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Linearisation at singular points

Let L be a Nijenhuis operator on a manifold M.

Definition
A singular point p ∈ M is said to be of scalar type, if L(p) = λ · Id.

Assume (w.l.o.g.) that λ = 0. Then locally:

L(x) = 0 + L1(x) + L2(x) + L3(x) + . . .

where the entries of Lk(x) are homogeneous polynomials in x1, . . . , xn of
degree k .

Proposition (Definition)
The linear part Llin = L1 =

(
l ijkx

j
)

is itself a Nijenhuis operator that is

called the linearisation of L at the point p ∈ M.

Question. Are there any special properties of Nijenhuis operators

Llin =
(
l ijkx

j
)

whose components are linear in local coordinates?

Answer. The corresponding tensor l ijk defines a structure of a
left-symmetric algebra (aL, ∗) on TpM, and the converse is also true.



Comparison with Poisson geometry

Let P =
(
P ij(x)

)
be a Poisson structure, x ∈ Rn

If P(0) = 0, then

P ij(x) = 0 + P ij
k x

k + . . .

where the linear part Plin =
(
P ij
k x

k
)

is a Lie-Poisson structure, i.e., P ij
k

form a structure tensor of a certain Lie algebra.
Conversely, if g is a Lie algebra then g∗ carries a natural Poisson
structure (Poisson tensor)

Pg =
(
ckij xk

)
Linearisation of a Poisson structure = Lie algebra

or, more or less equivalently,

Linear Poisson structures = Lie-Poisson structures



Left-symmetric algebras

Recall that an algebra a, in a very general context, is a vector space with
a bilinear operation ∗ : a× a→ a. Different types of algebras:
commutative, associative, unital, Lie, Frobenius, etc.

Left-symmetric algebras can be understood as a generalisation of
associative algebras. Namely, the associativity condition1

ξ ∗ (η ∗ ζ)− (ξ ∗ η) ∗ ζ = 0

is replaced with a weaker condition as follows.

Definition
An algebra (a, ∗) is called left-symmetric if:

ξ ∗ (η ∗ ζ)− (ξ ∗ η) ∗ ζ = η ∗ (ξ ∗ ζ)− (η ∗ ξ) ∗ ζ,

for all ξ, η, ζ ∈ a.

In particular, every associative algebra is left-symmetric. But there are
many other examples.

1The left-hand side A(ξ, η, ζ) = ξ ∗ (η ∗ ζ)− (ξ ∗ η) ∗ ζ is called associator.



More examples

Example
Consider the two-dimensional algebra a = Span(e1, e2) with the relations

e1 ∗ e1 = e2
e1 ∗ e2 = 0
e2 ∗ e1 = −e1
e2 ∗ e2 = −2e2

This algebra is left-symmetric, but not associative.

Example
Consider functions f on the real line R with coordinate x and introduce
the following operation

f ∗ g = f gx ,

where gx denotes the derivative in x . The associator

f ∗ (g ∗ h)− (f ∗ g) ∗ h = f ∗ (g hx)− (f gx) ∗ h =

= f gxhx + fg hxx − f gxhx = fg hxx .

is symmetric w.r.t. f and g . Obviously, this operation is not associative,
but left-symmetric.



More examples

Example
Let M be a manifold with a flat symmetric connection ∇ and define the
operation on vector fields as

ξ ∗ η = ∇ξη.

The associator takes the form

ξ ∗ (η ∗ ζ)− (ξ ∗ η) ∗ ζ = ∇ξ∇ηζ −∇∇ξηζ.

The condition A(ξ, η, ζ) = A(η, ξ, ζ) takes the form

∇ξ∇ηζ −∇∇ξηζ −∇η∇ξζ +∇∇ηξζ = ∇ξ∇ηζ −∇η∇ξζ −∇(∇ηξ−∇ξη)ζ =

= ∇ξ∇ηζ −∇η∇ξζ −∇[ξ,η]ζ = 0.



Relationship between LSAs and Nijenhuis operators.

Theorem (Winterhalder)

An operator of the form L =
(
l ijkx

j
)

is Nijenhuis if and only if l ijk form

the structure constants of a left-symmetric algebra, i.e., the operation

ξ ∗ η =
∑
i,j,k

l ijkξ
jηkei , ξ = ξjej , η = ηkek ,

defines the structure of a left symmetric algebra on the vector space a
with a basis e1, . . . , en.



Two slightly different versions of this theorem

Let R be a Nijenhuis operator such that R(p) = 0. Then the tangent
space TpM can be endowed with an LSA structure.

Proposition
Take tangent vectors ξ0, η0 ∈ TpM and introduce the following operation
on TpM:

ξ0 ∗ η0 = [Rξ, η](p),

where ξ and η are (arbitrary) vector fields such that ξ(p) = ξ0, η(p) = η0.
This operation is well defined and defines an LSA structure on TpM.

Conversely, every left-symmetric algebra (a, ∗) carries a Nijenhuis
structure on itself.
Consider a as an affine space (manifold). The tangent space Tξa, ξ ∈ a,
is naturally identified with a itself.

Proposition
Let R : Tξa→ Tξa be defined by

R(η) = Rξ(η) = η ∗ ξ.

Then R is a Nijenhuis operator on a.



Proof of the first Proposition

By definition, ξ0 ∗ η0 = [R(ξ), η](p).

For ξ0, η0, ζ0 we compute

A(ξ0, η0, ζ0)−A(η0, ξ0, ζ0) =

ξ0 ∗ (η0 ∗ ζ0)− (ξ0 ∗ η0) ∗ ζ0 −
(
η0 ∗ (ξ0 ∗ ζ0)− (η0 ∗ ξ0) ∗ ζ0

)
=[

Rξ, [Rη, ζ]
]
−
[
R [Rξ, η], ζ

]
−
[
Rη, [Rξ, ζ]

]
+
[
R [Rη, ξ], ζ

]
|at point p =

(using the anti-symmetry and Jacobi identity for the Lie bracket of vector fields)[
[Rξ,Rη], ζ

]
−
[
R [Rξ, η], ζ

]
+
[
R [Rη, ξ], ζ

]
|at point p =[

[Rξ,Rη]− R [Rξ, η]− R [ξ,Rη], ζ
]
|at point p =

(using the fact that R(p) = 0)[
R2[ξ, η] + [Rξ,Rη]− R [Rξ, η]− R [ξ,Rη], ζ

]
|at point p =

(and finally using the fact that R is Nijenhuis)

[0, ζ] = 0.



One property of left-symmetric algebras

Recall the following fundamental property of associative algebras.

Proposition
Every associative algebra (a, ∗) carries a natural Lie algebra structure
(a, [ , ]), namely

[ξ, η] = ξ ∗ η − η ∗ ξ.

In fact, the associativity condition can be relaxed.

Proposition
Every left-symmetric algebra (a, ∗) carries a natural Lie algebra structure
(a, [ , ]), namely

[ξ, η] = ξ ∗ η − η ∗ ξ.

For this reason, left-symmetric algebras are also known under the name
pre-Lie algebras.



Proof

The operation is bilinear and skew-symmetric, thus, the only thing we
need to prove is the Jacobi identity. For arbitrary triple ξ, η, ζ ∈ a we
have

[ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] =

=[ξ, η ∗ ζ − ζ ∗ η] + [η, ζ ∗ ξ − ξ ∗ ζ] + [ζ, ξ ∗ η − η ∗ ξ] =

=ξ ∗ (η ∗ ζ)− ξ ∗ (ζ ∗ η)− (η ∗ ζ) ∗ ξ + (ζ ∗ η) ∗ ξ+

+η ∗ (ζ ∗ ξ)− η ∗ (ξ ∗ ζ)− (ζ ∗ ξ) ∗ η + (ξ ∗ ζ) ∗ η+

+ζ ∗ (ξ ∗ η)− ζ ∗ (η ∗ ξ)− (ξ ∗ η) ∗ ζ + (η ∗ ξ) ∗ ζ =

=A(ξ, η, ζ)−A(ξ, ζ, η) +A(η, ζ, ξ)−A(η, ξ, ζ)+

+A(ζ, ξ, η)−A(ζ, η, ξ)

We see, that the Jacobi condition is an alternated sum of associators
(this holds for arbitrary algebra). Thus, the left-symmetry (as well as
right-symmetry or symmetry in first and third argument) yields zero: the
corresponding terms cancel out.



Linearisation and non-degeneracy problems

Definition
Let L be a Nijenhuis operator and L(p) = 0 so that L(x) = Llin(x) + . . . ,
where Llin is a linear part of L.
We will say that L is linearisable at p if there exists a coordinate
transformation that reduces L to its linear part Llin.

Linearisation problem. Given L such that L(p) = 0, find out whether
L is linearisable or not?

Definition
A left-symmetric algebra a is called non-degenerate if any Nijenhuis
operator L, whose linearisation ‘coincides’ with aL at a singular point
p ∈ M, is linearisable at this point.

Non-degeneracy problem. Describe all non-degenerate left-symmetric
algebras.



Comparison with Poisson geometry 2

The above two problems are copy-pasted from Poisson geometry.
Some well known facts:

I In dimension 2, let {x , y} = f (x , y), with f (0, 0) = 0, d f (0, 0) 6= 0.
Then this Poisson structure is linearisable, i.e., there exist local
coordinates x̃ , ỹ such that {x̃ , ỹ} = ỹ . In other words, the
non-commutative 2-dim Lie algebra (defined by the relation
[e1, e2] = e2) is non-degenerate.

I Let P be a (smooth) Poisson structure in R3(x , y , z) such that

{x , y} = z + . . . , {y , z} = x + . . . , {z , x} = y + . . .

where ‘dots’ denote higher order terms. Then there exists another
coordinate system x̃ , ỹ , z̃ such that

{x̃ , ỹ} = z̃ , {ỹ , z̃} = x̃ , {z̃ , x̃} = ỹ .

In other words, P is always linearisable, i.e., the Lie algebra so(3) is
non-degenerate (in the smooth sense).



Comparison with Poisson geometry 2 continued...

I Let P be a (smooth) Poisson structure in R3(x , y , z) such that

{x , y} = 2y + . . . , {x , z} = −2z + . . . , {y , z} = x + . . .

where ‘dots’ denote higher order terms. Then there exists another
coordinate system x̃ , ỹ , z̃ such that

{x̃ , ỹ} = 2ỹ , {x̃ , z̃} = −2z̃ , {ỹ , z̃} = x̃ .

In other words, P is linearisable, i.e., the Lie algebra sl(2) is
non-degenerate in the real analytic sense (but not in the smooth
sense!).

I Every semisimple Lie algebra is non-degenerate in the real analytic
sense (bit not necessarily in the smooth sense).

I Every compact Lie algebra is non-degenerate in the smooth sense.



Classification of LSAs in dimension one

Theorem (Exercise)
There are two non-isomorphic left-symmetric algebras a = Span(η) in
dimension 1 defined by the relations:

1. η ∗ η = 0 (trivial algebra);

2. η ∗ η = η (non-trivial algebra)

Indeed, a one-dimensional algebra is defined by one single relation

η ∗ η = aη, a ∈ R.

If a 6= 0, in can be made equal to 1 by rescaling η 7→ 1
aη.



Classification theorem in dim = 2

Theorem
Up to isomorphism there are two continuous families and 10 exceptional
two dimensional real left-symmetric algebras. The complete list of normal
forms is presented in Table 1 and Table 2 below. For every algebra we
give

I All non-zero structure relations for a given basis η1, η2
I The operator R = Rη of right multiplication by η = xη1 + yη2 (this

is a Nijenhuis operator!)

I The operator L = Lη of left multiplication by η = xη1 + yη2.

The letter b stands for algebras with non-abelian associated Lie algebra
and c for algebras with Abelian associated Lie algebra.



Classification theorem: table 1

Name Structure relations L R

b1,α
η2 ∗ η1 = η1,
η2 ∗ η2 = αη2

(
y 0
0 αy

) (
0 x
0 αy

)
b2,β , β 6= 1

η1 ∗ η2 = η1,
η2 ∗ η1 = βη1
η2 ∗ η2 = η2

(
βy x
0 y

) (
y βx
0 y

)
b3

η2 ∗ η1 = η1,
η2 ∗ η2 = η1 + η2

(
y y
0 y

) (
0 x + y
0 y

)
b+4

η1 ∗ η1 = η2,
η2 ∗ η1 = −η1
η2 ∗ η2 = −2η2

(
−y 0
x −2y

) (
0 −x
x −2y

)

b−4

η1 ∗ η1 = −η2,
η2 ∗ η1 = −η1
η2 ∗ η2 = −2η2

(
−y 0
−x −2y

) (
0 −x
−x −2y

)
b5

η1 ∗ η2 = η1,
η2 ∗ η2 = η1 + η2

(
0 x + y
0 y

) (
y y
0 y

)



Classification theorem: table 2

Name Structure relations L = R

c1

(
0 0
0 0

)
c2 η2 ∗ η2 = η2

(
0 0
0 y

)
c3 η2 ∗ η2 = η1

(
0 y
0 0

)
c4

η2 ∗ η2 = η2
η2 ∗ η1 = η1
η1 ∗ η2 = η1

(
y x
0 y

)

c+5

η2 ∗ η2 = η2
η2 ∗ η1 = η1
η1 ∗ η2 = η1
η1 ∗ η1 = η2

(
y x
x y

)

c−5

η2 ∗ η2 = η2
η2 ∗ η1 = η1
η1 ∗ η2 = η1
η1 ∗ η1 = −η2

(
y x
−x y

)



Example of a non-degenerate LSA

Proposition
The left-symmetric algebra c+5 is non-degenerate. Equivalently, if
L = L(x , y) is a Nijenhuis operator of the form

L =

(
y x
x y

)
+ higher order ≥ 2 terms ,

Then there exists a smooth coordinate change, centred at 0 that
transforms L into its linear part.

Proof. Let f = tr L and g = det L. Then

f = 2y + . . . ,

g = y2 − x2 + . . . .

Here . . . stand for terms of orders ≥ 2 and ≥ 3 respectively.
Instead of reducing L to the required form, we will be looking for a
suitable coordinate transformations to simplify f and g .



Proof of Proposition (continued...)

Step 1. As f = tr L = 2y + . . . , we may set ynew = 1
2 f so that

f = tr L = 2ynew. The first coordinate remains unchanged. Keeping
the same notation x , y for the new coordinates, we now have

f = 2y

g = y2 − x2 + . . . .

Step 2. To simplify g , we treat y as a parameter and apply the parametric
Morse lemma, which says that we can introduce a new variable
xnew = h(x , y) = x + . . . (y remains unchanged) in such a way that

g = −x2new + k(y), with k(y) = y2 + . . .

Keeping the same notation x , y for the new coordinates, we now have

f = 2y

g = −x2 + k(y)

where f and g are the trace and determinant of our Nijenhuis operator L.
Question. What can we say about L in this situation?



Proof of Proposition (continued...)

Recall that a Nijenhuis operator can be reconstructed from the
coefficients of the characteristic polynomial by using the following
fundamental formula

L = J−1
(
σ1 1
σ2 0

)
J, where J =

(
∂(σ1, σ2)

∂(x , y)

)
,

and σ1 = tr L, σ2 = − det L are the coefficients of the characteristic
polynomial of L. A simple computation gives the following formula for L

L =

(
1
2k
′ x + k′(4y−k′)−4k

4x
x 2y − 1

2k
′

)
Now another miracle in Nijenhuis geometry... Look at the fraction
k′(4y−k′)−4k

4x . Its numerator is a function of y only. Hence this fraction is
smooth at the origin if and only if k ′(4y − k ′)− 4k ≡ 0. It shows that
k = k(y) must be very special!
This relation (after differentiating by y) implies k ′′(y)(2y − k ′) = 0 and

since k ′′(y) 6= 0, we get k ′ = 2y and k = y2, giving finally L =

(
y x
x y

)
,

as required.



Example of a degenerate LSA

Proposition
The left-symmetric algebra c4 is degenerate.
More specifically, the following non-linear perturbation(

y x
0 y

)
7→ L =

(
y x
0 y

)
+

(
yx2 x3

−xy2 −yx2
)

gives a non-linearisable Nijenhuis operator L.

Proof. Consider the trace and determinant of L:

tr L = 2y , det L = y2 + y2x2

Obviously, the discriminant of the characteristic polynomial χL(t) is not
identically zero, so that generically L has two different eigenvalues, while

its linear part Llin =

(
y x
0 y

)
has one single eigenvalue y of multiplicity

2.
Hence, L and Llin are essentially different and cannot be reduced to each
other by a coordinate transformation.



Another classification theorem

Theorem (Smooth case)
In the smooth category

Degenerate LSA Non-degenerate LSA
c1, c2, c3, c4,
b5, b2,β

b1,α forα ∈ Σsm

b+4 , b
−
4 , c

+
5 , c
−
5

b3, b1,α forα /∈ Σsm

Theorem (Analytic case)
In the real analytic category

Degenerate LSA Non-degenerate LSA
c1, c2, c3, c4,
b5, b2,β

b1,α forα ∈ Σan

b+4 , b
−
4 , c

+
5 , c
−
5

b3, b1,α forα /∈ Σan



Comments on the sets Σsm and Σan related to

(
0 x
0 αy

)
The continuous fraction for α is a decomposition of α in the form

α = q0 +
1

q1 + 1
q2+...

,

where q0 ∈ Z and qi , i ≥ 1 are in N. Let [q0, q1, q2, ...] be a
decomposition of an irrational α into the continuous fraction. If the series

B(x) =
∞∑
i=0

log qi+1

qi

converges, then α is a Brjuno number.

I Σsm contains α < 0, α = 1
m for m ≥ 2 and s for s ≥ 3.

I Σan contains α = − p
q , negative irrational numbers that are not

Brjuno numbers, α = 1
m for m ≥ 2 and s for s ≥ 3.



Non-degeneracy of the diagonal algebra

Theorem (Real analytic or formal)
Let L(x) = Llin(x) + L2(x) + L3(x) + . . . with

Llin(x) =


x1

x2
. . .

xn

 .

Then L(x) is linearisable. In other words, the diagonal left-symmetric
algebra is non-degenerate.



Differentially non-degenerate LSAs

Definition
We say that a left-symmetric algebra a is differentially non-degenerate if
the Nijenhuis operator Rξ of right multiplication (see above) is
differentially non-degenerate (at a generic point ξ ∈ a).

Recall that the entries of the operator Rξ =
(
R i
j (ξ)

)
are linear functions

in ξ, i.e., R i
j =

∑
α l

i
jαξ

α, where ξ =
∑
α ξ

αeα. This implies that the
coefficient σk(ξ) of the characteristic polynomial

χRξ
(t) = det(t Id− Rξ) = tn − σ1(ξ)tn−1 − σ2(ξ)tn−2 − · · · − σn(ξ)

is a homogeneous polynomial in ξ1, . . . , ξn of degree k .
The differential non-degeneracy condition means that the polynomials
σ1, . . . , σn are algebraically independent.

Open problem 1. Classify/describe differentially non-degenerate
left-symmetric algebras. (The problem is solved in dimensions 1,2,3.)

Open problem 2. Is it true that a differentially non-degenerate
left-symmetric algebra is non-degenerate.



Purely algebraic statement of Open Problem 1.

Open problem 1′. Describe all collections of algebraically independent
homogeneous polynomials σ1, . . . , σn in n variables x1, . . . , xn
(deg σk = k) such that the entries of the matrix

R =

(
∂σk
∂x j

)−1

σ1 1

σ2 0
. . .

...
...

. . . 1
σn 0 . . . 0


(
∂σk
∂x j

)

are linear functions in x1, . . . , xn (here

(
∂σk
∂x j

)
denotes the Jacobi matrix

of the collection of polynomials σ1, . . . , σn).

Comment. According to the fundamental property of Nijenhuis opera-
tors (see Lecture 1), R is Nijenhuis for any collection of independent
polynomials σ1, . . . , σn. But in general, the entries of R are rational

functions of the form R i
j =

Pij (x)
Q(x) where degPij = n + 1, degQ = n and

Q = det
(
∂σk

∂x j

)
. Sometimes, a miracle happens: each Pij turns out to be

divisible by Q, and then R defines a left-symmetric algebra.



Exercises

I Prove that c+5 is isomorphic to the direct sum of two
one-dimensional non-trivial algebras.

I Prove that c−5 is a real form of one-dimensional complex algebra
with non-trivial multiplication.

I Classify of differentially non-degenerate LSAs in dimension 2
(without using the classification theorem for LSAs in 2D).

I Let g be a Lie algebra. Consider the Lie-Poisson bracket

Px =
(
c ijkxi

)
on g∗ and assume that detPa 6= 0 at a generic point

a ∈ g∗ (such g is called a Frobenius Lie algebra). Let us introduce
an operator (field of endomorphisms) R on g∗ by setting

R(x) : Txg
∗ → Txg

∗, R(x) = Px ◦ P−1a

where the Px ,Pa are understood as (skew-symmetric) linear maps
Rx ,Ra : g = T ∗x g

∗ → g∗ = Txg
∗. Prove that R is Nijenhuis operator

on g∗ with linear entries, which implies that g∗ carries a structure of
a left-symmetric algebra (this structure depends on the choice of a
regular element a ∈ g∗).



Exercises

I Two Nijenhuis operators L1 and L2 are called compatible if their sum
L1 + L2 is a Nijenhuis operator too.

(a) Check that this condition implies that any linear combination
a1L1 + a2L2 is Nijenhuis.

(b) Write down the compatibility condition in tensorial form, like

L1L2[u, v ]− L1[L2u, v ]− · · · = 0 for all vector fields u, v

The expression in the l.h.s. is known as Frölicher-Nijenhuis bracket
of two operators.

(c) (Argument shift method à la Mishchenko–Fomenko) Let Rξ be the
Nijenhuis operator associated with a left-symmetric algebra a and Ra

be the constant operator obtained by setting ξ = a ∈ a. Then Rξ

and Ra are compatible.


