Introduction to Infinite-Dimensional Lie Groups II

Helge Glöckner (Paderborn)

28.06.2023

Helge Glöckner (Paderborn) Introduction to Infinite-Dimensional Lie Groups II

Overview

Today:

tomo

- Definition of infinite-dimensional manifolds and Lie groups
- Examples:
 - Linear Lie groups $G \subseteq A^{\times}$
 - Mapping groups $C^n(M, G)$, notably $C^n(\mathbb{S}_1, G)$

– Lie groups Diff(M) of smooth diffeomorphisms – Direct limit groups $G = \bigcup_{n \in \mathbb{N}} G_n$ with $G_1 \subseteq G_2 \subseteq \cdots$, e.g.

$$\mathsf{GL}_{\infty}(\mathbb{R}) = \bigcup_{n \in \mathbb{N}} \mathsf{GL}_{n}(\mathbb{R})$$

identify $A \in \mathsf{GL}_{n}(\mathbb{R})$ with $\begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix} \in \mathsf{GL}_{n+1}(\mathbb{R})$.

• • • • • • •

$\S0$ Repetition

E, F locally convex topological vector spaces, $U \subseteq E$ open

Definition (Andrée Bastiani, 1964)

A map $f: U \to F$ is called **continuously differentiable** (or C^1) if it is continuous, the directional derivatives

$$df(x,y) := (D_y f)(x) := \frac{d}{dt}\Big|_{t=0} f(x+ty) = \lim_{t \to 0} \frac{f(x+ty) - f(x)}{t}$$

exist for all $x \in U$ and $y \in E$, and $df: U \times E \to F$, $(x, y) \mapsto df(x, y)$ is continuous.

If f is C^1 and $df: U \times E \to F$ is C^n , call f a C^{n+1} -map.

f is C^n if and only if f is continuous and the iterated directional derivatives $d^j f(x, y_1, \ldots, y_j) := (D_{y_j} \cdots D_{y_1} f)(x)$ exist for all $j \in \mathbb{N}$ such that $j \leq n$, all $x \in U$ and $y_1, \ldots, y_j \in E$, and $d^j f : U \times E^j \to F$ is continuous.

 $d^j f(x, \cdot) \colon E^j o F$ is a continuous and symmetric *j*-linear map

$\S1$ Analytic mappings

If *E* and *F* are locally convex spaces over \mathbb{C} , replacing real directional derivatives with

$$\left.\frac{d}{dz}\right|_{z=0}f(x+zy)$$

get $C^1_{\mathbb{C}}$ -maps $f: U \to F$ on $U \subseteq E$ and $C^n_{\mathbb{C}}$ maps.

Fact

Let *E* and *F* be complex locally convex spaces, and $U \subseteq E$ be an open subset. For a map $f: U \to F$, the following are equivalent: (a) *f* is $C_{\mathbb{C}}^{\infty}$; (b) *f* is C^{∞} and $df(x, \cdot): E \to F$ is \mathbb{C} -linear for all $x \in U$; (c) *f* is **complex analytic**, i.e., *f* is continuous and each $x \in U$ has an open neighbourhood $V \subseteq U$ such that $f(y) = f(x) + \sum_{n=1}^{\infty} \beta_n (y - x, \dots, y - x)$ for all $y \in V$

with pointwise convergence, for continuous complex *n*-linear maps $\beta_n \colon E^n \to F$.

200

If F is sequentially complete, then also the following condition is equivalent:

(d) f is $C^1_{\mathbb{C}}$.

Let *E* and *F* be real locally convex spaces and $U \subseteq E$ be open. A map $f: U \to F$ is called **real analytic** if it has a complex analytic extension $\tilde{f}: \tilde{U} \to F \oplus iF$ for some open subset $\tilde{U} \subseteq E \oplus iE$ with $U \subseteq \tilde{U}$, i.e., $f = \tilde{f}|_U$.

Compositions of complex analytic maps are complex analytic. Compositions of real analytic maps are real analytic.

Every complex analytic map is real analytic.

Every real analytic map is C^{∞} .

§2 Manifolds modelled on a locally convex space

Let *E* be a locally convex topological vector space and *M* be a topological space which is Hausdorff (all $x \neq y$ have disjoint open neighbourhoods). An *E*-chart for *M* is a map

$$\phi\colon U_\phi\to V_\phi$$

from an open subset $U_{\phi} \subseteq M$ onto an open subset $V_{\phi} \subseteq E$ which is a **homeomorphism** (i.e., ϕ is invertible and both ϕ and ϕ^{-1} are continuous).

Given $n \in \mathbb{N}$ call *E*-charts $\phi \colon U_{\phi} \to V_{\phi}$ and $\psi \colon U_{\psi} \to V_{\psi}$ *C*^{*n*}-compatible if both

$$\psi \circ \phi^{-1} \colon \phi(U_{\phi} \cap U_{\psi}) \to E, \quad x \mapsto \psi(\phi^{-1}(x))$$

and $\phi \circ \psi^{-1}$ are C^n -maps. A set \mathcal{A} of C^n -compatible E-charts $\phi \colon U_{\phi} \to V_{\phi}$ for M is called a C^n -atlas for M if

$$\bigcup_{\phi\in\mathcal{A}}U_{\phi}=M\,.$$

Definition

A **C**^{*n*}-manifold modelled on E is a Hausdorff topological space M, together with a C^{*n*}-atlas A of E-charts which is maximal.

Every C^n -atlas is contained in a unique maximal C^n -atlas (all *E*-charts C^n -compatible with the given ones).

If (M, \mathcal{A}) is a C^n -manifold modelled on E, then the $\phi \in \mathcal{A}$ shall simply be called "charts for M." The inverses $\phi^{-1} \colon E \supseteq V_{\phi} \to U_{\phi} \subseteq M$ are called **local parametrizations** of M.

If M is modelled on a Banach space, call M a **Banach manifold**. Call M a Fréchet manifold if it is modelled on a **Fréchet space** E (E is sequentially complete & topology comes from a countable set of seminorms).

Definition

Let M and N be C^n -manifolds modelled on locally convex spaces. A map $f: M \to N$ is called a C^n -map if f is continuous and $\phi \circ f \circ \psi^{-1}$ is C^n for each chart ϕ of N and each chart ψ of M.

It's enough to check this for ϕ and ψ in a subatlas $\Im \to A = A = A$ Helge Glöckner (Paderborn) Introduction to Infinite-Dimensional Lie Groups II **Example.** If *E* is a locally convex space, then every open subset $U \subseteq E$ is a smooth manifold modelled on *E*, using the maximal C^{∞} -atlas containing the *E*-chart $id_U : U \to U, x \mapsto x$.

Example. If (M_1, A_1) and (M_2, A_2) are C^n -manifolds modelled on locally convex spaces E_1 and E_2 , respectively, endow $M := M_1 \times M_2$ with the product topology (unions of products $U_1 \times U_2$ of open subsets $U_1 \subseteq M_1$ and $U_2 \subseteq M_2$ are open) and give it the maximal C^n -atlas containing the $E_1 \times E_2$ -charts

 $\phi \times \psi \colon U_{\phi} \times U_{\psi} \to V_{\phi} \times V_{\psi} \subseteq E_1 \times E_2, \ (x_1, x_2) \mapsto (\phi(x_1), \psi(x_2))$ for $\phi \in \mathcal{A}_1, \ \psi \in \mathcal{A}_2.$

This product manifold structure on $M_1 \times M_2$ turns the projections

$$\operatorname{pr}_j \colon M_1 \times M_2 \to M_j, \quad (x_1, x_2) \mapsto x_j$$

into C^n -maps for $j \in \{1, 2\}$. For each C^n -manifold N, a map $f = (f_1, f_2) \colon N \to M_1 \times M_2$ is C^n if and only if both components $f_1 \colon N \to M_1$ and $f_2 \colon N \to M_2$ are C^n .

Definition

A Lie group is a group G, endowed with a smooth manifold structure modelled on a locally convex topological vector space E, such that the group multiplication

$$\mu_{G} \colon G \times G \to G, \quad (g, h) \mapsto gh$$

and the inversion map

$$\eta_G \colon G \to G, \quad g \mapsto g^{-1}$$

are smooth.

Example. For every continuous algebra A, the open unit group $A^{\times} \subseteq A$ is a Lie group.

Remark

For $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$, can define \mathbb{K} -analytic manifolds modelled on a locally convex topological \mathbb{K} -vector space and \mathbb{K} -analytic maps between such as before, replacing C^n -maps with \mathbb{K} -analytic maps.

hac

Likewise, replacing C^{∞} -maps with \mathbb{K} -analytic maps in the definition of a Lie group get concept of a \mathbb{K} -analytic Lie group.

Example. For each complex continuous inverse algebra A, the unit group A^{\times} is a complex analytic Lie group.

In fact, the algebra multiplication $\beta \colon A \times A \to A$ is complex bilinear and thus \mathbb{C} -analytic, as

$$d\beta((x_1, x_2), (y_1, y_2)) = \beta(y_1, x_2) + \beta(x_1, y_2)$$

is \mathbb{C} -linear in (y_1, y_2) . Likewise, the smooth inversion map $\eta: A^{\times} \to A$ is \mathbb{C} -analytic as $d\eta(x, y) = -x^{-1}yx^{-1}$ is \mathbb{C} -linear in y.

Example. For each real continuous inverse algebra A, its open unit group $A^{\times} \subseteq A$ is a real analytic Lie group.

For the proof, one shows that $A_{\mathbb{C}} = A \oplus iA$ is a complex cia. The group operations of $(A_{\mathbb{C}})^{\times}$ are \mathbb{C} -analytic and extend those of A^{\times} , whence the latter are real analytic.

Definition

Let M be a C^n -manifold modelled on a locally convex space E. Let $F \subseteq E$ be a closed vector subspace. A subset $N \subseteq M$ is called a **submanifold** of M modelled on F if for each $x \in N$, there exists a chart $\phi: U_{\phi} \to V_{\phi} \subseteq E$ of M with $x \in U_{\phi}$ which is **adapted to** N in the sense that

$$\phi(N\cap U_{\phi})=F\cap V_{\phi}.$$

The restrictions $\phi_N \colon N \cap U_\phi \to F \cap V_\phi$, $y \mapsto \phi(y)$ of charts ϕ adapted to N are called **submanifold charts** for N; they form a C^n -atlas of F-charts for N if we give N the topology induced by M. We endow N with the corresponding maximal C^n -atlas. Then the following holds;

Facts.

- (a) The inclusion map $j: N \to M, x \mapsto x$ is C^n .
- (b) For every C^n -manifold L, a map $f: L \to N$ is C^n if and only if the map $j \circ f: L \to M$ is C^n .

Fact

If G is a Lie group and $H \subseteq G$ a subgroup which is a submanifold, then the smooth manifold structure on H as a submanifold makes H a Lie group.

For example, consider the smooth inversion map $\eta_G \colon G \to G$ and the inversion map $\eta_H \colon H \to H$. As the inclusion map $j \colon H \to G$ is smooth, also the map

$$\eta_{\mathcal{G}} \circ j \colon H \to \mathcal{G}, \quad h \mapsto h^{-1}$$

is smooth, which coincides with $j \circ \eta_H$. Hence η_H is smooth, by the preceding fact (b).

Subgroups $H \subseteq G$ which are submanifolds are called **Lie subgroups**.

A subgroup $H \subseteq G$ is a submanifold modelled on F if there is a chart $\phi: U \to V$ of G with $e \in U$ and $\phi(H \cap U) = F \cap V$. [For each $h \in H$, the map $hU \to V$, $x \mapsto \phi(h^{-1}x)$ then is a chart of G adapted to H, with h in its domain.]

§3 Linear Lie groups

Definition

Lie subgroups $H \subseteq A^{\times}$ for a continuous inverse algebra A are called **linear Lie groups**.

Example

For each complex Hilbert space \mathcal{H} , the unitary group $U(\mathcal{H}) := \{T \in B(\mathcal{H}) : TT^* = T^*T = id_{\mathcal{H}}\}$ is a Lie subgroup of $GL(\mathcal{H}) := B(\mathcal{H})^{\times}$ and hence a linear Lie group.

In fact, the exponential map

$$\exp: B(\mathcal{H}) \to B(\mathcal{H}), \quad T \mapsto \sum_{n=0}^{\infty} \frac{1}{n!} T^n$$

is complex analytic and $\exp'(0) = \operatorname{id}_{B(\mathcal{H})}$. By the Inverse Function Theorem, for small $\varepsilon > 0$ the image $U := \exp(V)$ is open for the ball

$$V := \{T \in B(\mathcal{H}) \colon \|T\|_{\mathsf{op}} < \varepsilon\} \quad \text{for all } t \in \mathbb{R}$$

Helge Glöckner (Paderborn)

Introduction to Infinite-Dimensional Lie Groups II

and $\theta := \exp |_{V} \colon V \to \exp(V) \subseteq GL(\mathcal{H})$ is a complex analytic diffeomorphism and hence a local parametrization of $GL(\mathcal{H})$ (i.e., $\phi := \theta^{-1} \colon U \to V$ is a chart with $U := \exp(V)$).

For each $T \in V$, we have

$$\theta(T)^{-1} = \exp(T)^{-1} = \exp(-T) = \theta(-T)$$

and

$$\theta(T)^* = \exp(T)^* = \exp(T^*) = \theta(T^*).$$

As θ is injective, we deduce that $\theta(T)^{-1} = \theta(T)^*$ if and only if $T^* = -T$, i.e., if and only if T is skew-hermitian. Let $\text{Herm}(\mathcal{H}) := \{T \in B(\mathcal{H}): T = T^*\}$ be the set of hermitian bounded linear operators, which is a closed real vector subspace of $B(\mathcal{H})$. By the preceding,

$$\theta(i\operatorname{\mathsf{Herm}}(\mathcal{H})\cap V)=U(\mathcal{H})\cap U$$

and hence $\phi(U(\mathcal{H}) \cap U) = i \operatorname{Herm}(\mathcal{H}) \cap V$, entailing that $U(\mathcal{H})$ is a submanifold (and hence a Lie subgroup) of $\operatorname{GL}(\mathcal{H})$ modelled on the closed real vector subspace $i \operatorname{Herm}(\mathcal{H}) \subseteq B(\mathcal{H})$ of skew-hermitian operators. **Remark.** We mention that the unitary group $U(\mathcal{H})$ is contractible for each infinite-dimensional complex Hilbert space \mathcal{H} , by Kuiper's Theorem. That is, there exist a continuous map

 $F \colon [0,1] \times U(\mathcal{H}) \to U(\mathcal{H})$

such that F(0, T) = T for all $T \in U(H)$ and $F(1, \cdot)$ is a constant map.

By contrast, $U(\mathbb{C}^n)$ is not contractible for $n \in \mathbb{N}$ and not even simply connected. For example,

 $U(\mathbb{C}^1) \cong \mathbb{S}_1$

with $\pi_1(\mathbb{S}_1) \cong \mathbb{Z}$.

^{§4} Local construction of Lie groups

Let G be a group and $P \subseteq G$ be a subset with $e \in P$ which is endowed with a smooth manifold structure modelled on a locally convex space E. Let $Q \subseteq P$ be an open subset with $e \in Q$ and $Q = Q^{-1}$ such that $QQ \subseteq P$.

Fact.

Assume that

- (a) The restriction of the group multiplication to a map $Q \times Q \rightarrow P$ is smooth;
- (b) The restriction of the inversion map to a map $Q \to Q$ is smooth;
- (c) For each $g \in G$, there exists an open *e*-neighbourhood $W \subseteq P$ such that $gWg^{-1} \subseteq P$ and the map $W \to P$, $x \mapsto gxg^{-1}$ is smooth.

Then there is a unique smooth manifold structure on G which is modelled on E, turns G into a Lie group and turns Q into an open submanifold of G.

For chart a chart $\phi \colon U_\phi o V_\phi$ of Q with $e \in U_\phi$, define

$$\phi_g \colon gU_\phi \to V_\phi, \quad x \mapsto \phi(g^{-1}x).$$

One verifies that $\{\phi_g : g \in G\}$ is a C^{∞} -atlas and that the corresponding smooth manifold structure on G has the asserted properties.

4 3 6 4 3 6

Mapping groups

Recall that the supremum norm $\|\cdot\|_{\infty}$ makes $C([0,1],\mathbb{R})$ a Banach space. Likewise for $C([0,1],\mathbb{R}^n)$, using $\max_{t\in[0,1]} \|\gamma(t)\|$ for a given norm $\|\cdot\|$ on \mathbb{R}^n .

Fact

For every continuous map $f : \mathbb{R}^n \to \mathbb{R}^m$, the map

$$f_*:= C([0,1],f)\colon C([0,1],\mathbb{R}^n) o C([0,1],\mathbb{R}^m), \quad \gamma\mapsto f\circ\gamma$$

is continuous.

To see continuity at γ , note that $\gamma([0, 1])$ is compact, hence contained in a closed ball $\overline{B}_r(0) := \{y \in \mathbb{R}^n : ||y|| \le r\}$ for some r > 0. On the compact ball $\overline{B}_{2r}(0)$, the continuous map f is uniformly continuous: Given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\|f(y)-f(x)\| \le \varepsilon$$
 for all $x, y \in \overline{B}_{2r}(0)$ such that $\|y-x\| \le \delta$. (*)

We may assume that $\delta \leq r$. For each η in the open ball β , $\gamma = 0$

$$\{\eta \in C([0,], \mathbb{R}^{n}) \colon \|\eta - \gamma\|_{\infty} < \delta\}$$

$$\subseteq \{\theta \in C([0, 1], \mathbb{R}^{n}) \colon \|\theta\|_{\infty} < 2r\} = C([0, 1], B_{2r}(0)),$$

we then have

$$\|\eta(t) - \gamma(t)\| < \delta$$

for each $t \in [0, 1]$ and hence

$$\|f(\eta(t)) - f(\gamma(t))\| \le \varepsilon$$

by (*), as $\gamma(t), \eta(t) \in \overline{B}_{2r}(0)$. Thus
 $\|f \circ \eta - f \circ \gamma\|_{\infty} \le \varepsilon$.

If $f : \mathbb{R}^n \to \mathbb{R}^m$ is C^1 , then $f_* := C([0,1], f)$ is C^1 , with $d(f_*) = (df)_* : C([0,1], \mathbb{R}^n \times \mathbb{R}^n) \to C([0,1], \mathbb{R}^m), (\gamma, \eta) \mapsto df \circ (\gamma, \eta).$

For the proof, fix $\gamma, \eta \in C([0,1], \mathbb{R}^n)$ and consider for $t \neq 0$ the difference quotient

$$\Delta_t := rac{f_*(\gamma + t\eta) - f_*(\gamma)}{t} \in C([0,1],\mathbb{R}^m)$$

and the map

$$h\colon \mathbb{R} o C([0,1],\mathbb{R}^m), \quad t\mapsto \int_0^1 (df)_*(\gamma+st\eta,\eta)\,ds,$$

which is continuous as $(df)_*(\gamma + st\eta, \eta)$ is continuous in (s, t). For each $x \in [0, 1]$, the point evaluation

$$\varepsilon_x \colon C([0,1],\mathbb{R}^m) \to \mathbb{R}^m, \quad \theta \mapsto \theta(x)$$

is continuous and linear. As it commutes with the weak integral, we get

$$\varepsilon_{x}(h(t)) = \int_{0}^{1} df(\gamma(x) + st\eta(x), \eta(x)) \, ds = \frac{f(\gamma(x) + t\eta(x)) - f(\gamma(x))}{t} = \Delta_{t}(x)$$

using the Mean Value Theorem. Thus $\Delta_t = h(t) \rightarrow h(0) = df \circ (\gamma, \eta)$ as $t \rightarrow 0$.

If *E* is a locally convex space and K = [0, 1], $K = \mathbb{S}_1$ or *K* a compact topological space, make the space C(K, E) of continuous maps $\gamma: K \to E$ a locally convex topological vector space using the seminorms

$$\|\gamma\|_q := \sup_{x \in \mathcal{K}} q(\gamma(x))$$

for continuous seminorms $q \colon E \to [0,\infty[$. Like the preceding special cases, one shows:

Fact

If *E* and *F* are locally convex spaces, $U \subseteq E$ is an open subset and $f: U \to F$ is a C^n -map with $n \in \mathbb{N}_0 \cup \{\infty\}$, then C(K, U) is open in C(K, E) and the map

$$f_* := C(K, f) \colon C(K, U) \to C(K, F), \quad \gamma \mapsto f \circ \gamma$$

is C^n .

This implies:

Fact

For every Lie group G modelled on a locally convex space E, the group C(K, G) of all continuous maps $\gamma \colon K \to G$ is a Lie group modelled on C(K, E), with $(\gamma \eta)(x) := \gamma(x)\eta(x)$.

Let $\phi: U \to V \subseteq E$ be a chart of G with $e \in U$. Give P := C(K, U) the smooth manifold structure turning the bijection

$$\phi_*\colon C(K,U) o C(K,V) \subseteq C(K,E), \quad \gamma \mapsto \phi \circ \gamma$$

into a C^{∞} -diffeomorphism (smooth with smooth inverse). Let $W \subseteq U$ be an open subset with $WW \subseteq U$ and $W = W^{-1}$. Then $\phi(W)$ is open in V and Q := C(K, W) is open in P, as it corresponds to the open subset $C(K, \phi(W))$ of C(K, V). The inversion map $\eta_{C(K,G)}|_Q$ on Q corresponds to the map

$$h\colon C(K,\phi(W))\to C(K,\phi(W)), \quad \gamma\mapsto (\phi\circ\eta_{\mathcal{G}}^{-1}\circ\phi^{-1})\circ\gamma,$$

which is smooth by the preceding fact. Hence $\eta_{C(K,G)}|_Q = (\phi_*)^{-1} \circ h \circ \phi_*|_Q$ is smooth. Similarly, Conditions (b) and (c) of the local description of Lie group structures are satisfied.

Let M be an m-dimensional compact C^{∞} -manifold, E be a locally convex topological vector space and $n \in \mathbb{N}_0 \cup \{\infty\}$. For a chart $\phi: U_{\phi} \to V_{\phi}$ of $M, j \in \mathbb{N}_0$ with $j \leq n$, a compact subset K of $V_{\phi} \times (\mathbb{R}^m)^j$ and a continuous seminorm q on E, a seminorm

$$\|\cdot\|_{\phi,j,q,K}\colon C^n(M,E)\to [0,\infty[,\quad\gamma\mapsto\|q\circ d^j(f\circ\phi^{-1})|_K\|_\infty)$$

is obtained. Make $C^n(M, E)$ a locally convex topological vector space using these seminorms (the resulting topology is called the **compact-open** C^n -topology).

Fact

If also F is a locally convex topological vector space, $k \in \mathbb{N}_0 \cup \{\infty\}$ and $f: U \to F$ is a C^{n+k} -map on an open subset $U \subseteq E$, then $C^n(M, U)$ is open in $C^n(M, E)$ and the map

$$f_* := C^n(M, f) \colon C^n(M, U) \to C^n(M, F), \quad \gamma \mapsto f \circ \gamma$$

is C^k .

As before, this entails:

Fact

For every Lie group G modelled on a locally convex space E, the group $C^n(M, G)$ of all C^n -maps $\gamma \colon M \to G$ is a Lie group modelled on $C^n(M, E)$.

We can use $P = C^n(M, U)$ with the smooth manifold structure making $\phi_* : C^n(M, U) \to C^n(M, V) \subseteq C^n(M, E)$, $\gamma \mapsto \phi \circ \gamma$ a C^{∞} -diffeomorphism and $Q := C^n(M, W)$ as in the preceding proof.

Bibliography

- Bastiani, A., Applications différentiables et variétés différentiables de dimension infinie, J. Anal. Math. **13** (1964), 1–114.
- Bochnak, J. and J. Siciak, *Analytic functions in topological vector spaces*, Stud. Math. **39** (1971), 77–112.
- Bourbaki, N., "Lie Groups and Lie Algebras, Chapters 1–3," Springer, Berlin, 1989.
- Eells, J. jun., A setting for global analysis, Bull. Amer. Math. Soc. 72 (1966), 751–807.
- Glöckner, H., *Infinite-dimensional Lie groups without completeness restrictions*, pp. 43–59 in: Strasburger, A. et al. (eds.), "Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups," Banach Center Publications **55**, Warsaw, 2002.
- Glöckner, H., *Algebras whose groups of units are Lie groups*, Stud. Math. **153** (2002), 147–177.
- Glöckner, H., Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal. 194 (2002), 347–409.
- Glöckner, H. and K.-H. Neeb, "Infinite-Dimensional Lie Groups," book in preparation, 2023.

- Hamilton, R. S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (1982), 65–222.
- de la Harpe, P., "Classical Banach–Lie Algebras and Banach–Lie Groups of Operators in Hilbert Space," Springer, Berlin, 1972.
- Kuiper, N. H., *The homotopy type of the unitary group of Hilbert space*, Topology **3** (1965), 19–30.
- Lang, S. "Fundamentals of Differential Geometry," Springer, New York, 2001.
- Maissen, B., Lie-Gruppen mit Banachräumen als Parameterräume, Acta Math. 108 (1962), 229–270.
- Michor, P. W., "Manifolds of Differentiable Mappings," Shiva Publishing, Orpington, 1980.
- Milnor, J., *Remarks on infinite-dimensional Lie groups*, pp. 1007–1057 in: B. S. DeWitt and R. Stora (eds.), "Relativité, groupes et topologie II," North-Holland, Amsterdam, 1984.
- Neeb, K.-H., Towards a Lie theory of locally convex groups, Jpn. J. Math. 1 (2006), 291–468.
- Pressley, A. and G. Segal, "Loop Groups," Clarendon Press, Oxford, 1988.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ