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Linearisation at singular points

Let L be a Nijenhuis operator on a manifold M.

Definition

A singular point p € M is said to be of scalar type, if L(p) = X - Id.
Assume (w.l.o.g.) that A = 0. Then locally:

L(x) =0+ Li(x) + La(x) + Ls(x) + ...

where the entries of L (x) are homogeneous polynomials in x?

degree k.

n
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Proposition (Definition)

The linear part Ly, = L; = (/kaj) is itself a Nijenhuis operator that is
called the linearisation of L at the point p € M.

Question. Are there any special properties of Nijenhuis operators

Ly, = (Ijkxf> whose components are linear in local coordinates?

Answer. The corresponding tensor /}k defines a structure of a
left-symmetric algebra (a.,*) on T,M, and the converse is also true.



Comparison with Poisson geometry

Let P = ( P¥(x)) be a Poisson structure, x € R”"
If P(0) =0, then )
Pi(x) =0+ P!x*+ ...

where the linear part Py, = <ngk> is a Lie-Poisson structure, i.e., Pg

form a structure tensor of a certain Lie algebra.
Conversely, if g is a Lie algebra then g* carries a natural Poisson
structure (Poisson tensor)

k
Linearisation of a Poisson structure = Lie algebra

or, more or less equivalently,

Linear Poisson structures = Lie-Poisson structures



Left-symmetric algebras

Recall that an algebra a, in a very general context, is a vector space with
a bilinear operation * : a X a — a. Different types of algebras:
commutative, associative, unital, Lie, Frobenius, etc.

Left-symmetric algebras can be understood as a generalisation of
associative algebras. Namely, the associativity condition?

Ex(m*C)—(Exn)x(=0

is replaced with a weaker condition as follows.
Definition
An algebra (a, %) is called left-symmetric if:

Ex (=) = (Exn)xC=nx(Ex() = (nx&)*(,

for all £,7,C € a.

In particular, every associative algebra is left-symmetric. But there are
many other examples.

1The left-hand side A(&,71,¢) = € x (n* ¢) — (€ % n) x C is called associator:



More examples

Example
Consider the two-dimensional algebra a = Span(e;, e;) with the relations
€1 xe =€
etxe =0
E2%€ = —€
e*xe = —26

This algebra is left-symmetric, but not associative.

Example

Consider functions f on the real line R with coordinate x and introduce
the following operation
fxg="Fgx,
where g, denotes the derivative in x. The associator
fx(gxh)—(fxg)xh="Ffx(gh)—(fg)xh=
=f geh + fg h — f gchy = fg hy.

is symmetric w.r.t. f and g. Obviously, this operation is not associative,
but left-symmetric.



More examples

Example
Let M be a manifold with a flat symmetric connection V and define the
operation on vector fields as

Exn=Ven.
The associator takes the form
fS*(n*C)—(5*77)*C=V5Vné—vvgn6-
The condition A(£,7,¢) = A(1, €, ¢) takes the form

VeVl = Vy( = VyVe( + Vv, = VeV =V Ve = Vg, eoven =
= VeVy( =V Ve = Vig ¢ = 0.



Relationship between LSAs and Nijenhuis operators.

Theorem (Winterhalder)
An operator of the form L = (/Jkaf> is Nijenhuis if and only if ljfk form
the structure constants of a left-symmetric algebra, i.e., the operation

Exn=> hdnte, ¢="de, n=r1'e,
NN

defines the structure of a left symmetric algebra on the vector space a
with a basis e, ..., e,.



Two slightly different versions of this theorem

Let R be a Nijenhuis operator such that R(p) = 0. Then the tangent
space T,M can be endowed with an LSA structure.
Proposition
Take tangent vectors £o, 1m0 € TpM and introduce the following operation
on T,M:

€0+ no = [RE, n](p),
where ¢ and 7 are (arbitrary) vector fields such that £(p) = &, n(p) = no-
This operation is well defined and defines an LSA structure on T,M.

Conversely, every left-symmetric algebra (a, *) carries a Nijenhuis
structure on itself.

Consider a as an affine space (manifold). The tangent space T¢a, £ € q,
is naturally identified with a itself.

Proposition
Let R: T¢a — Tea be defined by

R(n) = Re(n) = n*¢&.

Then R is a Nijenhuis operator on a.



Proof of the first Proposition

By definition, o * no = [R(£), n](p)-

For &0, 10, (o we compute

A(&o, 0, Co) — A0, 0, C0) =
€0 * (10 * Co) — (€0 * m0) * o — (ﬁo*(fo*Co)*(Tlo*Eo)*Co) =

[R£7 [Rna CH - [R [Rga n]a C] - [Rﬁ~ [Rf C]] + [R [Rna 5]7 C] |at point p =
(using the anti-symmetry and Jacobi identity for the Lie bracket of vector fields)

“R& Rn]v C] - [R [Rf, 77]7 C] + [R [R777§]7 C] |at point p —

[[Rf, Rﬁ] -R [Rf, 77] -R [57 R77]7 C] |at point p —
(using the fact that R(p) = 0)

[Rz[ga 7]] + [Ré-a R77] -R [Rgan] -R [57 Rn]; C} ‘at point p —

(and finally using the fact that R is Nijenhuis)
[0,¢] = 0.



One property of left-symmetric algebras

Recall the following fundamental property of associative algebras.

Proposition
Every associative algebra (a, *) carries a natural Lie algebra structure
(a,[, ]), namely

€] =& xn—mn*&

In fact, the associativity condition can be relaxed.

Proposition
Every left-symmetric algebra (a, *) carries a natural Lie algebra structure
(a,[, ]), namely

€] =&xn—n*E

For this reason, left-symmetric algebras are also known under the name
pre-Lie algebras.



The operation is bilinear and skew-symmetric, thus, the only thing we

need to prove is the Jacobi identity. For arbitrary triple £,7,( € a we
have

(€, [0, <+ [0, [C, €1 + (¢, [€m] =

=[x (= Cxnl+[n,¢CxE—Ex ]+ [(Exn—nxé] =
=Ex(nx Q) —&x(Cxn) — (=) =&+ (Cxm)* &+
+nx((*&) — 77*(6*@“) (C*&)xn+(ExC)*n+
+Cx(Exm) —Cx(nx§) —(Exn)xC+(m*x&)*x(=
=«4(£,777C)—A(Syc,n)JrA(n,C,f)—A(n,£,<)+
+A(C, €, n) — A(¢m, §)

We see, that the Jacobi condition is an alternated sum of associators
(this holds for arbitrary algebra). Thus, the left-symmetry (as well as

right-symmetry or symmetry in first and third argument) yields zero: the
corresponding terms cancel out.



Linearisation and non-degeneracy problems

Definition

Let L be a Nijenhuis operator and L(p) = 0 so that L(x) = Lyn(x) + ...,
where Ly, is a linear part of L.

We will say that L is linearisable at p if there exists a coordinate
transformation that reduces L to its linear part Lj,.

Linearisation problem. Given L such that L(p) = 0, find out whether
L is linearisable or not?

Definition

A left-symmetric algebra a is called non-degenerate if any Nijenhuis
operator L, whose linearisation ‘coincides’ with a; at a singular point
p € M, is linearisable at this point.

Non-degeneracy problem. Describe all non-degenerate left-symmetric
algebras.



Comparison with Poisson geometry 2

The above two problems are copy-pasted from Poisson geometry.
Some well known facts:

» In dimension 2, let {x,y} = f(x,y), with £(0,0) =0, d 7(0,0) # 0.
Then this Poisson structure is linearisable, i.e., there exist local
coordinates X, ¥ such that {X, 7} = . In other words, the
non-commutative 2-dim Lie algebra (defined by the relation
[e1, &2] = &) is non-degenerate.

» Let P be a (smooth) Poisson structure in R3(x, y, z) such that

{xyt=z+..., {y,z}t=x+..., {zx}=y+...

where ‘dots’ denote higher order terms. Then there exists another
coordinate system X, y, Z such that

{x.9}=2 {y.2}=% {2x}=7.

In other words, P is always linearisable, i.e., the Lie algebra so(3) is
non-degenerate (in the smooth sense).



Comparison with Poisson geometry 2 continued..

> Let P be a (smooth) Poisson structure in R3(x, y, z) such that
{x,y}=2y+..., {xz}==2z4+..., {y,z}=x+...

where ‘dots’ denote higher order terms. Then there exists another
coordinate system X, y, Z such that

In other words, P is linearisable, i.e., the Lie algebra s/(2) is
non-degenerate in the real analytic sense (but not in the smooth
sensel).

» Every semisimple Lie algebra is non-degenerate in the real analytic
sense (bit not necessarily in the smooth sense).

» Every compact Lie algebra is non-degenerate in the smooth sense.



Classification of LSAs in dimension one

Theorem (Exercise)
There are two non-isomorphic left-symmetric algebras a = Span(n) in
dimension 1 defined by the relations:

1. p*n =0 (trivial algebra);
2. pxn =mn (non-trivial algebra)

Indeed, a one-dimensional algebra is defined by one single relation
n*xn=an, ack.

If a# 0, in can be made equal to 1 by rescaling n +— %n.



Classification theorem in dim = 2

Theorem
Up to isomorphism there are two continuous families and 10 exceptional
two dimensional real left-symmetric algebras. The complete list of normal
forms is presented in Table 1 and Table 2 below. For every algebra we
give

» All non-zero structure relations for a given basis 11,15

» The operator R = R,, of right multiplication by n = xm1 + yn, (this
is a Nijenhuis operator!)

» The operator L = L, of left multiplication by n = xm1 + yn».

The letter b stands for algebras with non-abelian associated Lie algebra
and c for algebras with Abelian associated Lie algebra.



Classification theorem: table 1

Name Structure relations L R
by M2 kM1 = M1, y 0 0 x
“ T2 * 2 = Q1 0 ay 0 ay
L *x 12 =N,
X X
bog, B#1 M *m = Bm By y P
0 vy 0 vy
T2 %12 = 12
bs M2 % 1M1= 11, y y 0 x+y
M*m =1+ 0 y 0 vy
| (29[ 3)
4 2 %71 = —M 2 7
N2 %10 = —21 x 4 x 4
. e (2 2% 2
4 2 %71 = —M % D “x D
M *1Np = —21p x 4 x Y
bs M o* N2 = N, 0 x+y y y
2 kM2 =N1+ N2 0 vy 0 vy




Classification theorem: table 2

Name | Structure relations | L = R
: (3 0)
0 0
(%) T2 * 12 =12 (0 0>
0 y
€3 2 x12 =M <g }(;>
2 * 12 =12 (y X>
C4 Mm*xmni=m 0
y
N *12 =M
2 x 12 =12
c;“ *xm=m (y X>
mx*n2=m Xy
m*xn1 =12
2 * 12 =12
- T %M1 =1 <y X)
> M EN =m -x y
Mm*xn = M




Example of a non-degenerate LSA

Proposition
The left-symmetric algebra ¢ is non-degenerate. Equivalently, if
L = L(x,y) is a Nijenhuis operator of the form

L= ( yox ) + higher order > 2 terms ,
Xy
Then there exists a smooth coordinate change, centred at 0 that

transforms L into its linear part.
Proof. Let f =trL and g = det L. Then

f=2y+...,
g:y2—x2+....
Here ... stand for terms of orders > 2 and > 3 respectively.

Instead of reducing L to the required form, we will be looking for a
suitable coordinate transformations to simplify f and g.



Proof of Proposition (continued...)

Step 1. As f =trL =2y +..., we may set yyew = 3 so that
f =trL = 2ypew. The first coordinate remains unchanged. Keeping
the same notation x, y for the new coordinates, we now have

f=2y
g:y2—x2+....

Step 2. To simplify g, we treat y as a parameter and apply the parametric
Morse lemma, which says that we can introduce a new variable
Xnew = h(x,y) = x+ ... (¥ remains unchanged) in such a way that

g= —xﬁew + k(y), with k(y) = y24 ..
Keeping the same notation x, y for the new coordinates, we now have
f=2y
g=—x"+k(y)

where f and g are the trace and determinant of our Nijenhuis operator L.
Question. What can we say about L in this situation?



Proof of Proposition (continued...)

Recall that a Nijenhuis operator can be reconstructed from the
coefficients of the characteristic polynomial by using the following
fundamental formula

_ 1 3(0’1 0'2)
| = 1(01 h — )
J (02 O) J, where J (a(x, ) ) ,

and o1 = trL,0, = —det L are the coefficients of the characteristic
polynomial of L. A simple computation gives the following formula for L

L = %k/ X + k/(4y7il)74k
X 2y — 5k

Now another miracle in Nijenhuis geometry... Look at the fraction
W. Its numerator is a function of y only. Hence this fraction is
smooth at the origin if and only if k'(4y — k') — 4k = 0. It shows that

k = k(y) must be very speciall

This relation (after differentiating by y) implies k”(y)(2y — k') = 0 and
since k”(y) # 0, we get k' =2y and k = y?, giving finally L = i ; ,

as required.



Example of a degenerate L

Proposition
The left-symmetric algebra ¢4 is degenerate.
More specifically, the following non-linear perturbation

2 3
Yy X _(y x yx X
(0 y> "~ L(O Y>+<—Xy2 —yx2>

gives a non-linearisable Nijenhuis operator L.
Proof. Consider the trace and determinant of L:

trL =2y, detl=y?+ y°x>

Obviously, the discriminant of the characteristic polynomial x,(t) is not
identically zero, so that generically L has two different eigenvalues, while

y

its linear part Ly, = <0

X . . .
y> has one single eigenvalue y of multiplicity

Hence, L and Ly, are essentially different and cannot be reduced to each
other by a coordinate transformation.



Another classification theorem

Theorem (Smooth case)

In the smooth category

Degenerate LSA

Non-degenerate LSA

€1, €2, €3, C4,
bs, b2 5
biofora € ¥y,

+ = 4+ -
b, ,b, ¢, c5
b3, by o fora ¢ Xy

Theorem (Analytic case)
In the real analytic category

Degenerate LSA

Non-degenerate LSA

€1,¢2,C3,C4,
bs, b2 5
by foraex,,

+ = ot o~
by, b, 00,05
b3, bl,a for o ¢ Za,n




X
0 ay

Comments on the sets >, and 2, related to

The continuous fraction for a is a decomposition of « in the form

1
a=q+—i—,
Q1+ lhj—...

where o € Z and g;,i > 1 are in N. Let [qo, 91, g2, .--] be a
decomposition of an irrational « into the continuous fraction. If the series

B(x) = Z log gi+1

o i

converges, then « is a Brjuno number.

> Y contains a <0, a =X for m>2and s for s > 3.
> > .. contains o = ,g, negative irrational numbers that are not

Brjuno numbers, o = 1 for m > 2 and s for s > 3.



Non-degeneracy of the diagonal algebra

Theorem (Real analytic or formal)
Let L(x) = Lin(x) + Lo(x) + L3(x) + ... with
x1
x2
Lin(x) =

Xn

Then L(x) is linearisable. In other words, the diagonal left-symmetric
algebra is non-degenerate.



Differentially non-degenerate LSAs

Definition

We say that a left-symmetric algebra a is differentially non-degenerate if
the Nijenhuis operator Re of right multiplication (see above) is
differentially non-degenerate (at a generic point £ € a).

Recall that the entries of the operator Ry = (RJ’(S)) are linear functions

in &, ie, RI=>_ 1 % where £ =37 (e,. This implies that the
coefficient o4 (&) of the characteristic polynomial

XR(t) = det(tld — Re) = t" — 01()t" ™ — (€t — -+ — 0,(€)
is a homogeneous polynomial in €%, ...,£" of degree k.
The differential non-degeneracy condition means that the polynomials
01,...,0, are algebraically independent.

Open problem 1. Classify/describe differentially non-degenerate
left-symmetric algebras. (The problem is solved in dimensions 1,2,3.)

Open problem 2. Is it true that a differentially non-degenerate
left-symmetric algebra is non-degenerate.



Purely algebraic statement of Open Problem 1.

Open problem 1’ Describe all collections of algebraically independent
homogeneous polynomials oy, ...,0, in n variables xy, ..., x,
(deg ok = k) such that the entries of the matrix

01 1
aak - g2 0 (9Uk
R == e —_
oxJ : T 1 OxJ
c, 0 ... O
. . . 1 80’k . .
are linear functions in x*,...,x" (here £ denotes the Jacobi matrix
X
of the collection of polynomials o1,...,0,).

Comment. According to the fundamental property of Nijenhuis opera-

tors (see Lecture 1), R is Nijenhuis for any collection of independent

polynomials o1, ...,0,. But in general, the entries of R are rational
Pij(x)

functions of the form Rj = 20 where deg Pjj = n+ 1, deg Q = n and

Q = det (%). Sometimes, a miracle happens: each Pj turns out to be
divisible by @, and then R defines a left-symmetric_algebra.




Exercises

>

>

>

Prove that c; is isomorphic to the direct sum of two
one-dimensional non-trivial algebras.

Prove that ¢5 is a real form of one-dimensional complex algebra
with non-trivial multiplication.

Classify of differentially non-degenerate LSAs in dimension 2
(without using the classification theorem for LSAs in 2D).

Let g be a Lie algebra. Consider the Lie-Poisson bracket

P, = (cjkx,-) on g* and assume that det P, ## 0 at a generic point
a € g* (such g is called a Frobenius Lie algebra). Let us introduce
an operator (field of endomorphisms) R on g* by setting

R(x): Txg* — Txg*, R(x)=P,oP;*!

where the Py, P, are understood as (skew-symmetric) linear maps
Re,Ry:g=T;g" = g" = T,g*. Prove that R is Nijenhuis operator
on g* with linear entries, which implies that g* carries a structure of
a left-symmetric algebra (this structure depends on the choice of a
regular element a € g*).



Exercises

» Two Nijenhuis operators L; and L, are called compatible if their sum
Ly + L is a Nijenhuis operator too.

(a)
(b)

Check that this condition implies that any linear combination
aiL1 + a2L» is Nijenhuis.
Write down the compatibility condition in tensorial form, like

LiLo[u,v] — Li[Lou,v] —--- =0 for all vector fields u, v

The expression in the L.h.s. is known as Frolicher-Nijenhuis bracket
of two operators.

(Argument shift method a la Mishchenko—-Fomenko) Let Re be the
Nijenhuis operator associated with a left-symmetric algebra a and R,
be the constant operator obtained by setting £ = a € a. Then R;
and R, are compatible.



