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Overview

Today:

Definition of infinite-dimensional manifolds and Lie groups

Examples:

– Linear Lie groups G ⊆ A×

– Mapping groups Cn(M,G ), notably Cn(S1,G )

– Lie groups Diff(M) of smooth diffeomorphisms

– Direct limit groups G =
⋃

n∈N Gn with G1 ⊆ G2 ⊆ · · · , e.g.

GL∞(R) =
⋃
n∈N

GLn(R)

identify A ∈ GLn(R) with
( A 0

0 1

)
∈ GLn+1(R).
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§0 Repetition

E , F locally convex topological vector spaces, U ⊆ E open

Definition (Andrée Bastiani, 1964)

A map f : U → F is called continuously differentiable (or C 1) if it
is continuous, the directional derivatives

df (x , y) := (Dy f )(x) :=
d

dt

∣∣∣
t=0

f (x + ty) = lim
t→0

f (x + ty)− f (x)

t

exist for all x ∈ U and y ∈ E , and df : U × E → F ,
(x , y) 7→ df (x , y) is continuous.

If f is C 1 and df : U × E → F is Cn, call f a Cn+1-map.

f is Cn if and only if f is continuous and the iterated directional
derivatives d j f (x , y1, . . . , yj) := (Dyj · · ·Dy1f )(x) exist for all j ∈ N
such that j ≤ n, all x ∈ U and y1, . . . , yj ∈ E , and
d j f : U × E j → F is continuous.

d j f (x , ·) : E j → F is a continuous and symmetric j-linear map
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§1 Analytic mappings

If E and F are locally convex spaces over C, replacing real
directional derivatives with

d

dz

∣∣∣
z=0

f (x + zy)

get C 1
C-maps f : U → F on U ⊆ E and Cn

C maps.

Fact

Let E and F be complex locally convex spaces, and U ⊆ E be an
open subset. For a map f : U → F , the following are equivalent:

(a) f is C∞C ;

(b) f is C∞ and df (x , ·) : E → F is C-linear for all x ∈ U;

(c) f is complex analytic, i.e., f is continuous and each x ∈ U has
an open neighbourhood V ⊆ U such that

f (y) = f (x) +
∞∑
n=1

βn(y − x , . . . , y − x) for all y ∈ V

with pointwise convergence, for continuous complex n-linear
maps βn : En → F .
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If F is sequentially complete, then also the following condition is
equivalent:

(d) f is C 1
C.

Let E and F be real locally convex spaces and U ⊆ E be open. A
map f : U → F is called real analytic if it has a complex analytic
extension f̃ : Ũ → F ⊕ iF for some open subset Ũ ⊆ E ⊕ iE with
U ⊆ Ũ, i.e., f = f̃ |U .

Compositions of complex analytic maps are complex analytic.
Compositions of real analytic maps are real analytic.

Every complex analytic map is real analytic.

Every real analytic map is C∞.
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§2 Manifolds modelled on a locally convex space

Let E be a locally convex topological vector space and M be a
topological space which is Hausdorff (all x 6= y have disjoint open
neighbourhoods). An E -chart for M is a map

φ : Uφ → Vφ

from an open subset Uφ ⊆ M onto an open subset Vφ ⊆ E which
is a homeomorphism (i.e., φ is invertible and both φ and φ−1 are
continuous).

Given n ∈ N call E -charts φ : Uφ → Vφ and ψ : Uψ → Vψ
Cn-compatible if both

ψ ◦ φ−1 : φ(Uφ ∩ Uψ)→ E , x 7→ ψ(φ−1(x))

and φ ◦ ψ−1 are Cn-maps. A set A of Cn-compatible E -charts
φ : Uφ → Vφ for M is called a Cn-atlas for M if⋃

φ∈A
Uφ = M .

Helge Glöckner (Paderborn) Introduction to Infinite-Dimensional Lie Groups II



Definition

A Cn-manifold modelled on E is a Hausdorff topological space M,
together with a Cn-atlas A of E -charts which is maximal.

Every Cn-atlas is contained in a unique maximal Cn-atlas (all
E -charts Cn-compatible with the given ones).

If (M,A) is a Cn-manifold modelled on E , then the φ ∈ A shall
simply be called “charts for M.” The inverses
φ−1 : E ⊇ Vφ → Uφ ⊆ M are called local parametrizations of M.

If M is modelled on a Banach space, call M a Banach manifold.
Call M a Fréchet manifold if it is modelled on a Fréchet space E (E

is sequentially complete & topology comes from a countable set of seminorms).

Definition

Let M and N be Cn-manifolds modelled on locally convex spaces.
A map f : M → N is called a C n-map if f is continuous and
φ ◦ f ◦ ψ−1 is Cn for each chart φ of N and each chart ψ of M.

It’s enough to check this for φ and ψ in a subatlas.
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Example. If E is a locally convex space, then every open subset
U ⊆ E is a smooth manifold modelled on E , using the maximal
C∞-atlas containing the E -chart idU : U → U, x 7→ x .

Example. If (M1,A1) and (M2,A2) are Cn-manifolds modelled on
locally convex spaces E1 and E2, respectively, endow
M := M1 ×M2 with the product topology (unions of products
U1 × U2 of open subsets U1 ⊆ M1 and U2 ⊆ M2 are open) and
give it the maximal Cn-atlas containing the E1 × E2-charts

φ× ψ : Uφ × Uψ → Vφ × Vψ ⊆ E1 × E2, (x1, x2) 7→ (φ(x1), ψ(x2))

for φ ∈ A1, ψ ∈ A2.

This product manifold structure on M1 ×M2 turns the projections

prj : M1 ×M2 → Mj , (x1, x2) 7→ xj

into Cn-maps for j ∈ {1, 2}. For each Cn-manifold N, a map
f = (f1, f2) : N → M1 ×M2 is Cn if and only if both components
f1 : N → M1 and f2 : N → M2 are Cn.
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Definition

A Lie group is a group G , endowed with a smooth manifold
structure modelled on a locally convex topological vector space E ,
such that the group multiplication

µG : G × G → G , (g , h) 7→ gh

and the inversion map

ηG : G → G , g 7→ g−1

are smooth.

Example. For every continuous algebra A, the open unit group
A× ⊆ A is a Lie group.

Remark

For K = C or K = R, can define K-analytic manifolds modelled on
a locally convex topological K-vector space and K-analytic maps
between such as before, replacing Cn-maps with K-analytic maps.
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Likewise, replacing C∞-maps with K-analytic maps in the
definition of a Lie group get concept of a K-analytic Lie group.

Example. For each complex continuous inverse algebra A, the unit
group A× is a complex analytic Lie group.

In fact, the algebra multiplication β : A× A→ A is complex
bilinear and thus C-analytic, as

dβ((x1, x2), (y1, y2)) = β(y1, x2) + β(x1, y2)

is C-linear in (y1, y2). Likewise, the smooth inversion map
η : A× → A is C-analytic as dη(x , y) = −x−1yx−1 is C-linear in y .

Example. For each real continuous inverse algebra A, its open unit
group A× ⊆ A is a real analytic Lie group.

For the proof, one shows that AC = A⊕ iA is a complex cia. The
group operations of (AC)× are C-analytic and extend those of A×,
whence the latter are real analytic.
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Definition

Let M be a Cn-manifold modelled on a locally convex space E . Let
F ⊆ E be a closed vector subspace. A subset N ⊆ M is called a
submanifold of M modelled on F if for each x ∈ N, there exists a
chart φ : Uφ → Vφ ⊆ E of M with x ∈ Uφ which is adapted to N

in the sense that
φ(N ∩ Uφ) = F ∩ Vφ.

The restrictions φN : N ∩ Uφ → F ∩ Vφ, y 7→ φ(y) of charts φ
adapted to N are called submanifold charts for N; they form a
Cn-atlas of F -charts for N if we give N the topology induced
by M. We endow N with the corresponding maximal Cn-atlas.
Then the following holds;

Facts.

(a) The inclusion map j : N → M, x 7→ x is Cn.

(b) For every Cn-manifold L, a map f : L→ N is Cn if and only if
the map j ◦ f : L→ M is Cn.
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Fact

If G is a Lie group and H ⊆ G a subgroup which is a submanifold,
then the smooth manifold structure on H as a submanifold
makes H a Lie group.

For example, consider the smooth inversion map ηG : G → G and
the inversion map ηH : H → H. As the inclusion map j : H → G is
smooth, also the map

ηG ◦ j : H → G , h 7→ h−1

is smooth, which coincides with j ◦ ηH . Hence ηH is smooth, by the
preceding fact (b).

Subgroups H ⊆ G which are submanifolds are called Lie subgroups.

A subgroup H ⊆ G is a submanifold modelled on F if there is a
chart φ : U → V of G with e ∈ U and φ(H ∩ U) = F ∩ V .

[For each h ∈ H, the map hU → V , x 7→ φ(h−1x) then is a chart
of G adapted to H, with h in its domain. ]
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§3 Linear Lie groups

Definition

Lie subgroups H ⊆ A× for a continuous inverse algebra A are
called linear Lie groups.

Example

For each complex Hilbert space H, the unitary group
U(H) := {T ∈ B(H) : TT ∗ = T ∗T = idH} is a Lie subgroup of
GL(H) := B(H)× and hence a linear Lie group.

In fact, the exponential map

exp: B(H)→ B(H), T 7→
∞∑
n=0

1

n!
T n

is complex analytic and exp′(0) = idB(H). By the Inverse Function
Theorem, for small ε > 0 the image U := exp(V ) is open for the
ball

V := {T ∈ B(H) : ‖T‖op < ε}
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and θ := exp |V : V → exp(V ) ⊆ GL(H) is a complex analytic
diffeomorphism and hence a local parametrization of GL(H) (i.e.,
φ := θ−1 : U → V is a chart with U := exp(V )).

For each T ∈ V , we have

θ(T )−1 = exp(T )−1 = exp(−T ) = θ(−T )

and
θ(T )∗ = exp(T )∗ = exp(T ∗) = θ(T ∗).

As θ is injective, we deduce that θ(T )−1 = θ(T )∗ if and only if
T ∗ = −T , i.e., if and only if T is skew-hermitian. Let
Herm(H) := {T ∈ B(H) : T = T ∗} be the set of hermitian
bounded linear operators, which is a closed real vector subspace of
B(H). By the preceding,

θ(i Herm(H) ∩ V ) = U(H) ∩ U

and hence φ(U(H) ∩ U) = i Herm(H) ∩ V , entailing that U(H) is
a submanifold (and hence a Lie subgroup) of GL(H) modelled on
the closed real vector subspace i Herm(H) ⊆ B(H) of
skew-hermitian operators.
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Remark. We mention that the unitary group U(H) is contractible

for each infinite-dimensional complex Hilbert space H, by Kuiper’s
Theorem. That is, there exist a continuous map

F : [0, 1]× U(H)→ U(H)

such that F (0,T ) = T for all T ∈ U(H) and F (1, ·) is a constant
map.

By contrast, U(Cn) is not contractible for n ∈ N and not even
simply connected. For example,

U(C1) ∼= S1

with π1(S1) ∼= Z.
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§4 Local construction of Lie groups

Let G be a group and P ⊆ G be a subset with e ∈ P which is
endowed with a smooth manifold structure modelled on a locally
convex space E . Let Q ⊆ P be an open subset with e ∈ Q and
Q = Q−1 such that QQ ⊆ P.

Fact.

Assume that

(a) The restriction of the group multiplication to a map
Q × Q → P is smooth;

(b) The restriction of the inversion map to a map Q → Q is
smooth;

(c) For each g ∈ G , there exists an open e-neighbourhood
W ⊆ P such that gWg−1 ⊆ P and the map W → P,
x 7→ gxg−1 is smooth.

Then there is a unique smooth manifold structure on G which is
modelled on E , turns G into a Lie group and turns Q into an open
submanifold of G .

Helge Glöckner (Paderborn) Introduction to Infinite-Dimensional Lie Groups II



For chart a chart φ : Uφ → Vφ of Q with e ∈ Uφ, define

φg : gUφ → Vφ, x 7→ φ(g−1x) .

One verifies that {φg : g ∈ G} is a C∞-atlas and that the
corresponding smooth manifold structure on G has the asserted
properties.
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Mapping groups

Recall that the supremum norm ‖ · ‖∞ makes C ([0, 1],R) a
Banach space. Likewise for C ([0, 1],Rn), using maxt∈[0,1] ‖γ(t)‖
for a given norm ‖ · ‖ on Rn.

Fact

For every continuous map f : Rn → Rm, the map

f∗ := C ([0, 1], f ) : C ([0, 1],Rn)→ C ([0, 1],Rm), γ 7→ f ◦ γ

is continuous.

To see continuity at γ, note that γ([0, 1]) is compact, hence
contained in a closed ball B r (0) := {y ∈ Rn : ‖y‖ ≤ r} for some
r > 0. On the compact ball B2r (0), the continuous map f is
uniformly continuous: Given ε > 0, there exists δ > 0 such that

‖f (y)−f (x)‖ ≤ ε for all x , y ∈ B2r (0) such that ‖y − x‖ ≤ δ. (∗)

We may assume that δ ≤ r . For each η in the open ball
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{η ∈ C ([0, ],Rn) : ‖η − γ‖∞ < δ}
⊆ {θ ∈ C ([0, 1],Rn) : ‖θ‖∞ < 2r} = C ([0, 1],B2r (0)),

we then have
‖η(t)− γ(t)‖ < δ

for each t ∈ [0, 1] and hence

‖f (η(t))− f (γ(t))‖ ≤ ε

by (∗), as γ(t), η(t) ∈ B2r (0). Thus

‖f ◦ η − f ◦ γ‖∞ ≤ ε .

If f : Rn → Rm is C 1, then f∗ := C ([0, 1], f ) is C 1, with

d(f∗) = (df )∗ :C ([0, 1],Rn×Rn)→C ([0, 1],Rm), (γ, η) 7→ df ◦(γ, η).

For the proof, fix γ, η ∈ C ([0, 1],Rn) and consider for t 6= 0 the
difference quotient
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∆t :=
f∗(γ + tη)− f∗(γ)

t
∈ C ([0, 1],Rm)

and the map

h : R→ C ([0, 1],Rm), t 7→
∫ 1

0
(df )∗(γ + stη, η) ds,

which is continuous as (df )∗(γ + stη, η) is continuous in (s, t). For
each x ∈ [0, 1], the point evaluation

εx : C ([0, 1],Rm)→ Rm, θ 7→ θ(x)

is continuous and linear. As it commutes with the weak integral,
we get

εx(h(t))=

∫ 1

0
df (γ(x)+stη(x), η(x)) ds =

f (γ(x) + tη(x))− f (γ(x))

t
=∆t(x)

using the Mean Value Theorem. Thus
∆t = h(t)→ h(0) = df ◦ (γ, η) as t → 0.
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If E is a locally convex space and K = [0, 1], K = S1 or K a
compact topological space, make the space C (K ,E ) of continuous
maps γ : K → E a locally convex topological vector space using
the seminorms

‖γ‖q := sup
x∈K

q(γ(x))

for continuous seminorms q : E → [0,∞[. Like the preceding
special cases, one shows:

Fact

If E and F are locally convex spaces, U ⊆ E is an open subset and
f : U → F is a Cn-map with n ∈ N0 ∪ {∞}, then C (K ,U) is open
in C (K ,E ) and the map

f∗ := C (K , f ) : C (K ,U)→ C (K ,F ), γ 7→ f ◦ γ

is Cn.

This implies:
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Fact

For every Lie group G modelled on a locally convex space E , the
group C (K ,G ) of all continuous maps γ : K → G is a Lie group
modelled on C (K ,E ), with (γη)(x) := γ(x)η(x).

Let φ : U → V ⊆ E be a chart of G with e ∈ U. Give
P := C (K ,U) the smooth manifold structure turning the bijection

φ∗ : C (K ,U)→ C (K ,V ) ⊆ C (K ,E ), γ 7→ φ ◦ γ

into a C∞-diffeomorphism (smooth with smooth inverse). Let
W ⊆ U be an open subset with WW ⊆ U and W = W−1. Then
φ(W ) is open in V and Q := C (K ,W ) is open in P, as it
corresponds to the open subset C (K , φ(W )) of C (K ,V ). The
inversion map ηC(K ,G)|Q on Q corresponds to the map

h : C (K , φ(W ))→ C (K , φ(W )), γ 7→ (φ ◦ η−1
G ◦ φ

−1) ◦ γ,

which is smooth by the preceding fact. Hence
ηC(K ,G)|Q = (φ∗)

−1 ◦ h ◦ φ∗|Q is smooth. Similarly, Conditions (b)
and (c) of the local description of Lie group structures are satisfied.
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Let M be an m-dimensional compact C∞-manifold, E be a locally
convex topological vector space and n ∈ N0 ∪ {∞}. For a chart
φ : Uφ → Vφ of M, j ∈ N0 with j ≤ n, a compact subset K of
Vφ × (Rm)j and a continuous seminorm q on E , a seminorm

‖ · ‖φ, j ,q,K : Cn(M,E )→ [0,∞[, γ 7→ ‖q ◦ d j(f ◦ φ−1)|K‖∞

is obtained. Make Cn(M,E ) a locally convex topological vector
space using these seminorms (the resulting topology is called the
compact-open Cn-topology).

Fact

If also F is a locally convex topological vector space,
k ∈ N0 ∪ {∞} and f : U → F is a Cn+k -map on an open subset
U ⊆ E , then Cn(M,U) is open in Cn(M,E ) and the map

f∗ := Cn(M, f ) : Cn(M,U)→ Cn(M,F ), γ 7→ f ◦ γ

is C k .

As before, this entails:
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Fact

For every Lie group G modelled on a locally convex space E , the
group Cn(M,G ) of all Cn-maps γ : M → G is a Lie group
modelled on Cn(M,E ).

We can use P = Cn(M,U) with the smooth manifold structure
making φ∗ : Cn(M,U)→ Cn(M,V ) ⊆ Cn(M,E ), γ 7→ φ ◦ γ a
C∞-diffeomorphism and Q := Cn(M,W ) as in the preceding
proof.

Helge Glöckner (Paderborn) Introduction to Infinite-Dimensional Lie Groups II



Bibliography
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Glöckner, H. and K.-H. Neeb, “Infinite-Dimensional Lie Groups,” book in
preparation, 2023.
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