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Albert Nijenhuis

Albert Nijenhuis (November 21, 1926 – February 13, 2015),

Dutch-American mathematician who specialised in di↵erential geometry

and the theory of deformations in algebra and geometry, and later worked

in combinatorics.

Alma mater: University of Amsterdam

Doctoral advisor: Prof. Jan Arnoldus Schouten
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What is GEOMETRY?

Space, manifold Mn
+ Structure

Structure is usually

defined by means of

a tensor, like,

gij , !ij , or P ij

Naively, in coordinates, the geometric structure is defined by means of a

matrix A =

⇣
aij(x)

⌘
whose entries depend on coordinates

x = (x1, . . . , xn) and satisfy some algebraic and di↵erential conditions.



Nijenhuis geometry. Our motivation

Definition
By Nijenhuis operators we understand (1, 1)-tensors L =

�
Lij(x)

�
with

vanishing Nijenhuis torsion. A manifold M endowed with such an

operator it is called a Nijenhuis manifold.

Motivation

I Riemannian, Kähler, symplectic, Poisson... Nijenhuis geometry is

the next, most natural candidate to continue this list.

I In the context of the bi-Hamiltonian formalism, Nijenhuis operators

occur as recursion operators (for both finite- and infinite-dimensional

cases like systems of hydrodynamic type and KdV equations).

I In the theory of integrable geodesic flows, projectively equivalent

Riemannian metrics are related by means of a Nijenhuis operator.

I In topology of integrable systems, singularities of Lagrangian

fibrations related to bi-Hamiltonian systems correspond to singular

points of the corresponding Nijenhuis recursion operators

I In integrable systems on Lie algebras, the algebraic Nijenhuis

operators are used in the study of Lie-Poisson pencils.



Nijenhuis Geometry

Definition and simplest properties

Haantjes Theorem

Nirenberg–Newlander Theorem
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gl-regular Nijenhuis operators

Singular points and stability

Normal forms

Left-symmetric algebras

Linearisation problem

Global issues, examples and obstructions

Nijenhuis pencils

Nijenhuis cohomologies

Integration of quasilinear PDEs

Applications



Research agenda

The ultimate goal of our research programme is to answer three

fundamental questions:

(A) Local description: to what form can one bring a Nijenhuis

operator near almost every point by a local coordinate change?

(B) Singular points: what does it mean for a point to be generic or

singular in the context of Nijenhuis geometry? What singularities are

non-degenerate/stable? How do Nijenhuis operators behave near

non-degenerate and stable singular points?

(C) Global properties: what restrictions on a Nijenhuis operator are

imposed by the topology of the underlying manifold? And

conversely, what are topological obstructions to a Nijenhuis manifold

carrying a Nijenhuis operator with specific properties?

as well as to work on

(D) Applications of Nijenhuis Geoetry: in geometry, algebra and

mathematical physics



Nijenhuis operators

Let L be a (1, 1)-tensor field (operator) on a smooth manifold M.

The Nijenhuis torsion NL of the operator L is a (1, 2)-tensor that
can be defined in several equivalent ways.

I As a vector-valued 2-form:

NL(⇠, ⌘) = L2[⇠, ⌘] + [L⇠, L⌘]� L[L⇠, ⌘]� L[⇠, L⌘].

I As a map from “vector fields” to “endomorphisms”:

NL : ⇠ 7! LL⇠L� LL⇠L.

I As a map from “1-forms” to “2-forms”:

NL : ↵ 7! �, where

�(· , ·) = d (L⇤2↵)(· , ·) + d↵(L· , L·)� d (L⇤↵)(L· , ·)� d (L⇤↵)(· , L·).

I In local coordinates:

(NL)
i
jk = Llj

@Lik
@x l

� Llk
@Lij
@x l

� Lil
@Llk
@x j

+ Lil
@Llj
@xk

.

Definition. If NL ⌘ 0, then L is called a Nijenhuis operator.



Elementary examples

I Constant operator:

L(x) =
⇣
Lij

⌘

with Lij being constant for all i , j

I Scalar operator:

L(x) = f (x) · Id,

where f (x) is an arbitrary smooth function

I Complex structure

I L(x) =

0

BBB@

x1
x2

. . .
xn

1

CCCA

I L(x) =

0

BBBB@

x5 x4 x3 x2 x1
x5 x4 x3 x2

x5 x4 x3
x5 x4

x5

1

CCCCA



Generic and singular points

Definition
I A point p 2 M is called algebraically generic, if the algebraic type of

L does not change in some neighbourhood U(p) ⇢ M.

I A point p 2 M is called singular, if it is not algebraically generic.

I A point p 2 M is called di↵erentially non-degenerate, if the di↵eren-

tials d�1(x), . . . , d�n(x) of the coe�cients of the characteristic

polynomial of L(x) are linearly independent at this point.

I A singular point p 2 M is called (C k
-) stable, if for any perturbation

L(x) 7! eL(x) = L(x) + Rk(x)

such that eL(x) is Nijenhuis and Rk(x) has zero of order k at the

point p 2 M, there exists a local di↵eomorphism � : U(p) ! eU(p),
�(p) = p, that transforms L(x) to eL(x).



Splitting theorem

Let �L(x)(t) = det
�
t Id� L(x)

�
= tn��1(x)tn�1

��2(x)tn�2
� . . .��n(x)

be the characteristic polynomial of L and

�L(p)(t) = �1(t)�2(t)

be its factorisation at a point p 2 Mn
into two factors with no common

roots (over R), deg�1 = r , deg�2 = n � r .

Theorem
There exist local coordinates (x1, . . . , xr , yr+1, . . . , yn) such that

L(x , y) =

✓
L1(x) 0

0 L2(y)

◆
, (1)

with �1 = �L1 and �2 = �L2 .

In particular the distributions Di = Ker�i (L) (i = 1, 2) are integrable.

In other words, L splits into a direct sum of two Nijenhuis operators:
L(x , y) = L1(x)� L2(y).



Proof of Splitting Theorem

Step 1. If L is Nijenhuis, then L2 is Nijenhuis too.

Step 2. If L is Nijenhuis, then p(L) is Nijenhuis, where p(·) is a polynomial

(with constant coe�cients).

Step 3. If L is Nijenhuis, then any convergent power series
P

akLk , ak 2 R,
i.e. any real analytic function f (L) is Nijenhuis, e.g. exp L, sin L, . . .

Step 4. Now let TxM = D1 �D2 be the decomposition of the tangent space

into the subspaces related to the factorisation �L = �1 · �2 and

Pi : TxM ! Di denote the projector onto Di .

Fact from Matrix Analysis: Pi =
P

akLk = fi (L) real analytic
function. Therefore Pi is Nijenhuis.

Step 5. Pi is a very simple operator with two constant eigenvalues, 0 and 1.

We prove the Splitting Theorem for Pi instead, to find coordinates

(x1, . . . , xr , yr+1, . . . , yn).

Step 6. Then L = LP1 + LP2 =

✓
L1

0

◆
+

✓
0

L2

◆
, where LP1 and LP2

are both Nijenhuis.

Step 7. Verification that @y↵L1 = 0 and @x�L2 = 0 is straightforward from

the definition.



Corollaries: Haantjes theorem

Corollary
Every Nienhuis operator L locally splits into a direct sum of Nijenhuis
operators L = L1 � L2 � . . . each of which at the point p 2 M has either
a single real eigenvalue or a single pair of complex eigenvalues.

Theorem (Haantjes)
Let L be a Nijenhuis operator which is R-diagonalisable at a point p and,
all of its eigenvalues are di↵erent. Then there exist local coordinates
(x1, . . . , xn) such that

L(x) =

0

BB@

�1(x1)
�2(x2)

. . .
�n(xn)

1

CCA

Moreover, if �0
i 6= 0, i = 1, . . . , n, then we can take the eigenvalues

ui = �i (xi ) as new local coordinates to simplify L even further:

L(u) =

0

BB@

u1
u2

. . .
un

1

CCA



Jordan block: typical behaviour of Nijenhuis operators

Let p 2 M be a singular point for a Nijenhuis operator L. For example,

L(p) is conjugate to a Jordan block but it is not true any more at

neighbouring points.

Theorem
Assume that L is di↵erentially non-degenerate at a point p 2 M. Then
there exists a local coordinate system x1, . . . , xn in which L takes the
following canonical form:

L =

0

BBBBB@

x1 1

x2 0 1

...
...

. . .
. . .

xn�1 0 . . . 0 1

xn 0 . . . 0 0

1

CCCCCA
(2)

Corollary
Di↵erentially non-degenerate singular points are C 2-stable.



Sketch of proof

Step 1. Important identity (follows from Definition 2: LL⇠L� LL⇠L = 0.)

LL⇠(det L) = det L · L⇠ tr L

Step 2. Equivalently,

L⇤ d(det L) = det L · d tr L.

and, more generally, replacing L with L� t Id:

(L� t Id)⇤ d�L(t) = �L(t) · d tr L

Here �L(t) = det(t Id� L) = tn � �1tn�1
� · · ·� �n.

Step 3. In matrix form, it becomes the following fundamental identity in

Nijenhuis Geometry:

J L = S J, where S =

0

BBB@

�1 1

�2 0
. . .

...
...

. . . 1
�n 0 . . . 0

1

CCCA
and J =

✓
@�i

@xj

◆

Step 4. If L is di↵erentially non-degenerate, i.e., �1, . . . ,�n are independent

functions, we simply set xi = �i .



Regular Nijenhuis manifolds

Definition
L is called gl-regular, if its GL(n)-orbit O

�
L
�
= {X LX�1

| X 2 GL(n)}
has maximal dimension, namely, dimO

�
L
�
= n2 � n (equivalently, each

eigenvalue of L admits only one eigenvector).

A Nijenhuis manifold (M, L) is called regular, if L(x) is gl-regular at each
point x 2 M.

Question: What is a local structure of a regular Nijenhuis manifold?

Theorem (Real analytic case)
There exists a local coordinate system such that

L =

0

BBBBB@

f1(x) 1

f2(x) 0 1

...
...

. . .
. . .

fn�1(x) 0 . . . 0 1

fn(x) 0 . . . 0 0

1

CCCCCA
.

The functions f1, . . . , fn are not arbitrary but satisfy a PDE system:

Fxk = Ln�kFxn , where F = (f1, f2, . . . , fn)
>.



Problem of a Jordan block

Question. Let L = J0 be a Jordan block at a point p 2 M. What can

we say about behaviour of L in a neighbourhood of p, if L is Nijenhuis?

What are possible scenarios? Can we, for instance, “perturb” a Jordan

block in such a way that exactly two eigenvalues appear with prescribed

multiplicities?

Answer. All scenarios are allowed.

Consider the natural stratification of the set of regular operators

gl(n,R)reg =

G
P

ks=n

Wk1,...,ks , k1  · · ·  ks , s  n, ki 2 N,

where Wk1,...,ks is the set of operators having s distinct eigenvalues with

multiplicities k1, . . . , ks . Notice that the Jordan block belongs to the

closure of each of Wk1,...,ks .

Theorem
For each stratum Wk1,...,ks ⇢ gl(n,R), there exists a Nijenhuis operator L
in a neighborhood of 0 2 Rn such that L(0) = J0 and L(x) 2 W k1,...,ks

for all x 2 U(0), where W k1,...,ks is the closure of Wk1,...,ks (either in the
standard or Zariski topology).



Generalised Nirenberg-Newlander theorem

Theorem
Let L be a Nijenhuis operator on M with no real eigenvalues, i.e., its
spectrum at every point x 2 M belongs to C \ R. Then
1. M is a complex manifold w.r.t. a complex structure J canonically

associated with L.

2. L is a complex holomorphic tensor field on M w.r.t. J, i.e. can be
written in the form

LC =

nX

i,j=1

l ij (z) d z
j
⌦ @zi

with all the functions l ij (z) being holomorphic in complex
coordinates z1, . . . , zn.

3. The complex Nijenhuis torsion of L vanishes, i.e.
�
N

C
L

�i
jk
= lmj

@l ik
@zm

� lmk
@l ij
@zm

� l im
@lmk
@z j

+ l im
@lmj
@zk

= 0.

Key point: J = f (L) where f is an analytic function on C \ R



Generalised Nirenberg-Newlander theorem

Theorem
Let L be a Nijenhuis operator on M with no real eigenvalues, i.e., its
spectrum at every point x 2 M belongs to C \ R. Then
1. M is a complex manifold w.r.t. a complex structure J canonically

associated with L.

2. L is a complex holomorphic tensor field on M w.r.t. J, i.e. can be
written in the form

LC =

nX

i,j=1

l ij (z) d z
j
⌦ @zi

with all the functions l ij (z) being holomorphic in complex
coordinates z1, . . . , zn.

3. The complex Nijenhuis torsion of L vanishes, i.e.
�
N

C
L

�i
jk
= lmj

@l ik
@zm

� lmk
@l ij
@zm

� l im
@lmk
@z j

+ l im
@lmj
@zk

= 0.

Key point: J = f (L) where f is an analytic function on C \ R



Some global results

Theorem
Let L be a Nijenhuis operator on a closed connected manifold M with a
non-real eigenvalue � 2 C \ R at least at one point. Then this number �
is an eigenvalue of L with the same algebraic multiplicity at every point
of M. Shortly: a Nijenhuis operator on a closed manifold may not have
non-constant complex eigenvalues.

Corollary
A Nijenhuis operator L on a closed manifold cannot have di↵erentially
non-degenerate singular points (like e.g. ‘standard’ deformations of
Jordan blocks).

Corollary
The eigenvalues of a Nijenhuis operator on the 4-dimensional sphere S4

are all real.



Exercises

I Prove that the four definitions of Nijenhuis torsion/operator are

equivalent.

I Using the third definition, prove the following important property

(used for constructing many of integrable hierarchies). Let L be

Nijenhuis and ↵0 a closed di↵erential 1-form such that ↵1 = L⇤↵0 is

closed also. Then ↵2 = L⇤↵1, ↵3 = L⇤↵2, etc. are all closed.

I Prove that if the eigenvalues of 2⇥ 2 operator L are constant, then

L is Nijenhuis.

I Prove the following necessary and su�cient condition in dimension 2:

L is Nijenhuis if and only if d det L = (adj L)⇤ d tr L. In more detail:

⇣
(det L)x , (det L)y

⌘
=

⇣
(tr L)x , (tr L)y

⌘✓
d �b
�c a

◆
,where L =

✓
a b
c d

◆
.

I Use this criterion to check that L =

✓
u �v
v u

◆
with u = u(x , y),

v = v(x , y) and v 6= 0, is Nijenhuis if and only if the function u + iv
is holomorphic in complex variable z = x + iy .



Exercises

I Prove that L =

0

BBBB@

x1 1

x2 0
. . .

...
...

. . . 1

xn 0 . . . 0

1

CCCCA
is Nijenhuis.

Here x1, . . . , xn are local coordinates.

I Prove that L =

0

BBBB@

0 1

0 0
. . .

...
...

. . . 1

f1 f2 . . . fn

1

CCCCA
is Nijenhuis if and only if the

di↵erential 1-forms ↵ = f1 d x1 + f2 d x2 + · · ·+ fn d xn and L⇤↵ are

closed.



Thanks for your attention


