1

y

◆⇣
f (x)

x
dx2 � g(y)

y
dy2
⌘



Levi-Civita theorem

Theorem

Let g and ḡ be geodesically equivalent and such that the operator ḡg
�1

has different non-constant eigenvalues. Then

g =
X

i

Q
↵ 6=i (xi � x↵)

fi (xi )
dx2i

and

ḡ =
1

det L
gL

�1, with L =

0

BBB@

x1

x2

. . .
xn

1

CCCA



Integrability: from L to the integrals of the geodesic flow

Simple observation. If L and g are geodesically compatible, then
L� t · Id and g are geodesically compatible also. A metric g may admit
many geodesically compatible operators. They form a finite-dimensional
vector space.

Theorem (Benenti, Matveev, Topalov, Tabachnikov, . . . )

Let L be geodesically compatible with g . Then the geodesic flow of g

admits a (quadratic in momenta) first integral of the form

F (x , p) = det L · g�1
�
(L⇤)�1

p, p
�

More generally, any function of the form (we just replace L with L�t Id)

det(L�t Id) · g�1
�
(L⇤�t Id)�1

p, p
�
=

nX

k=1

Fk(x , p)t
n�k

is a first integral too.

The functions F1, . . . ,Fn Poisson commute and are independent if L is

gl-regular. In particular, if L is gl-regular, then the geodesic flow of L is

completely integrable.



Proof

We identify T
⇤
M with TM by setting pi = gij ẋ and verify that

F (x , p) = F (x , ⇠) = g(det L · L�1⇠, ⇠) is a first integral of the geodesic
flow of g by straightforward computation:

d

d t
g(det L · L�1⇠, ⇠) = r⇠g(det L · L�1⇠, ⇠) = g(r⇠(det L · L�1)⇠), ⇠)

Next,
r⇠

⇣
det L · L�1

⌘
=
⇣
L⇠ det L

⌘
· L�1 � det L ·r⇠L

�1

= det L
⇣
(L⇠ ln det L) · L�1 � L

�1
�
r⇠L

�
L
�1
⌘
.

Finally, we use the following general property of Nijenhuis operators
Lu ln det L = LL�1u tr L and the geodesic compatibility condition (4) in
the form g((r⇠L)⌘, ⌘) = L⌘ tr L g(⇠, ⌘) to get

g
�
(r⇠ det L · L�1)⇠, ⇠

�
=

det L ·
⇣
LL�1⇠ tr L · g

�
L
�1⇠, ⇠

�
� g

�
(r⇠L)L

�1⇠, L�1⇠
�⌘

=

= det L ·
⇣
L⌘ tr L · g (⇠, ⌘)� g ((r⇠L)⌘, ⌘)

⌘
= 0,

as required.



Proof (continued....)

To verify Poisson commutativity, we may use the following fact

Lemma

Let A and B be Killing (1, 1)-tensors for a metric g , i.e., the quadratic

functions FA = g
�1(A⇤

p, p) and FB = g
�1(B⇤

p, p) are first integrals of

the geodesic flow of g . Assume that A and B are symmetries of each

other, then FA and FB Poisson commute.

In our situation, it can be checked that the operators

Af = det(L�t Id)(L� t Id)�1

are all symmetries of each other. Hence, the Poisson commutativity
follows.



Why not to add a potential?

Theorem

Let L and g be geodesically compatible. Assume that L is gl-regular and

consider an arbitrary symmetry M of L:

M = U1L
n�1 + U2L

n�2 + · · ·+ UnId, (5)

where the coefficients U1, . . . ,UN are uniquely defined smooth functions.

Then the geodesic flow g with the potential U1, i.e., the Hamiltonian

system with the Hamiltonian

H(x , p) = 1
2g

�1(p, p) + U1(x) = F1(x , p) + U1(x) (6)

is completely integrable by means of the following commuting first

integrals (quadratic in momenta)

eFk(p, x) = Fk(p, x) + Uk(x), k = 1, . . . , n. (7)



Some useful formulas

We deal with the following objects:
I metric g = (gij)

I Hamiltonian of the geodesic flow H = 1
2g

�1(p, p) = 1
2

P
g
ij(x)pipj

I Killing 2-tensor K = (Kij): riKjk +rjKki +rkKij = 0

I quadratic first integral F = f
ij(x)pipj : {H,F} = 0

I geodesically equivalent metric ḡ = (ḡij)

I Nijenhuis operator L geodesically compatible with g :

We may think of these objects as n ⇥ n-matrices. They are related to
each other in a certain way...
I F = g

�1
Kg

�1

I K = det L · gL�1

I ḡ = 1
det L · gL�1

I L =
⇣

det ḡ
deg g

⌘ 1
n+1

gḡ
�1

I L = (det g detF )
1

n�1 g
�1

F
�1



Even simpler formulas for the standard Euclidean metric

in dimension 2

Let g = d x2 + d y2 be the standard Euclidean metric.
In matrix form g = Id.

We consider
I first integral F = ap

2
x + 2bpxpy + cp

2
y

I Killing 2-tensor K = k11 dx2 + 2k12 dxdy + k22 dy2

I geodesically equivalent ḡ = ḡ11 dx2 + 2ḡ12 dxdy + ḡ22 dy2

I geodesically compatible L =

✓
l
1
1 l

1
2

l
2
1 l

2
2

◆

Then, thinking of F , K , ḡ , L as (symmetric) 2⇥ 2 matrices, we get
I detF = detK = det L = (det ḡ)�

1
3

I K = F = 1
(det ḡ)2/3

ḡ = det L · L�1 = adj L

I ḡ = 1
det LL

�1 = 1
(det F )2F

I L = (det ḡ)
1
3 ḡ

�1 = detF · F�1 = adjF



Simple example: verification

Example

Let g = d x2 + d y2 be the standard Euclidean metric. Then
F = ap

2
x + 2bpxpy + cp

2
y is a first integral of the geodesic flow of g if and

only if L = adjF =

✓
c �b

�b a

◆
is geodesically compatible with g ,

Verification:

{H,F} = { 1
2 (p

2
x + p

2
2), ap

2
x + 2bpxpy + cp

2
y}

= axp
2
x + (2bx + ay )p

2
xpy + (2by + cx)pxp

2
y + cyp

3
y = 0

if and only if ax = 0, 2bx + ay = 0, 2by + cx = 0, cy = 0.

On the other hand, r⌘L = 1
2

�
⌘ ⌦ d tr L+ (⌘ ⌦ d tr L)>

�
with arbitrary

⌘ = (⌘1, ⌘2) gives
✓
⌘1cx + ⌘2cy �2(⌘1bx + ⌘2by )

⇤ ⌘1ax + ⌘2ay

◆
=

✓
⌘1(ax + cx) 1

2 (⌘2(ax + cx) + ⌘1(ay + cy )
⇤ ⌘2(ay + cy )

◆

leading to the same conditions ax = 0, 2bx + ay = 0, 2by + cx = 0,
cy = 0.



Further useful formulas in dimension 2

Let g = d x2 + d y2 be the standard Euclidean metric. In matrix form
g = Id.

A quadratic Hamiltonian of the geodesic flow of g is an arbitrary
quadratic form with constant coefficients of the linear integrals (Killing
vector fields)

px , py , xpy � ypx .

(Recall that in this setting, the operators L must be invertible, and this
property is easy to achieve by L 7! L+ c Id.)

Case 1. F = 2py (xpy � ypx) or, in matrix form, F =

✓
0 �y

�y 2x

◆

L = detF · F�1 = adjF =

✓
2x y

y 0

◆

Case 2. F = (xpy � ypx)
2 or, in matrix form, F =

✓
y
2 �xy

�xy x
2

◆

L = detF · F�1 = adjF =

✓
x
2

yx

yx y
2

◆



Geodesically equivalent metrics for dx2 + dy 2

Proposition

Let F = ap
2
x + 2b pxpy + c p

2
y be a first integral for the geodesic flow of

the standard Euclidean metric dx2 + dy2. Then the metric

d s2 =
1

(ac � b2)2
(a dx2 + 2b dxdy + c dy2)

is geodesically equivalent to dx2 + dy2.

Two specific examples related to Case 1 and Case 2.

Case 1. 1
(c2+2cx�y2)2

⇣
c dx2 � 2y dxdy + (2x + c) dy2

⌘

Case 2. 1�
c2+c(x2+y2)

�2
⇣
(c + y

2) dx2 � 2xy dxdy + (c + x
2) dy2

⌘



Singularities in the context of geodesically equivalent metrics

Singular points are those at which the algebraic type of L changes, e.g.,
the eigenvalues of L collide.

Open problem. What kind of singular points can appear in the context
of geodesically equivalent metrics?

Example.

✓
x y

y 0

◆
is allowed,

✓
x 0
0 y

◆
is not.

If L is a gl-regular operator, then its eigenvalues can still collide without
violating the gl-regularity condition. In the Nijenhuis geometry, scenarios
of such collisions can be very different. However, regardless of any
particular scenario, we have the following general local result.

Theorem

Let L be a gl-regular real analytic Nijenhuis operator. Then (locally)

there exists a pseudo-Riemannian metric g geodesically compatible with

L. Moreover, such a metric g can be defined explicitly in terms of the

second companion form of L.



Magic formula (Konyaev)

Fix second companion coordinates u
1, . . . , un of L so that

L = Lcomp2 =

0

BBB@

0 1
...

. . .
. . .

0 . . . 0 1
�n �n�1 . . . �1

1

CCCA
,

Let p1, . . . , pn, u1, . . . , un be the corresponding canonical coordinates on
the cotangent bundle and consider the following algebraic identity

h1L
n�1 + · · ·+ hn Id =

⇣
pnL

n�1 + · · ·+ p1 Id
⌘2

. (8)

Since L is gl-regular, the functions h1, . . . , hn are uniquely defined. They
are quadratic in p1, . . . , pn and their coefficients are polynomials in �i ’s.

Proposition

The function h1(u, p) =
P

h
↵�
1 (u)p↵p� defines a non-degenerate

(contravariant) metric which is geodesically compatible with L.



How to describe all geodesically compatible partners for L?

Let L be an admissible Nijenhuis operator (in the context of geodesic
equivalence), i.e. there is at least one (pseudo)-Riemannian metric g

geodesically compatible with L.

Open problem. Describe all geodesically compatible partners for L.

Theorem

Let L and g be geodesically compatible. Assume that M is g -symmetric

and is a strong symmetry of L, then L and gM := (gisMs
j ) are

geodesically compatible.

Moreover, if L is gl-regular, then every metric g̃ geodesically compatible

with L is of the form g̃ = gM, where M is a (strong) symmetry of L.



Quasilinear systems related to Nijenhuis operators

For a given Nijenhuis operator L, we define the operator fields Ai by the
following recursion relations

A0 = Id, Ai+1 = LAi � �i Id, i = 0, . . . , n � 1, (9)

where functions �i are coefficients of the characteristic polynomial of L
numerated as below:

�L(�) = det(� Id� L) = �n � �1�
n�1 � · · ·� �n. (10)

Equivalently, the operators Ai can be defined from the matrix relation

det(� Id� L) · (� Id� L)�1 = �n�1
A0 + �n�2

A1 + · · ·+ �An�2 + An�1.

Consider the following system of quasilinear PDEs defined by these
operators

ut1 = A1 ux ,

. . .

utn�1 = An�1 ux ,

(11)

with u
i = u

i (x , t1, ..., tn�1) being unknown functions in n variables and
u = (u1, . . . , un)>.



Finite dimensional reductions

Informally, a finite-dimensional reduction of an integrable PDE system is
a subsystem of it, which is finite-dimensional and still integrable.
It appears that such a reduction of (11) can be naturally obtained by
fixing a metric g geodesically compatible with L.

Theorem

Consider any metric g geodesically compatible with L and take any

geodesic �(x) of this metric. Let u(x , t1, ..., tn�1) be the solution of (11)
with the initial condition u(x , 0, ..., 0) = �(x). Then for any (sufficiently

small) t1, ..., tn�1, the curve x 7! u(x , t1, ..., tn�1) is a geodesic of g .

In other words, the evolutionary system corresponding to any of the
equations from (11) sends geodesics of g to geodesics.

Explanation. The integrals of the geodesic flow of g are closely related
to the operators Ai (V. Matveev). Namely, if g is geodesically compatible
with L, then its geodesic flow (as a Hamiltonian system on T

⇤M) admits
n commuting first integrals F0, . . . ,Fn�1 of the form

Fi (u, p) =
1
2 g

�1(A⇤
i p, p). (12)



Finite dimensional reductions (continued...)

Let us consider the space G of all g -geodesics (viewed as parameterised
curves). Then system (11) defines a local action of Rn on G:

 t0,t1,...,tn�1 : G ! G, (t0, t1, . . . , tn�1) 2 Rn.

More precisely, if � = �(x) 2 G is a g -geodesic, then we set
 t0,t1,...,tn�1(�) to be the geodesic �̃(x) = u(x + t0, t1, ..., tn�1), where
u(x , t1, ..., tn�1) is the solution of (11) with the initial condition
u(x , 0, ..., 0) = �(x).

Theorem

The action  is conjugate to the Hamiltonian action of Rn
on T

⇤M
generated by the flows of the integrals F0, . . . ,Fn�1 defined by (12). The

conjugacy is given by � 2 G 7! (�(0), gij �̇ i (0)) 2 T
⇤M.

Remark. Let L be a gl-regular real analytic Nijenhuis operator, then for
every curve � with a cyclic velocity vector there exists a metric g

geodesically compatible with L such that � is a g -geodesic. Thus, the
above finite-dimensional reductions of (11) ‘cover’ almost all (local)
solutions of the Cauchy problem.



Symmetries and conservation laws of (11)

Theorem

If L is gl-regular, then

1. For any hierarchy of conservation laws f1, . . . , fn of L, the operator

B = f1An + · · ·+ fnA1

is a common symmetry for Ai . Moreover, every common symmetry

of Ai ’s can be written in this way.

2. For any symmetry M = g1L
n�1 + · · ·+ gn Id of L, the first function

g1 is a common conservation law of Ai .

Moreover, every common conservation law of Ai ’s can be obtained

in this way.



Exercises

I Prove the equivalence of all the conditions from Definition of
gl-regular operators.

I Let L =

✓
f (x , y) 1
g(x , y) 0

◆
. Find necessary and sufficient conditions for

L to be a Nijenhuis operator in terms of f and g .

I Let L =

✓
0 1

g(x , y) f (x , y)

◆
. Find necessary and sufficient

conditions for L to be a Nijenhuis operator in terms of f and g .
I Give an example of a (non-Nijenhuis) operator A that cannot be

reduced to a companion form.
I The proof of the Splitting Theorem for conservation laws and

symmetries uses the following algebraic fact. Let A and B be square
matrices of sizes n ⇥ n and k ⇥ k . Prove that the matrix equation
AX = XB (for an unknown n ⇥ k matrix X ) has only trivial solution
X = 0 if and only if A and B have no common eigenvalues.

I Prove the ‘recursion property’ of Nijenhuis operators: let f0 be a
conservation law of a Nijenhuis operator L, i.e. the form d (L⇤d f0) is
closed. Then there locally exist functions f1, f2, f3, . . . such that
d fk = L

⇤d fk�1.



Exercises

I Let L be a Nijenhuis operator and f = tr L. Find g such that
d g = L

⇤d f and construct the hierarchy of conservation laws
generated by f = tr L.

I Let L be a differentially non-degenerate Nijenhuis operator in
dimension n=2. Construct a second companion coordinate system in
terms of the coefficient of the characteristic polynomial of L. The
same question for n = 3 and arbitrary n.

I Let L =

✓
0 x

0 y

◆
. Check that L is Nijenhuis and describe all

conservation laws and symmetries of L. Prove that each symmetry of
L is strong.


