Introduction to Infinite-Dimensional Lie Groups III

Helge Glöckner (Paderborn)

29.06.2023

Helge Glöckner (Paderborn) Introduction to Infinite-Dimensional Lie Groups III

- Examples:
 - Lie groups Diff(M) of smooth diffeomorphisms
 - Direct limit groups $G = \bigcup_{n \in \mathbb{N}} G_n$ with $G_1 \subseteq G_2 \subseteq \cdots$, e.g.

$$\mathsf{GL}_\infty(\mathbb{R}) = \bigcup_{n \in \mathbb{N}} \mathsf{GL}_n(\mathbb{R})$$

 $\text{identify } A \in \mathsf{GL}_n(\mathbb{R}) \text{ with } \left(\begin{array}{cc} A & 0 \\ 0 & 1 \end{array} \right) \in \mathsf{GL}_{n+1}(\mathbb{R}).$

- Lie algebra $\mathfrak{g} := L(G)$ and $\exp_G \colon \mathfrak{g} \to G$
- Locally exponential Lie groups and BCH-Lie groups
- From Lie algebra to Lie group: Regularity

§0 Repetition

If G is a Lie group modelled on a locally convex space E and $\theta: V \rightarrow U$ a local parametrisation with $e \in U$,

[a C^∞ -diffeomorphism from an open set $V \subseteq E$ onto an open set $U \subseteq G$]

then $V \to gU$, $x \mapsto g\theta(x)$ is a local parametrization for each $g \in G$, with $g \in gU$.

Hence:

Main point for Lie group structure is to know a local parametrization around e (or the corresponding chart θ^{-1} : $U \to V$).

For example, if G is a Lie group, M a compact smooth manifold and $n \in \mathbb{N}_0 \cup \{\infty\}$, then

 $\theta_* \colon C^n(M, V) \to C^n(M, U) \subseteq C^n(M, G), \quad \gamma \mapsto \theta \circ \gamma$

is a local parametrization around $x \mapsto e$ for a local parametrization $\theta \colon V \to U$ of G with $e \in U$.

$\S1$ The diffeomorphism group of [0, 1]

Let Diff_+([0,1]) be the group of all C^{∞} -diffeomorphisms $\gamma \colon [0,1] \to [0,1]$ which are orientation-preserving. Thus $\gamma \in C^{\infty}([0,1],\mathbb{R})$,

 $\gamma(0) = 0, \quad \gamma(1) = 1 \quad \text{and} \ \gamma'(t) > 0 \text{ for all } t \in [0,1].$

Now

$$\mathcal{C}^\infty_\partial([0,1],\mathbb{R}):=\{\gamma\in\mathcal{C}^\infty([0,1],\mathbb{R})\colon\gamma(0)=\gamma(1)=0\}$$

is a closed vector subspace of $C^{\infty}([0,1],\mathbb{R})$. The set

$$\Omega := \{\gamma \in \mathcal{C}^\infty_\partial([0,1],\mathbb{R}) \colon \gamma'(t) > -1 \text{ for all } t \in [0,1]\}$$

is open in $C^\infty_\partial([0,1],\mathbb{R})$ and convex (hence contractible). The map

$$\phi \colon \mathsf{Diff}_+([0,1]) \to \Omega, \quad \gamma \mapsto \gamma - \mathsf{id}_{[0,1]}$$

is a bijection.

「ア・・ マー・ ・ マー・ ・ マー・

We give $\text{Diff}_+([0,1])$ the smooth manifold structure making ϕ a C^{∞} -diffeomorphism. Then ϕ is a global chart for $\text{Diff}_+([0,1])$ and

$$\theta := \phi^{-1} \colon \Omega \to \mathsf{Diff}_+([0,1]), \quad \gamma \mapsto \mathsf{id}_{[0,1]} + \gamma$$

a global parametrization of $\text{Diff}_+([0, 1])$. Give Ω the group multiplication * making ϕ an isomorphism. Thus

$$\begin{aligned} \gamma * \eta &= (\mathsf{id} + \gamma) \circ (\mathsf{id} + \eta) - \mathsf{id} \\ &= \eta + \gamma \circ (\mathsf{id}_{[0,1]} + \eta) \,. \end{aligned}$$

This is explicit enough to calculate directional derivatives by hand and see that * is smooth. Also the inversion map is smooth and thus Ω (and Diff_+([0,1])) are Lie groups (see G.-Neeb 2017, also G.2023)

§2 Diffeomorphism groups of compact manifolds

If M is a compact smooth manifold, consider the group Diff(M) of all C^{∞} -diffeomorphisms $\gamma \colon M \to M$. The vector space $\mathcal{V}(M)$ of all smooth vector fields $X \colon M \to TM$ on M can be made a Fréchet space, similar to the compact-open C^{∞} -topology on function spaces from the last lecture.

Fact (cf. Michor '80, Hamilton '20, Milnor '84, Kriegl-Michor '97)

Diff(M) can be made a Lie group modelled on $\mathcal{V}(M)$. The Lie group structure is uniquely determined by the following exponential law: For each smooth manifold N modelled on a locally convex space, a map

 $f: N \to \text{Diff}(M)$

is smooth if and only if the map

$$f^{\wedge} \colon N \times M \to M, \quad (x, y) \mapsto f(x)(y)$$

is smooth.

The main point is to describe a local parametrization around the neutral element id_M . Pick a Riemannian metric g on M and let

$$\exp_g: TM \to M$$

be the Riemannian exponential map (taking $v \in T_p M$ to the value at time t = 1 of the geodesic starting with velocity v at the position p at time t = 0). Consider the map

$$(\exp_g)_* \colon \mathcal{V}(M) \to C^{\infty}(M,M), \quad X \mapsto \exp_g \circ X.$$

One can show that

$$U := (\exp_g)_*(V) \subseteq \text{Diff}(M)$$

for some open 0-neighbourhood $V \subseteq \mathcal{V}(M)$ and that

$$(\exp_g)_*|_V \colon V \to U \subseteq \text{Diff}(M)$$

can be used as a local parametrization of Diff(M) around id_M , for V sufficiently small.

§3 Direct limits of finite-dimensional Lie groups

Consider finite-dimensional Lie groups $G_1 \subseteq G_2 \subseteq \cdots$

such that the inclusion map $G_n \to G_{n+1}$ is a continuous (and hence smooth) group homomorphism. Then $G := \bigcup_{n \in \mathbb{N}} G_n$ is a group: Given $x, y \in G$, there exist $n, m \in \mathbb{N}$ with $x \in G_n$ and $y \in G_m$. Multiply x and y in $G_{\max\{n,m\}}$.

of countable, infinite dimension. Make $\mathbb{R}^{\infty} \stackrel{n \in \mathbb{N}}{a}$ locally convex topological vector space using the set of **all** seminorms on \mathbb{R}^{∞} .

Fact (G. 2005)

Consider a real vector space

There is a unique Lie group structure on $G = \bigcup_{n \in \mathbb{N}} G_n$ modelled on \mathbb{R}^m for some $m \in \mathbb{N}_0$ or on \mathbb{R}^∞ such that, for each smooth manifold M modelled on a locally convex space and map $f: G \to M$, we have: f is smooth $\Leftrightarrow f|_{G_n}$ is smooth for all $n \in \mathbb{N}$.

Thus $G = \lim_{n \to \infty} G_n$ as a C^{∞} -manifold; hence also as a Lie group.

 $\mathbb{R}^{\infty} := \bigoplus \mathbb{R}$

To get examples, identify $A \in GL_n(\mathbb{R})$ with

$$\left(egin{array}{cc} A & 0 \\ 0 & 1 \end{array}
ight) \in \mathsf{GL}_{n+1}(\mathbb{R}).$$
 Then

$$\begin{aligned} \mathsf{GL}_1(\mathbb{R}) &\subseteq \mathsf{GL}_2(\mathbb{R}) \subseteq \cdots, \\ \mathsf{SL}_1(\mathbb{R}) &\subseteq \mathsf{SL}_1(\mathbb{R}) \subseteq \cdots, \\ \mathcal{O}_1(\mathbb{R}) &\subseteq \mathcal{O}_2(\mathbb{R}) \subseteq \cdots, \\ \mathcal{SO}_1(\mathbb{R}) &\subseteq \mathcal{SO}_2(\mathbb{R}) \subseteq \cdots, \\ \mathsf{GL}_1(\mathbb{C}) &\subseteq \mathsf{GL}_2(\mathbb{C}) \subseteq \cdots, \\ \mathcal{U}_1(\mathbb{C}) &\subseteq \mathcal{U}_2(\mathbb{C}) \subseteq \cdots, \\ \mathcal{SU}_1(\mathbb{C}) &\subseteq \mathcal{SU}_2(\mathbb{C}) \subseteq \cdots \end{aligned}$$

We can form the direct limit Lie groups

$$\begin{aligned} \mathsf{GL}_{\infty}(\mathbb{R}) &:= \bigcup_{n \in \mathbb{N}} \mathsf{GL}_{n}(\mathbb{R}), \ \mathsf{SL}_{\infty}(\mathbb{R}) := \bigcup_{n \in \mathbb{N}} \mathsf{SL}_{n}(\mathbb{R}), \ O_{\infty}(\mathbb{R}) := \bigcup_{n \in \mathbb{N}} O_{n}(\mathbb{R}), \\ &SO_{\infty}(\mathbb{R}) := \bigcup_{n \in \mathbb{N}} SO_{n}(\mathbb{R}), \ \mathsf{GL}_{\infty}(\mathbb{C}) := \bigcup_{n \in \mathbb{N}} \mathsf{GL}_{n}(\mathbb{C}), \ U_{\infty}(\mathbb{C}) := \bigcup_{n \in \mathbb{N}} U_{n}(\mathbb{C}), \\ &\text{and} \ SU_{\infty}(\mathbb{C}) := \bigcup_{n \in \mathbb{N}} SU_{n}(\mathbb{C}). \\ & [\text{For } \mathbb{R}^{\infty}, \text{ cf. Bisgaard '93, Kakutani-Klee '63, Hirai et al: 2001}).] < \texttt{Example 1} \\ & \texttt{Herge Glöckner (Paderborn)} \end{aligned}$$

$\S4$ Lie algebra and exponential map

If *M* is a smooth manifold modelled on a locally convex space *E*, let **tangent vectors** at $p \in M$ be equivalence classes $[\gamma]$ of smooth curves

$$\gamma\colon]{-arepsilon,arepsilon[
ightarrow M} \quad ext{ with } \gamma(0)={\it p},$$

where $\gamma \sim \eta$ if $(\phi \circ \gamma)'(0) = (\phi \circ \eta)'(0)$ for some (and hence each) chart $\phi: U \to V \subseteq E$ of M with $p \in U$.

Let T_pM be the set of all tangent vectors at $p \in M$ and $TM := \bigcup_{p \in M} T_pM$.

The map

$$h_{\phi} \colon T_{p}M \to E, \quad [\gamma] \mapsto (\phi \circ \gamma)'(0)$$

is a bijection with inverse $v \mapsto [t \mapsto \phi^{-1}(\phi(p) + tv)]$. Give T_pM the topological vector space structure making h_{ϕ} an isomorphism of topological vector spaces. The map

$$\pi_{TM} \colon TM \to M, \quad T_pM \ni v \mapsto p$$

(i.e., $[\gamma] \mapsto \gamma(0)$) is well defined.

For each smooth map $f: M \to N$ between manifolds modelled on locally convex spaces, the map

$$T_{p}f: T_{p}M \to T_{f(p)}N, \quad [\gamma] \mapsto [f \circ \gamma]$$

is continuous and linear. Define

$$Tf: TM \to TN, \quad T_pM \ni v \mapsto T_pf(v).$$

Taking $\phi = \mathrm{id}_V$, see that for an open subset $V \subseteq E$, the map

$$TV \rightarrow V \times E$$
, $[\gamma] \mapsto (\gamma(0), \gamma'(0))$

is a bijection. Identify TV with $V \times E$. Give TM the smooth manifold structure modelled on $E \times E$ turning TU into an open subset and making

$$T\phi: TU \to TV = V \times E$$

a chart for *TM*, for each chart $\phi: U \to V \subseteq E_{of} M$.

A smooth vector field on M is a smooth map $X: M \to TM$ such that $X(p) \in T_pM$ for all $p \in M$, i.e.,

$$\pi_{TM} \circ X = \mathrm{id}_M \ .$$

Given a smooth function $f: M \to \mathbb{R}$, get a smooth function $\mathcal{L}_X(f) := X.f := df \circ X : M \to \mathbb{R}$, where $df : TM \to \mathbb{R}$ is the second component of

$$Tf: TM \to T(\mathbb{R}) = \mathbb{R} \times \mathbb{R}$$
.

Vector fields can be added and multiplied with real numbers pointwise. On the vector space $\mathcal{V}(M)$ of all smooth vector fields, there is a unique Lie bracket [., .] such that

$$\mathcal{L}_{[X,Y]|_U} = \mathcal{L}_{X|_U} \circ \mathcal{L}_{Y|_U} - \mathcal{L}_{Y|_U} \circ \mathcal{L}_{X|_U}$$

for all $X, Y \in \mathcal{V}(M)$ and open subsets $U \subseteq M$.

For $g \in G$, consider the left translation $L_g: G \to G$, $x \mapsto gx$. Then

$$G \times TG \rightarrow TG$$
, $(g, v) \mapsto g.v := TL_g(v)$

is a smooth left action of G on TG. Let $\mathcal{V}_{\ell} \subseteq \mathcal{V}(G)$ be the set of all vector fields $X : G \to TG$ which are **left invariant** in the sense that

$$X(g) = g.X(e)$$
 for all $g \in G$.

As in finite dimensions, one finds that \mathcal{V}_{ℓ} is a Lie subalgebra of $\mathcal{V}(G)$. The map

$$\mathcal{V}_\ell \to T_e(G), \quad X \mapsto X(e)$$

is an isomorphism of vector spaces. We give T_eG the Lie bracket turning the latter map into an isomorphism of Lie algebras. One can show that the Lie bracket is continuous; we write

$$L(G) := T_e G$$

for T_eG endowed with the topological Lie algebra structure just described.

As in the finite-dimensional case, one finds that the continuous linear map

$$L(f) := T_e f \colon T_e G \to T_e H$$

is a Lie algebra homomorphism for each smooth homomorphism $f: G \to H$ between Lie groups.

If $\gamma : \mathbb{R} \to M$ is smooth, define $\dot{\gamma}(t) := T\gamma(t, 1) = [s \mapsto \gamma(t + s)]$ for $t \in \mathbb{R}$. We shall see later:

Let G be a Lie group modelled on a locally convex space. For $v \in \mathfrak{g} := L(G)$, there is at most one smooth group homomorphism

$$\gamma_{\mathbf{v}}\colon (\mathbb{R},+)\to G$$

such that $\dot{\gamma}_{\nu}(0) = \nu$. If γ_{ν} exists for all $\nu \in \mathfrak{g}$, we say that G has an exponential function and define

$$\exp_{\mathcal{G}} \colon \mathfrak{g} \to \mathcal{G}, \quad \mathbf{v} \mapsto \gamma_{\mathbf{v}}(1).$$

Then $\exp_G(tv) = \gamma_v(t)$.

If $f: G \to H$ is a smooth group homomorphism and both G and H have an exponential function, then

```
\exp_H \circ L(f) = f \circ \exp_G
```

("naturality of exp")

Open Problem

Does every Lie group G modelled on a sequentially complete locally convex space have an exponential function?

No counterexamples known!

Remark. In the absence of sequential completeness of the modelling space, Lie groups without an exponential function do exist.

伺 ト イヨト イヨト

$\S5$ Locally exponential Lie groups and BCH-Lie groups

Definition

A Lie group G is called **locally exponential** if it has an exponential function and the latter is a local C^{∞} -diffeomorphism at 0.

Thus, there is an open 0-neighbourhood $V \subseteq \mathfrak{g} := L(G)$ such that $\exp_G(V)$ is open in G and $\exp_G|_V \colon V \to \exp_G(V)$ is a C^{∞} -diffeomorphism.

A real analytic Lie group G is called a real BCH-Lie group if it has an exponential function which is a local real analytic diffeomorphism at 0.

For small $x, y \in \mathfrak{g} := L(G)$,

$$x * y = \exp_{G}^{-1}(\exp_{G}(x)\exp_{G}(y))$$

then must be given by the Baker-Campbell-Hausdorff series,

$$x * y = x + y + \frac{1}{2}[x, y] + \frac{1}{12}([x, [x, y]] + [y, [y, x]]) + \cdots$$

Complex BCH-Lie groups are defined analogously, replacing the word "real analytic" with "complex analytic."

Example (see G. 2002a)

For each sequentially complete continuous inverse algebra A over $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, the unit group A^{\times} is a BCH-Lie group over \mathbb{K} .

The exponential function is given by the exponential series, $\sum_{n=0}^{\infty} \frac{1}{n!} x^n$. In the complex case, it is obtained via holomorphic functional calculus. Classical example (see, e.g., Bourbaki):

Every $\mathbb K\text{-analytic Banach-Lie group is a BCH-Lie group over <math display="inline">\mathbb K.$

For each BCH-Lie group G over \mathbb{K} , $n \in \mathbb{N}$ and compact C^{∞} -manifold M, also $C^{n}(M, G)$ is a BCH-Lie group (G. 2002b).

Using $\mathfrak{g} := L(G)$, the Lie algebra of $C^n(M, G)$ is $C^n(M, \mathfrak{g})$ and $(\exp_G)_* \colon C^n(M, \mathfrak{g}) \to C^n(M, G), \quad \gamma \mapsto \exp_G \circ \gamma$

is the exponential function for $C^n(M, G)$. It is a local K-analytic diffeomorphism as $\exp_G |_V$ is a local parametrization of G

for an open 0-neighbourhood $V \subseteq \mathfrak{g}$ and hence

 $(\exp_G|_V)_* \colon C^n(M,V) \to C^n(M,\exp_G(V)) \subseteq C^n(M,G)$

a local parametrization for $C^n(M, G)$ for small V, by contstruction of the Lie group structure on mapping groups.

Example

The diffeomorphism group $\text{Diff}(\mathbb{S}_1)$ of the circle has a smooth exponential map

$$\mathcal{V}(\mathbb{S}_1) o \mathsf{Diff}(\mathbb{S}_1), \quad X \mapsto \mathsf{Fl}_{t=1}^X,$$

but it is not locally exponential.

The image of the exponential map is not an identity neighbourhood; Grabowski '88 found an injective smooth curve

 $\gamma\colon [0,1[\,\to\,\mathsf{Diff}(\mathbb{S}_1)$

with $\gamma(0) = id_{\mathbb{S}_1}$ and $\gamma(t)$ outside the exponential image for all $t \in]0, 1[$ (with $\gamma(]0, 1[)$ a free generating set for a free group),

Example

Direct limit Lie groups $G = \lim_{\rightarrow i \to i} G_n$ of finite-dimensional Lie groups need not be locally exponential.

They have a smooth exponential function but for an example in G. 2003, \exp_G is neither injetive on any 0-neighbourhood nor the exponential image an identity neighbourhood.

Remark. Sufficient conditions are known which ensure that $\bigcup_{n \in \mathbb{N}} G_n$ is BCH, even when $G_1 \subseteq G_2 \subseteq \cdots$ are Banach–Lie groups which may be infinite-dimensional (Dahmen 2014).

The exponential function is of limited use if \exp_G fails to be a local diffeomorphism at 0. Replacement: regularity.

§6 Regularity

A Lie group G with Lie algebra $\mathfrak{g} := L(G)$ is called **semiregular** if the initial value problem

$$\dot{\gamma}(t) = \gamma(t).\eta(t), \quad \gamma(0) = e$$

has a (necessarily unique) smooth solution $\gamma \colon [0,1] \to G$ for each smooth curve $\eta \colon [0,1] \to \mathfrak{g}$. If, moreover, the map

$$\mathsf{Evol} \colon \mathit{C}^\infty([0,1],\mathfrak{g}) \to \mathit{C}([0,1],\mathit{G}), \quad \eta \mapsto \gamma$$

is smooth, then G is called *regular*.

Use left action $G \times TG \rightarrow TG$ here, as above.

Equivalently, require Evol is smooth to $C^{\infty}([0,1], G)$, or require the time-1-map evol: $C^{\infty}([0,1], \mathfrak{g}) \to G$, $\eta \mapsto \text{Evol}(\eta)(1)$ is smooth.

For Lie groups modelled on sequentially complete spaces, regularity was introduced by Milnor, simplifying a concept by Omori and coauthors.

For example, $\gamma_v = \text{Evol}(v)$ and $\exp_G(v) = \text{evol}(v)$ for $v \in \mathfrak{g}$ and the constant curve $t \mapsto v$.

The idea of regularity is to work not only with the exponential function – which corresponds to evolutions of constant curves – but to work with $\text{Evol}(\eta)$ for arbitrary, not necessarily constant functions $\eta \in C^{\infty}([0, 1], \mathfrak{g})$.

Then much works as in finite-dimensional Lie theory. For instance:

Theorem (Milnor '84)

Let G and H be Lie groups and $\beta: L(G) \to L(H)$ be a continuous Lie algebra homomorphism. If G is simply connected and H is regular, then there exists a unique smooth group homomorphism $\alpha: G \to H$ such that $L(\alpha) = \beta$.

Remark. An analogous conclusion (with α analytic) holds without the assumption of regularity, provided both *G* and *H* are BCH-Lie groups (cf. G. 2002b).

Open Problem

Is every Lie group G modelled on a sequentially complete locally convcex space regular?

Can replace C^{∞} -maps with C^k -maps in the definition of regularity (" C^k -regularity", G. 2016); or with L^p -maps (" L^p -regularity", G. 2015, Nikitin 2021), if the modelling space is sequentially complete. Then C^{∞} -regularity equals regularity and (G. 2015–16) L^1 -reg $\Rightarrow L^p$ -reg $\Rightarrow L^{\infty}$ -reg $\Rightarrow C^0$ -reg $\Rightarrow C^k$ -reg $\Rightarrow C^{\infty}$ -reg

Facts. Banach–Lie groups, Diff(M) and Diff^{ω}(M) are L^1 -regular (G. 2015 resp. 2020); direct limit Lie groups lim G_n are L^1 -regular (G. 2015); $C^n(M, G)$ is C^k -regular if so is G (G. 2016) and L^1 -regular if G is a Banach–Lie group (G. 2015); unit groups A^{\times} are C^0 -regular if the cia A is sequentially complete and locally m-convex (or slightly more general) by G.–Neeb 2012; if A is locally m-convex and a Fréchet space, then A^{\times} is L^1 -regular (G. 2015).

In a nutshell: All Lie groups encountered in practice are regular!

Detailed analysis of regularity properties by Hanusch ('19 and '22). Notably, every C^0 -semiregular Fréchet–Lie group is C^0 -regular (Hanusch '19). If Evol exists, it is automatically smooth !

Remark. C^0 -regularity implies the Trotter formula $\exp_G(x+y) = \lim_{n \to \infty} (\exp_G(x/n) \exp_G(y/n))^n$

and commutator formula (Hanusch 2020, which extends G. '15).

Remarks. (a) For regularity in the context of convenient differential calculus, see Kriegl-Michor 1997. This is an inequivalent setting of calculus; the smooth maps considered there need not be continuous (but they coincide with ours in the case of mappings between open subsets of Fréchet spaces).

(b) If a Lie group G acts smoothly on a C^{∞} -manifold M on the right (which may be infinite-dimensional), one can consider "fundamental" vector fields

 $v_{\sharp} \colon M \to TM, \quad m \mapsto \frac{d}{dt} \big|_{t=0} m. \exp_G(tv)$ for $v \in L(G)$. If G is regular (resp., L^1 -regular) and $\eta \in C^{\infty}([0, 1], L(G))$ (resp., $\eta \in L^1([0, 1], L(G))$), then the ODE $\dot{y} = \eta(t)_{\sharp}(y(t))$ on M satisfies local and global existence and uniqueness of solutions (see G.–Neeb '23, G.–Hilgert '23).

(c) Regularity has also been established for Lie groups of Lie-group-valued mappings on $M := \mathbb{R}^m$ and for Lie groups of diffeomorphisms of \mathbb{R}^m which are modelled on Schwartz spaces of rapidly decreasing smooth functions or other weighted function spaces (Walter '12, Nikitin '15).

§7 Difficulties in infinite dimensions

- Beyond Banach spaces, there are examples of initial value problems without solutions/with many solutions (see Milnor 82); no local existence/no local uniqueness!
- Beyond Banach spaces, no inverse function theorem in the ordinary form. (In Fréchet spaces, the Nash-Moser-Inverse Function Theorem is available with complicated hypotheses, see Hamiltonb '82. For maps to Banach spaces there still is an implicit function theorem, see G. 2006).
- In Lie theory:
 - Exponential function may not exist, need not be a local diffeomorphism at 0.
 - A locally convex topological Lie algebra g need not be the Lie algebra of a Lie group! Counterexamples for Banach-Lie algebras were first given by van Est and Korthagen '64, a simple example by Douady and Lazard '66.
 - Closed subgroups need not be Lie subgroups

global level (Lie groups modelled on locally convex spaces) **local level** (local Lie groups or germs of such)

infinitesimal level (locally convex topological Lie algebras)

Can always go down; in finite-dimensional case, can go up.¹ In the infinite-dimensional case, we can go up only under additional conditions, for each level !

For example, every Banach–Lie algebra $\mathfrak g$ gives rise to a local Banach–Lie group (via the Cambell-Hausdorff multiplication on a 0-neighbourhood in $\mathfrak g\times\mathfrak g$). But the latter need not arise from a global Banach–Lie group.

¹Each finite-dimensional Lie algebra is the Lie algebra of some Lie group by Lie's Third Theorem.

Appendix: The example by Douady and Lazard

For an infinite-dimensional complex Hilbert space \mathcal{H} , consider the unitary group $U(\mathcal{H})$, which is contractible by Kuiper's Theorem. Its Lie algebra is

 $\mathfrak{u}(\mathcal{H}) := i \operatorname{Herm}(\mathcal{H}).$

As the elements of $\mathbb{R}i$ id_{\mathcal{H}} commute with each operator, $\mathbb{R}i$ id_{\mathcal{H}} is a central ideal of $\mathfrak{u}(\mathcal{H})$. As a consequence, $\mathbb{R}i$ id_{\mathcal{H}} × $\mathbb{R}i$ id_{\mathcal{H}} is a central ideal of $\mathfrak{u}(\mathcal{H}) \times \mathfrak{u}(\mathcal{H})$ and so is its vector subspace

$$\mathfrak{n} := \mathbb{R}i(\mathrm{id}_{\mathcal{H}}, \sqrt{2} \, \mathrm{id}_{\mathcal{H}}).$$

We claim that $\mathfrak{g} := (\mathfrak{u}(\mathcal{H}) \times \mathfrak{u}(\mathcal{H}))/\mathfrak{n}$ cannot be the Lie algebra of a Lie group. Otherwise, if $\mathfrak{g} = L(G)$, get a contradiction: The modelling space of G being being isomorphic to \mathfrak{g} and hence a Banach space, G is a Banach–Lie group and thus BCH. Hence, there exists a real analytic group homomorphism

 $\alpha \colon U(\mathcal{H}) \times U(\mathcal{H}) \to G$

such that $L(\alpha)$ is the quotient map $\beta \colon \mathfrak{u}(\mathcal{H}) \times \mathfrak{u}(\mathcal{H}) \to \mathfrak{g}$.

The exponential function exp of $U(\mathcal{H}) \times U(\mathcal{H})$ takes n to a dense subgroup N of the 2-dimensional torus

 $T := \exp(i\mathbb{R} \operatorname{id}_{\mathcal{H}} \times i\mathbb{R} \operatorname{id}_{\mathcal{H}}) = \mathbb{S}_1 \operatorname{id}_{\mathcal{H}} \times \mathbb{S}_1 \operatorname{id}_{\mathcal{H}} \cong \mathbb{S}_1 \times \mathbb{S}_1,$

a so-called "dense wind". By naturality of exp, we must have $N \subseteq \ker(\alpha)$. Since $\ker(\alpha)$ is closed, $T \subseteq \ker(\alpha)$ follows and hence $\mathbb{R}i \operatorname{id}_{\mathcal{H}} \times \mathbb{R}i \operatorname{id}_{\mathcal{H}} = L(T) \subseteq \ker(\beta)$, which contradicts the definition of β .

Remark. Świerczkowski '71 showed that non-integrability of a Banach–Lie algebra is always related to non-closedness of a relevant subgroup. Further examples of non-integrable Banach–Lie algebras can be found in G.–Neeb 2003.

(b) a (B) b (a (B) b)

Bibliography

- Bisgaard, T. M. The topology of finitely open sets is not a vector space topology, Arch. Math. (Basel) **60** (1993), 546–552.
- Bourbaki, N., "Lie Groups and Lie Algebras, Chapters 1–3," Springer, Berlin, 1989.
- Dahmen, R., *Regularity in Milnor's sense for ascending unions of Banach-Lie groups*, J. Lie Theory **24** (2014), 545–560.
- Douady, A. and M. Lazard, *Espaces fibrés en algèbres de Lie et en groupes*, Invent. Math. **1** (1966), 133–151.
- van Est, W. T. and T. J. Korthagen, Non-enlargible Lie algebras, Indag. Math. 26 (1964), 15–31.
- Glöckner, H., *Algebras whose groups of units are Lie groups*, Stud. Math. **153** (2002a), 147–177.
- Glöckner, H., Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal. 194 (2002b), 347–409.
- Glöckner, H., Direct limit Lie groups and manifolds, J. Math. Kyoto Univ. 43 (2003), 2–26.

イロト 不得 トイヨト イヨト 二日

- Glöckner, H., *Fundamentals of direct limit Lie theory*, Compos. Math. **141** (2005), 1551–1577.
- Glöckner, H., Implicit functions from topological vector spaces to Banach spaces, Israel J. Math. 155 (2006), 205–252.
- Glöckner, H., *Diffeomorphism groups of convex polytopes*, J. Convex Anal. **30** (2023), 343–358.
- Glöckner, H., Regularity properties of infinite-dimensional Lie groups, and semiregularity, preprint, 2016, arXiv:1208.0715.
- Glöckner, H., *Measurable regularity properties of infinite-dimensional Lie groups*, preprint, 2015, arXiv:1601.02568.
- Glöckner, H., *Lie groups of real analytic diffeomorphisms are L*¹*-regular*, preprint, 2020, arXiv:2007.15611.
- Glöckner, H. and J. Hilgert, Aspects of control theory on infinite-dimensional Lie groups and G-manifolds, J. Differential Equations 343 (2023), 186–232.
- Glöckner, H. and K.-H. Neeb, Banach-Lie quotients, enlargibility, and universal complexifications, J. Reine Angew. Math. 560 (2003), 1–28.
- Glöckner, H. and K.-H. Neeb, *When unit groups of continuous inverse algebras are regular Lie groups*, Studia Math. **211** (2012), 95–109.
- Glöckner, H. and K.-H. Neeb, Diffeomorphism groups of compact convex sets, Indag. Math. 28 (2017), 760–783.

- Glöckner, H. and K.-H. Neeb, "Infinite-Dimensional Lie Groups," book in preparation, 2023.
- Grabowski, J., *Free subgroups of diffeomorphism groups*, Fund. Math. **131** (1988), 103–121.
- Hanusch, M., Differentiability of the evolution map and Mackey continuity, Forum Math. <u>31</u> (2019), 1139–1177.
- Hanusch, M., The strong Trotter property for locally μ-convex Lie groups, J. Lie Theory **30** (2020), 25–32.
- Hanusch, M., *Regularity of Lie groups*, Comm. Anal. Geom. **30** (2022), 53–152.
- Hamilton, R. S., *The inverse function theorem of Nash and Moser*, Bull. Amer. Math. Soc. (1982), 65–222.
- Hirai, T., H. Shimomura, N. Tatsuuma, and E. Hirai, *Inductive limits of topologies, their direct products, and problems related to algebraic structures*, J. Math. Kyoto Univ. **41** (2001), 475–505.
- Kakutani, S. and V. Klee, *The finite topology of a linear space*, Arch. Math. (Basel) **14** (1963), 55–58.
- Kriegl, A. and P. W. Michor, "The Convenient Setting of Global Analysis," AMS, Providence, 1997.
- Michael, E. A., Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952), 79 pp.

- Michor, P. W., "Manifolds of Differentiable Mappings," Shiva, 1980.
- Milnor, J., *On infinite-dimensional Lie groups*, preprint, Institute for Advanced Study, Princeton, 1982.
- Milnor, J., *Remarks on infinite-dimensional Lie groups*, pp. 1007–1057 in: B. S. DeWitt and R. Stora (eds.), "Relativité, groupes et topologie II," North-Holland, Amsterdam, 1984.
- Natarajan, L., E. Rodríguez-Carrington, and J. A. Wolf, *Differentiable* structure for direct limit groups, Lett. Math. Phys. 23 (1991), 99–109.
- Neeb, K.-H., *Towards a Lie theory of locally convex groups*, Jpn. J. Math. **1** (2006), 291–468.
- Nikitin, N., "Regularity Properties of Infinite-Dimensional Lie Groups and Exponential Laws," Doctoral Thesis, Paderborn University, 2021; nbn-resolving.de/urn:nbn:de:hbz:466:2-39133
- Nikitin, N., Exponential laws for weighted function spaces and regularity of weighted mapping groups, preprint, arXiv:1512.07211.
- Omori, H., "Infinite-Dimensional Lie Groups," AMS, Providence, 1997.
- Świerczkowski, S., The path-functor on Banach Lie algebras, Indag. Math. 33 (1971), 235–239.
- Walter, B., Weighted diffeomorphism groups of Banach spaces and weighted mapping groups, Dissertationes Math. 484 (2012), 128 pp.
- Yamasaki, A., Inductive limit of general linear groups, J. Math. Kyoto Univ. 38 (1998), 769–779.

Helge Glöckner (Paderborn)