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Today: calculus in locally convex spaces

Wednesday and Thursday: Examples and theory of
infinite-dimensional Lie groups
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§1 Locally convex spaces, weak integrals

It's not sufficient for our purposes to consider normed spaces

(E, |l - ||) or Banach spaces. Rather, consider locally convex
topological vector spaces E whose topology comes from a set [ of
seminorms

q: E—[0,00, x q(x).
Thus g(tx) = |t|q(x) for all t € R and x € E; and
q(x+y) <q(x)+qly) forallx,ye€E.

For each x € E'\ {0}, we have g(x) > 0 for some I'. We can
assume that for all p,g € I', the seminorm

x = max{p(x), q(x)}
isin .
A subset U C E is open if, for each x € U, it contains the ball
Bi(x):={y € E: q(y — x) < ¢}

for some g € I and some ¢ > 0.
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Example. Every normed space is a locally convex space, notably
(a) The set C(K,R) of continuous real-valued functions with the

supremum norm || - ||co;
(b) For k € Ny the space C*([0,1], R) of CX-functions
f:[0,1] = R,

f ‘= ma £U) .
[Flles i= max, 9]
Example. The space C*°([0, 1],IR) of smooth functions becomes a
locally convex space if we use the seminorms || - || ¢« for k € Np.

Definition
A sequence (x,)nen in a locally convex space is called a Cauchy
sequence if, for each 0-neighbourhood U C E, there exists N € N

such that
Xm — X, € U forall n,m> N.

If every Cauchy sequence in E is convergent, then E is called
sequentially complete.
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For example, CX([0, 1], R) is sequentially complete for all k € Ny
and also for k = oco.

Consider a < b and a continuous function v: [a, b] — E.

Definition

An element x € E is called a weak integral for  if

b
A(x) = / Ay (1)) dt

for each continuous linear functional A\: E — R.

4

If it exists, the weak integral is unique, as E’ separates points on E
be the Hahn-Banach Theorem. Write fab ~(t) dt := x; thus

A (/ab’y(t) dt) - /ab (D) dt

forall A € E'.
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If E is sequentially complete, then the weak integral fab ~(t) dt
exists in E for each continuous function v: [a, b] — E.

For the proof, consider the Riemann sum
k
S(v,2) = (- ti-1)7(t)

j=1

for a subdivision Z = {a =ty < t; < --- < tx = b} of [a, b], and
A(Z) = max (tj — tjfl).

j:17"'7k
Pick a sequence (Z,)nen of subdivisions with A(Z,) — 0. Since ~y
is uniformly continuous, see that (S(f, Z,))nen is a Cauchy
sequence, hence convergent to some x € E. Applying \ € E’, get

A0 Z0) = S (55 A(5)) = SO, Z0) / (\(y

j=1
and thus A(x) = lima00 A(S(f, Z0)) = [2 A(1(2)) dt
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§2 Cl-curves and the Fundamental Theorem of Calculus

Let E be a locally convex space.

A continuous map 7y: [a, b] — E is called a C'-curve if

+/(£) 1= lim V(s) = (1)

s—t s—t

exists in E for each t € [a, b] and +': [a, b] — E is continuous.

Fundamental Theorem

If v: [a, b] — E is a Cl-curve, then

Notably, the weak integral exists.

Proof. For each continuous linear functional A+ E = R,
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the composition Ao ~y: [a, b] — R is continuous and for t € [a, b],
we have

AN =200 (=20 )

S

as s — t, whence Ao ~: [a, b] = R is a C!-function. Thus

b b
A(1(b)-(3)) = A((B)~A((2)) = / (Aom)/(t) dt = / A(Y(1)) dt,

using the Fundamental Theorem for the real-valued function A o~
and then (x). Hence v(b) — v(a) is the weak integral of ~'.
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3 C'-maps between locally convex spaces
P y

E, F locally convex topological vector spaces
UCE open

Definition (Andrée Bastiani, 1964)

A map f: U — F is called continuously differentiable (or C!) if it
is continuous, the directional derivatives

fix+ty) = f(x)
t

df (x,y) = (Dyf)(x) :

fix+ty) = tll_%

_E t=0

exist for all x € U and y € E, and df: U X E — F,
(x,y) — df(x,y) is continuous.

v

Example. Every constant map f: E — F is C! with df(x,y) = 0.

Example. Every continuous linear map a: E — F is C!, with
da(x,y) = a(y) for all x,y € E.
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In fact, a(x + ty) = a(x) + ta(y) implies that

a(x + ty) - a(x)
t

= a(y) — a(y)

as t — 0.

Example. Every continuous bilinear map 8: E; x E; — F is C!,
with
dB((x1,x2), (y1,¥2)) = B(y1,x2) + B(x1, y2)

for all x1,y1 € E1 and x2, y» € E>. In fact,

B(xi+tyr, xa+ty2) = B(x1, %) +tB(y1, x2)+tB(x1, y2) +t2B(y1, o)
implies that

B(x1 + tyr, x2 + tya) — B(x1, x2)
t

= B(y1, %) +B(x1, y2) +tB(y1, y2)

converges to B(y1,x2) + B(x1,y2) as t — 0.
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Consider a Cl-map f: E D U — E as before.

Mean Value Theorem

Let x,y € U. If x+ t(y — x) € U for all t € [0,1], then

1
fly) —f(x) :/0 df (x + t(y — x),y — x) dt .

Proof. Apply the Fundamental Theorem to ~: [0,1] — F,
Y(t) := f(x + t(y — x)) with 7/(t) = df(x + t(y — x),y — x). O
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Define UM := {(x,y,t) € Ux E x R: x + ty € U}

Lemma
If f: U— Fis C!, then the map

f(x+tyt)—f(x) if t ?é 0:

. gyl
A U — F, (X,y,t)»—){ dF (. y) TSP

is continuous.

On the open set t # 0, this follows from the continuity of f. For
(Xaya t) close to (XanOa 0),

1
A (x,y,t) = / df (x + sty,y) ds
0

by the Mean Value Theorem; integrals depend continuously on
parameters (x,y, t).
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Consider a Cl-map f: E D U — F as before and a Cl-map
g: V — Y to a locally convex space Y, defined on an open subet
V C F such that f(U) C V.

The composition go f: U — Y, x +— g(f(x)) is C! with

d(g o f)(x,y) = dg(f(x),df(x,y)) forall (x,y) e UxE.

Proof. We have

g(F(xt 1)~ g(F())  E(F00)+ e FR=T) — ()
t t
e(F(x). AWy, 1), 1)

for t # 0, which converges to
gM(F(x), Fl(x,y,0),0) = dg(f(x), df (x,y))

as t — 0.
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If f: ED U — Fis C1, then the continuous map
f'(x) := df(x,-): E — F is linear for each x € U.

We have df (x,0y) = df(x,0) = 0 = 0df(x, y) and for t # 0

f(x + sty) — f(x) f(x + sty) — f(x)

df (x, ty) = lim < t lim " (x,¥)
For x e U and y1,y» € E,
Fix+tn+ ) — F() _ Flx+ 1t + ) — Fx + )
t t
f tyr) — f
Lt 1) — ()

t
= UG+ tyr, yo, 1) + M (x 1, 1)

converges both to df(x,y; + y2) and
f[l](x,yz, 0) + f[l](x,yl, 0) = df(x,y1) + df(x,y2) as t — 0. The
limits must coincide.

Helge Gléckner (Paderborn) Introduction to Infinite-Dimensional Lie Groups



Amapf: EDU — HjeJ F; =: F to a product of locally convex

spaces with components f;: U — F; is Cl if and only if each f; is
Cl. In this case,

df(x,y) = (dfj(x,y))jes forallxec Uandy € E. (1)

Proof. The projection pr;: F — Fj, (vi)ics = y; onto the jth
component is continuous and linear. Hence, if f is C!, then also
fi = prjof is C! and

:(l'zi)(xa}/) = d(pr;)(f(x),df(x,y)) = pr;(df(x,y)), whence (1)

If all components are C!, then

f(x+ ty) — f(x) _ <fj(x+ ty) — fj(x)>
jed

t t

converges to (dfi(x,y))jes as t — 0 since this holds
componen-wise.
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Let f: ED U — F be amap and Fy C F be a closed vector
subspace such that f(U) C Fo. Then f is C! if and only if
flFo: U — Fyis so, and df(x,y) = d(f|F)(x, y) for all
(x,y) € U x E in this case.

Proof. The inclusion map j: Fg — F is continuous and linear.
Hence, if f\FO is C1 then also f =jo f]FO, with

df (x,y) = dj(f|"(x), d(f|)(x,y)) = j(d(f|"®)(x,y)) = d(f|")(x. ).
If fis C!, then f|Fo is continuous and

f(x+ty) — f(x)
t

— df(x,y)

in F as t — 0. Note that the difference quotients are in Fg; since
Fo is closed, the limit df(x,y) is in Fo as well and the difference

quotients, which coincide with those of f|f, converge to df(x, y)
also in Fg using the induced topology.
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The preceding two facts concerning mappings into products and
mappings into closed vector subspaces hold just as well with
C*-maps in place of Cl-maps, and we shall not restate them.
Likewise the Chain Rule (compositions of composable C*-maps are
Ck). Higher order differentiability is defined as follows.
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84 Higher order differentiability

Let £ and F be locally convex spaces and U C E be an open
subset. Let k € N.

Definition

A map f: U— Fiscalled Ckt1ifitis Cl and df: U x E — F is
ck.

RENEILS

One can shows that f is C* if and only if f is continuous, the
iterated directional derivatives

djf(x,yl,...,yj) = (D},J.---Dylf)(x)

exist at x € U for all j € N with j < k and y1,...,y; € E, and
dif: U x E/ — F is continuous.
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Example. Every continuous linear map a: E — F is CX for all
k € N and hence smooth.

We already know that «v is C! and that da: E x E — F is the map

(x,y) = aly).

Thus da is a continuous linear map and hence C¥ by induction.
By definition, o is Ck+1.

Example. Every continuous bilinear map 8: Ey x E» — F is C for
all k € N and hence smooth.

We already know that 8 is C! and that
dg: (El X E2) X (El X E2) — F is the map

((x1,%2), (y1,¥2)) = B(y1, x2) + B(x1,¥2) -

Thus d8 = B o ay + B o ap with continuous linear maps
a1, a0 (Ey x E3)?> — E; x E>. The latter being CK, also dj is C*,
by the Chain Rule. Hence 5 is Ck+1.
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Consider a locally convex algebra A (a locally convex space A,
endowed with a continuous bilinear multiplication A x A — A such
that the assocuative law x(yz) = (xy)z holds and there exists a
neutral element 1 for the multiplication, 1x = x1 = x for all x € A.

Definition

If the unit group A* :={x € A: (3y € A) xy = yx = 1} is open
in A and the inversion map ¢: A — A, x — x~1 is continuous,
then A is called a continuous inverse algebra or cia.

Fact

| \

If Ais a cia, then the inversion map ¢: A* — A is smooth. Thus
A* is a Lie group.

N,

Proof. For all a, b € A*, we have
bt —at=b1a—b)al.

Applying thistoa=xand y = x+ ty for x € A* and y € A, we
get
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(x+ty) ' —x7!
t
as t — 0. Thus d: exists and

=(x+ty) H—y)x P> —x"Tyx !

di(x,y) = =x"tyx 7t = —u(x)yu(x)

is continuous in (x, y), whence ¢ is CL. If v is C* by induction, we
deduce using the Chain Rule and smoothness of the bilinear
algebra multiplication that dv is CX, whence ¢ is CK*1. We also

used that a map to a product is C¥ if all of its components are so.

Example. Every Banach algebra A (e.g., CX([0,1],R)) is a cia and
hence A* a Lie group.

Example. C*([0,1],R) is a cia.
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§5 Comparison with calculus in normed spaces

Let (E,|| - ||g) and (F,|| - ||[r) be Banach spaces, U C E be an
open subset and 7: U — F be a map. Say that f is differentiable
ast x € U if there exists a continuous linear map f'(x): E — F
such that the remainder term in the affine-linear approximation
Fly) = f(x)+ £ ()(y = x) + R(y)

. . Rly) _

satisfies lim ———— =
y=x|ly = x|[e

The f is continuous at x and f’(x) is unique as

f'(x)(y) = (D,f)(x) forally€E.

Call f continuously Fréchet differentiable (or FC?) if f is
differentiable at each x € U and f": U — (L(E, F), || - |lop) is
continuous. If f is FC! and ' is FCk, say that f is FCk+1,

If fis FCk, then fis CK. If fis Ck*1, then f is FCK.

Notably, same notion of smoothness!

Helge Gléckner (Paderborn) Introduction to Infinite-Dimensional Lie Groups



Bibliography

@ Bastiani, A., Applications différentiables et variétés différentiables de
dimension infinie, J. Anal. Math. 13 (1964), 1-114.

@ Glockner, H., Infinite-dimensional Lie groups without completeness
restrictions, pp. 43-59 in: Strasburger, A. et al. (eds.), “Geometry and
Analysis on Finite- and Infinite-Dimensional Lie Groups,” Banach Center
Publications 55, Warsaw, 2002.

@ Glockner, H., Algebras whose groups of units are Lie groups, Stud. Math.
153 (2002), 147-177.

@ Glockner, H. and K.-H. Neeb, “Infinite-Dimensional Lie Groups,” book in
preparation, 2023.

@ Milnor, J., Remarks on infinite-dimensional Lie groups, pp.1007-1057 in:
B.S. DeWitt and R. Stora (eds.), “Relativité, groupes et topologie II,”
North-Holland, Amsterdam, 1984.

@ Neeb, K.-H., Towards a Lie theory of locally convex groups, Jpn. J. Math.
1 (2006), 291-468.

Helge Gléckner (Paderborn) Introduction to Infinite-Dimensional Lie Groups



