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Overview

Examples:

– Lie groups Diff(M) of smooth diffeomorphisms

– Direct limit groups G =
⋃

n∈N Gn with G1 ⊆ G2 ⊆ · · · , e.g.

GL∞(R) =
⋃
n∈N

GLn(R)

identify A ∈ GLn(R) with
( A 0

0 1

)
∈ GLn+1(R).

Lie algebra g := L(G ) and expG : g→ G

Locally exponential Lie groups and BCH-Lie groups

From Lie algebra to Lie group: Regularity
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§0 Repetition

If G is a Lie group modelled on a locally convex space E and
θ : V → U a local parametrisation with e ∈ U,

[a C∞-diffeomorphism from an open set V ⊆ E onto an open set U ⊆ G ]

then V → gU, x 7→ gθ(x) is a local parametrization for each
g ∈ G , with g ∈ gU.

Hence:

Main point for Lie group structure is to know a local
parametrization around e (or the corresponding chart
θ−1 : U → V ).

For example, if G is a Lie group, M a compact smooth manifold
and n ∈ N0 ∪ {∞}, then

θ∗ : Cn(M,V )→ Cn(M,U) ⊆ Cn(M,G ), γ 7→ θ ◦ γ
is a local parametrization around x 7→ e for a local parametrization
θ : V → U of G with e ∈ U.
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§1 The diffeomorphism group of [0, 1]

Let Diff+([0, 1]) be the group of all C∞-diffeomorphisms
γ : [0, 1]→ [0, 1] which are orientation-preserving. Thus
γ ∈ C∞([0, 1],R),

γ(0) = 0, γ(1) = 1 and γ′(t) > 0 for all t ∈ [0, 1].

Now

C∞∂ ([0, 1],R) := {γ ∈ C∞([0, 1],R) : γ(0) = γ(1) = 0}

is a closed vector subspace of C∞([0, 1],R). The set

Ω := {γ ∈ C∞∂ ([0, 1],R) : γ′(t) > −1 for all t ∈ [0, 1]}

is open in C∞∂ ([0, 1],R) and convex (hence contractible). The map

φ : Diff+([0, 1])→ Ω, γ 7→ γ − id[0,1]

is a bijection.
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We give Diff+([0, 1]) the smooth manifold structure making φ a
C∞-diffeomorphism. Then φ is a global chart for Diff+([0, 1]) and

θ := φ−1 : Ω→ Diff+([0, 1]), γ 7→ id[0,1] + γ

a global parametrization of Diff+([0, 1]). Give Ω the group
multiplication ∗ making φ an isomorphism. Thus

γ ∗ η = (id +γ) ◦ (id +η)− id

= η + γ ◦ (id[0,1] +η) .

This is explicit enough to calculate directional derivatives by hand
and see that ∗ is smooth. Also the inversion map is smooth and
thus Ω (and Diff+([0, 1])) are Lie groups (see G.-Neeb 2017, also
G. 2023)
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§2 Diffeomorphism groups of compact manifolds

If M is a compact smooth manifold, consider the group Diff(M) of
all C∞-diffeomorphisms γ : M → M. The vector space V(M) of all
smooth vector fields X : M → TM on M can be made a Fréchet
space, similar to the compact-open C∞-topology on function
spaces from the last lecture.

Fact (cf. Michor ’80, Hamilton ’20, Milnor ’84, Kriegl-Michor ’97)

Diff(M) can be made a Lie group modelled on V(M). The Lie
group structure is uniquely determined by the following exponential
law: For each smooth manifold N modelled on a locally convex
space, a map

f : N → Diff(M)

is smooth if and only if the map

f ∧ : N ×M → M, (x , y) 7→ f (x)(y)

is smooth.
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The main point is to describe a local parametrization around the
neutral element idM . Pick a Riemannian metric g on M and let

expg : TM → M

be the Riemannian exponential map (taking v ∈ TpM to the value
at time t = 1 of the geodesic starting with velocity v at the
position p at time t = 0). Consider the map

(expg )∗ : V(M)→ C∞(M,M), X 7→ expg ◦X .

One can show that

U := (expg )∗(V ) ⊆ Diff(M)

for some open 0-neighbourhood V ⊆ V(M) and that

(expg )∗|V : V → U ⊆ Diff(M)

can be used as a local parametrization of Diff(M) around idM , for
V sufficiently small.
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§3 Direct limits of finite-dimensional Lie groups

Consider finite-dimensional Lie groups G1 ⊆ G2 ⊆ · · ·
such that the inclusion map Gn → Gn+1 is a continuous (and
hence smooth) group homomorphism. Then G :=

⋃
n∈N Gn is a

group: Given x , y ∈ G , there exist n,m ∈ N with x ∈ Gn and
y ∈ Gm. Multiply x and y in Gmax{n,m}.

Consider a real vector space R∞ :=
⊕
n∈N

R

of countable, infinite dimension. Make R∞ a locally convex
topological vector space using the set of all seminorms on R∞.

Fact (G. 2005)

There is a unique Lie group structure on G =
⋃

n∈N Gn modelled
on Rm for some m ∈ N0 or on R∞ such that, for each smooth
manifold M modelled on a locally convex space and map
f : G → M, we have: f is smooth ⇔ f |Gn is smooth for all n ∈ N.

Thus G = lim
→

Gn as a C∞-manifold; hence also as a Lie group.
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To get examples, identify A ∈ GLn(R) with( A 0
0 1

)
∈ GLn+1(R). Then

GL1(R) ⊆ GL2(R) ⊆ · · · ,
SL1(R) ⊆ SL1(R) ⊆ · · · ,
O1(R) ⊆ O2(R) ⊆ · · · ,
SO1(R) ⊆ SO2(R) ⊆ · · · ,
GL1(C) ⊆ GL2(C) ⊆ · · · ,
U1(C) ⊆ U2(C) ⊆ · · · ,
SU1(C) ⊆ SU2(C) ⊆ · · ·

We can form the direct limit Lie groups

GL∞(R) :=
⋃
n∈N

GLn(R), SL∞(R) :=
⋃
n∈N

SLn(R), O∞(R) :=
⋃
n∈N

On(R),

SO∞(R) :=
⋃
n∈N

SOn(R), GL∞(C) :=
⋃
n∈N

GLn(C), U∞(C) :=
⋃
n∈N

Un(C),

and SU∞(C) :=
⋃

n∈N SUn(C).
[For R∞, cf. Bisgaard ’93, Kakutani-Klee ’63, Hirai et al. 2001). ]
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§4 Lie algebra and exponential map

If M is a smooth manifold modelled on a locally convex space E ,
let tangent vectors at p ∈ M be equivalence classes [γ] of smooth
curves

γ : ]−ε, ε[→ M with γ(0) = p,

where γ ∼ η if (φ ◦ γ)′(0) = (φ ◦ η)′(0) for some (and hence each)
chart φ : U → V ⊆ E of M with p ∈ U.

Let TpM be the set of all tangent vectors at p ∈ M and
TM :=

⋃
p∈M TpM.

The map
hφ : TpM → E , [γ] 7→ (φ ◦ γ)′(0)

is a bijection with inverse v 7→ [t 7→ φ−1(φ(p) + tv)]. Give TpM
the topological vector space structure making hφ an isomorphism
of topological vector spaces. The map

πTM : TM → M, TpM 3 v 7→ p

(i.e., [γ] 7→ γ(0)) is well defined.
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For each smooth map f : M → N between manifolds modelled on
locally convex spaces, the map

Tpf : TpM → Tf (p)N, [γ] 7→ [f ◦ γ]

is continuous and linear. Define

Tf : TM → TN, TpM 3 v 7→ Tpf (v) .

Taking φ = idV , see that for an open subset V ⊆ E , the map

TV → V × E , [γ] 7→ (γ(0), γ′(0))

is a bijection. Identify TV with V × E . Give TM the smooth
manifold structure modelled on E × E turning TU into an open
subset and making

Tφ : TU → TV = V × E

a chart for TM, for each chart φ : U → V ⊆ E of M.
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A smooth vector field on M is a smooth map X : M → TM such
that X (p) ∈ TpM for all p ∈ M, i.e.,

πTM ◦ X = idM .

Given a smooth function f : M → R, get a smooth function
LX (f ) := X .f := df ◦ X : M → R, where df : TM → R is the
second component of

Tf : TM → T (R) = R× R .

Vector fields can be added and multiplied with real numbers
pointwise. On the vector space V(M) of all smooth vector fields,
there is a unique Lie bracket [., .] such that

L[X ,Y ]|U = LX |U ◦ LY |U − LY |U ◦ LX |U

for all X ,Y ∈ V(M) and open subsets U ⊆ M.
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For g ∈ G , consider the left translation Lg : G → G , x 7→ gx . Then

G × TG → TG , (g , v) 7→ g .v := TLg (v)

is a smooth left action of G on TG . Let V` ⊆ V(G ) be the set of all
vector fields X : G → TG which are left invariant in the sense that

X (g) = g .X (e) for all g ∈ G .

As in finite dimensions, one finds that V` is a Lie subalgebra of
V(G ). The map

V` → Te(G ), X 7→ X (e)

is an isomorphism of vector spaces. We give TeG the Lie bracket
turning the latter map into an isomorphism of Lie algebras. One
can show that the Lie bracket is continuous; we write

L(G ) := TeG

for TeG endowed with the topological Lie algebra structure just
described.
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As in the finite-dimensional case, one finds that the continuous
linear map

L(f ) := Te f : TeG → TeH

is a Lie algebra homomorphism for each smooth homomorphism
f : G → H between Lie groups.

If γ : R→ M is smooth, define γ̇(t) := Tγ(t, 1) = [s 7→ γ(t + s)]
for t ∈ R. We shall see later:

Let G be a Lie group modelled on a locally convex space. For
v ∈ g := L(G ), there is at most one smooth group homomorphism

γv : (R,+)→ G

such that γ̇v (0) = v . If γv exists for all v ∈ g, we say that G has

an exponential function and define

expG : g→ G , v 7→ γv (1) .

Then expG (tv) = γv (t).
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If f : G → H is a smooth group homomorphism and both G and H
have an exponential function, then

expH ◦ L(f ) = f ◦ expG

(“naturality of exp”)

Open Problem

Does every Lie group G modelled on a sequentially complete

locally convex space have an exponential function?

No counterexamples known!

Remark. In the absence of sequential completeness of the modelling

space, Lie groups without an exponential function do exist.
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§5 Locally exponential Lie groups and BCH-Lie groups

Definition

A Lie group G is called locally exponential if it has an exponential
function and the latter is a local C∞-diffeomorphism at 0.

Thus, there is an open 0-neighbourhood V ⊆ g := L(G ) such that
expG (V ) is open in G and expG |V : V → expG (V ) is a
C∞-diffeomorphism.

A real analytic Lie group G is called a real BCH-Lie group if it has
an exponential function which is a local real analytic
diffeomorphism at 0.

For small x , y ∈ g := L(G ),

x ∗ y = exp−1
G (expG (x) expG (y))

then must be given by the Baker-Campbell-Hausdorff series,

x ∗ y = x + y +
1

2
[x , y ] +

1

12
([x , [x , y ]] + [y , [y , x ]]) + · · ·
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Complex BCH-Lie groups are defined analogously, replacing the
word “real analytic” with “complex analytic.”

Example (see G. 2002a)

For each sequentially complete continuous inverse algebra A over
K = R or K = C, the unit group A× is a BCH-Lie group over K.

The exponential function is given by the exponential series,∑∞
n=0

1
n!x

n. In the complex case, it is obtained via holomorphic
functional calculus. Classical example (see, e.g., Bourbaki):

Every K-analytic Banach-Lie group is a BCH-Lie group over K.

For each BCH-Lie group G over K, n ∈ N and compact
C∞-manifold M, also Cn(M,G ) is a BCH-Lie group (G. 2002b).

Using g := L(G ), the Lie algebra of Cn(M,G ) is Cn(M, g) and

(expG )∗ : Cn(M, g)→ Cn(M,G ), γ 7→ expG ◦ γ
is the exponential function for Cn(M,G ). It is a local K-analytic
diffeomorphism as expG |V is a local parametrization of G
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for an open 0-neighbourhood V ⊆ g and hence

(expG |V )∗ : Cn(M,V )→ Cn(M, expG (V )) ⊆ Cn(M,G )

a local parametrization for Cn(M,G ) for small V , by contstruction
of the Lie group structure on mapping groups.

Example

The diffeomorphism group Diff(S1) of the circle has a smooth
exponential map

V(S1)→ Diff(S1), X 7→ FlXt=1,

but it is not locally exponential.

The image of the exponential map is not an identity
neighbourhood; Grabowski ’88 found an injective smooth curve

γ : [0, 1[→ Diff(S1)

with γ(0) = idS1 and γ(t) outside the exponential image for all
t ∈ ]0, 1[ (with γ(]0, 1[) a free generating set for a free group).
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Example

Direct limit Lie groups G = lim
→

Gn of finite-dimensional Lie groups

need not be locally exponential.

They have a smooth exponential function but for an example in
G. 2003, expG is neither injetive on any 0-neighbourhood nor the
exponential image an identity neighbourhood.

Remark. Sufficient conditions are known which ensure that⋃
n∈N Gn is BCH, even when G1 ⊆ G2 ⊆ · · · are Banach–Lie

groups which may be infinite-dimensional (Dahmen 2014).

The exponential function is of limited use if expG fails to be a local
diffeomorphism at 0. Replacement: regularity.
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§6 Regularity

A Lie group G with Lie algebra g := L(G ) is called semiregular if
the initial value problem

γ̇(t) = γ(t).η(t), γ(0) = e

has a (necessarily unique) smooth solution γ : [0, 1]→ G for each
smooth curve η : [0, 1]→ g. If, moreover, the map

Evol : C∞([0, 1], g)→ C ([0, 1],G ), η 7→ γ

is smooth, then G is called regular.

Use left action G × TG → TG here, as above.

Equivalently, require Evol is smooth to C∞([0, 1],G), or require the
time-1-map evol : C∞([0, 1], g)→ G , η 7→ Evol(η)(1) is smooth.

For Lie groups modelled on sequentially complete spaces, regularity was

introduced by Milnor, simplifying a concept by Omori and coauthors.
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For example, γv = Evol(v) and expG (v) = evol(v) for v ∈ g and
the constant curve t 7→ v .

The idea of regularity is to work not only with the exponential
function – which corresponds to evolutions of constant curves –
but to work with Evol(η) for arbitrary, not necessarily constant
functions η ∈ C∞([0, 1], g).

Then much works as in finite-dimensional Lie theory. For instance:

Theorem (Milnor ’84)

Let G and H be Lie groups and β : L(G )→ L(H) be a continuous
Lie algebra homomorphism. If G is simply connected and H is
regular, then there exists a unique smooth group homomorphism
α : G → H such that L(α) = β.

Remark. An analogous conclusion (with α analytic) holds without
the assumption of regularity, provided both G and H are BCH-Lie
groups (cf. G. 2002b).

Helge Glöckner (Paderborn) Introduction to Infinite-Dimensional Lie Groups III



Open Problem

Is every Lie group G modelled on a sequentially complete locally
convcex space regular?

Can replace C∞-maps with C k -maps in the definition of regularity
(“C k -regularity”, G. 2016); or with Lp-maps (“Lp-regularity”,
G. 2015, Nikitin 2021), if the modelling space is sequentially
complete. Then C∞-regularity equals regularity and (G. 2015–16)
L1-reg ⇒ Lp-reg ⇒ L∞-reg ⇒ C 0-reg ⇒ C k -reg ⇒ C∞-reg

Facts. Banach–Lie groups, Diff(M) and Diffω(M) are L1-regular
(G. 2015 resp. 2020); direct limit Lie groups lim

→
Gn are L1-regular

(G. 2015); Cn(M,G ) is C k -regular if so is G (G. 2016) and
L1-regular if G is a Banach–Lie group (G. 2015); unit groups A×

are C 0-regular if the cia A is sequentially complete and locally
m-convex (or slightly more general) by G.–Neeb 2012; if A is locally
m-convex and a Fréchet space, then A× is L1-regular (G. 2015).

In a nutshell: All Lie groups encountered in practice are regular!
Helge Glöckner (Paderborn) Introduction to Infinite-Dimensional Lie Groups III



Detailed analysis of regularity properties by Hanusch (’19 and ’22).
Notably, every C 0-semiregular Fréchet–Lie group is C 0-regular
(Hanusch ’19). If Evol exists, it is automatically smooth !

Remark. C 0-regularity implies the Trotter formula
expG (x + y) = lim

n→∞

(
expG (x/n) expG (y/n)

)n
and commutator formula (Hanusch 2020, which extends G. ’15).

Remarks. (a) For regularity in the context of convenient differential calculus,
see Kriegl-Michor 1997. This is an inequivalent setting of calculus; the smooth
maps considered there need not be continuous (but they coincide with ours in
the case of mappings between open subsets of Fréchet spaces).

(b) If a Lie group G acts smoothly on a C∞-manifold M on the right (which
may be infinite-dimensional), one can consider “fundamental” vector fields

v] : M → TM, m 7→ d
dt

∣∣
t=0

m. expG (tv)

for v ∈ L(G). If G is regular (resp., L1-regular) and η ∈ C∞([0, 1], L(G)) (resp.,
η ∈ L1([0, 1], L(G))), then the ODE ẏ = η(t)](y(t)) on M satisfies local and
global existence and uniqueness of solutions (see G.–Neeb ’23, G.–Hilgert ’23).

(c) Regularity has also been established for Lie groups of Lie-group-valued

mappings on M := Rm and for Lie groups of diffeomorphisms of Rm which are

modelled on Schwartz spaces of rapidly decreasing smooth functions or other

weighted function spaces (Walter ’12, Nikitin ’15).
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§7 Difficulties in infinite dimensions

Beyond Banach spaces, there are examples of initial value
problems without solutions/with many solutions (see
Milnor 82); no local existence/no local uniqueness!

Beyond Banach spaces, no inverse function theorem in the
ordinary form. (In Fréchet spaces, the Nash-Moser-Inverse
Function Theorem is available with complicated hypotheses,
see Hamiltonb ’82. For maps to Banach spaces there still is an
implicit function theorem, see G. 2006).

In Lie theory:

Exponential function may not exist, need not be a local
diffeomorphism at 0.

A locally convex topological Lie algebra g need not be the Lie
algebra of a Lie group! Counterexamples for Banach–Lie
algebras were first given by van Est and Korthagen ’64, a
simple example by Douady and Lazard ’66.

Closed subgroups need not be Lie subgroups
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Three levels:

global level (Lie groups modelled on locally convex spaces)

local level (local Lie groups or germs of such)

infinitesimal level (locally convex topological Lie algebras)

Can always go down; in finite-dimensional case, can go up.1 In the
infinite-dimensional case, we can go up only under additional
conditions, for each level !

For example, every Banach–Lie algebra g gives rise to a local Banach–Lie group

(via the Cambell-Hausdorff multiplication on a 0-neighbourhood in g× g). But

the latter need not arise from a global Banach–Lie group.

1Each finite-dimensional Lie algebra is the Lie algebra of some Lie group by
Lie’s Third Theorem.
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Appendix: The example by Douady and Lazard

For an infinite-dimensional complex Hilbert space H, consider the
unitary group U(H), which is contractible by Kuiper’s Theorem.
Its Lie algebra is

u(H) := i Herm(H) .

As the elements of R i idH commute with each operator, R i idH is
a central ideal of u(H). As a consequence, R i idH×R i idH is a
central ideal of u(H)× u(H) and so is its vector subspace

n := Ri(idH,
√

2 idH) .

We claim that g := (u(H)× u(H))/n cannot be the Lie algebra of
a Lie group. Otherwise, if g = L(G ), get a contradiction: The
modelling space of G being being isomorphic to g and hence a
Banach space, G is a Banach–Lie group and thus BCH. Hence,
there exists a real analytic group homomorphism

α : U(H)× U(H)→ G

such that L(α) is the quotient map β : u(H)× u(H)→ g.
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The exponential function exp of U(H)× U(H) takes n to a dense
subgroup N of the 2-dimensional torus

T := exp(iR idH×iR idH) = S1 idH×S1 idH ∼= S1 × S1,

a so-called “dense wind”. By naturality of exp, we must have
N ⊆ ker(α). Since ker(α) is closed, T ⊆ ker(α) follows and hence
Ri idH×Ri idH = L(T ) ⊆ ker(β), which contradicts the definition
of β.

Remark. Świerczkowski ’71 showed that non-integrability of a
Banach–Lie algebra is always related to non-closedness of a
relevant subgroup. Further examples of non-integrable Banach–Lie
algebras can be found in G.–Neeb 2003.
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