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Overview

Today: calculus in locally convex spaces

Wednesday and Thursday: Examples and theory of
infinite-dimensional Lie groups
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§1 Locally convex spaces, weak integrals

It’s not sufficient for our purposes to consider normed spaces
(E , ‖ · ‖) or Banach spaces. Rather, consider locally convex
topological vector spaces E whose topology comes from a set Γ of
seminorms

q : E → [0,∞[, x 7→ q(x) .

Thus q(tx) = |t|q(x) for all t ∈ R and x ∈ E ; and

q(x + y) ≤ q(x) + q(y) for all x , y ∈ E .

For each x ∈ E \ {0}, we have q(x) > 0 for some Γ. We can
assume that for all p, q ∈ Γ, the seminorm

x 7→ max{p(x), q(x)}

is in Γ.

A subset U ⊆ E is open if, for each x ∈ U, it contains the ball

Bq
ε (x) := {y ∈ E : q(y − x) < ε}

for some q ∈ Γ and some ε > 0.
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Example. Every normed space is a locally convex space, notably

(a) The set C (K ,R) of continuous real-valued functions with the
supremum norm ‖ · ‖∞;

(b) For k ∈ N0 the space C k([0, 1],R) of C k -functions
f : [0, 1]→ R,

‖f ‖C k := max
j=0,...,k

‖f (j)‖∞ .

Example. The space C∞([0, 1],R) of smooth functions becomes a
locally convex space if we use the seminorms ‖ · ‖C k for k ∈ N0.

Definition

A sequence (xn)n∈N in a locally convex space is called a Cauchy

sequence if, for each 0-neighbourhood U ⊆ E , there exists N ∈ N
such that

xm − xn ∈ U for all n,m ≥ N.

If every Cauchy sequence in E is convergent, then E is called
sequentially complete.
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For example, C k([0, 1],R) is sequentially complete for all k ∈ N0

and also for k =∞.

Consider a < b and a continuous function γ : [a, b]→ E .

Definition

An element x ∈ E is called a weak integral for γ if

λ(x) =

∫ b

a
λ(γ(t)) dt

for each continuous linear functional λ : E → R.

If it exists, the weak integral is unique, as E ′ separates points on E
be the Hahn-Banach Theorem. Write

∫ b
a γ(t) dt := x ; thus

λ

(∫ b

a
γ(t) dt

)
=

∫ b

a
λ(γ(t)) dt

for all λ ∈ E ′.
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Fact

If E is sequentially complete, then the weak integral
∫ b
a γ(t) dt

exists in E for each continuous function γ : [a, b]→ E .

For the proof, consider the Riemann sum

S(γ,Z ) :=
k∑

j=1

(tj − tj−1) γ(tj)

for a subdivision Z = {a = t0 < t1 < · · · < tk = b} of [a, b], and

∆(Z ) := max
j=1,...,k

(tj − tj−1).

Pick a sequence (Zn)n∈N of subdivisions with ∆(Zn)→ 0. Since γ
is uniformly continuous, see that (S(f ,Zn))n∈N is a Cauchy
sequence, hence convergent to some x ∈ E . Applying λ ∈ E ′, get

λ(S(γ,Zn)) =
k∑

j=1

(tj−tj−1)λ(γ(tj)) = S(λ◦γ,Zn)→
∫ b

a
(λ(γ(t)) dt

and thus λ(x) = limn→∞ λ(S(f ,Zn)) =
∫ b
a λ(γ(t)) dt.
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§2 C 1-curves and the Fundamental Theorem of Calculus

Let E be a locally convex space.

Definition

A continuous map γ : [a, b]→ E is called a C 1-curve if

γ′(t) := lim
s→t

γ(s)− γ(t)

s − t

exists in E for each t ∈ [a, b] and γ′ : [a, b]→ E is continuous.

Fundamental Theorem

If γ : [a, b]→ E is a C 1-curve, then

γ(b)− γ(a) =

∫ b

a
γ′(t) dt .

Notably, the weak integral exists.

Proof. For each continuous linear functional λ : E → R,
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the composition λ ◦ γ : [a, b]→ R is continuous and for t ∈ [a, b],
we have

λ(γ(s))− λ(γ(t))

s − t
= λ

(
γ(s)− γ(t)

s − t

)
→ λ(γ′(t)) (∗)

as s → t, whence λ ◦ γ : [a, b]→ R is a C 1-function. Thus

λ(γ(b)−γ(a)) = λ(γ(b))−λ(γ(a)) =

∫ b

a
(λ◦γ)′(t) dt =

∫ b

a
λ(γ′(t)) dt,

using the Fundamental Theorem for the real-valued function λ ◦ γ
and then (∗). Hence γ(b)− γ(a) is the weak integral of γ′.
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§3 C 1-maps between locally convex spaces

E , F locally convex topological vector spaces

U ⊆ E open

Definition (Andrée Bastiani, 1964)

A map f : U → F is called continuously differentiable (or C 1) if it
is continuous, the directional derivatives

df (x , y) := (Dy f )(x) :=
d

dt

∣∣∣
t=0

f (x + ty) = lim
t→0

f (x + ty)− f (x)

t

exist for all x ∈ U and y ∈ E , and df : U × E → F ,
(x , y) 7→ df (x , y) is continuous.

Example. Every constant map f : E → F is C 1 with df (x , y) = 0.

Example. Every continuous linear map α : E → F is C 1, with
dα(x , y) = α(y) for all x , y ∈ E .
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In fact, α(x + ty) = α(x) + tα(y) implies that

α(x + ty)− α(x)

t
= α(y)→ α(y)

as t → 0.

Example. Every continuous bilinear map β : E1 × E2 → F is C 1,
with

dβ((x1, x2), (y1, y2)) = β(y1, x2) + β(x1, y2)

for all x1, y1 ∈ E1 and x2, y2 ∈ E2. In fact,

β(x1+ty1, x2+ty2) = β(x1, x2)+tβ(y1, x2)+tβ(x1, y2)+t2β(y1, y2)

implies that

β(x1 + ty1, x2 + ty2)− β(x1, x2)

t
= β(y1, x2)+β(x1, y2)+tβ(y1, y2)

converges to β(y1, x2) + β(x1, y2) as t → 0.
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Consider a C 1-map f : E ⊇ U → E as before.

Mean Value Theorem

Let x , y ∈ U. If x + t(y − x) ∈ U for all t ∈ [0, 1], then

f (y)− f (x) =

∫ 1

0
df (x + t(y − x), y − x) dt .

Proof. Apply the Fundamental Theorem to γ : [0, 1]→ F ,
γ(t) := f (x + t(y − x)) with γ′(t) = df (x + t(y − x), y − x). �
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Define U [1] := {(x , y , t) ∈ U × E × R : x + ty ∈ U}

Lemma

If f : U → F is C 1, then the map

f [1] : U [1] → F , (x , y , t) 7→
{

f (x+ty)−f (x)
t if t 6= 0;

df (x , y) if t = 0

is continuous.

On the open set t 6= 0, this follows from the continuity of f . For
(x , y , t) close to (x0, y0, 0),

f [1](x , y , t) =

∫ 1

0
df (x + sty , y) ds

by the Mean Value Theorem; integrals depend continuously on
parameters (x , y , t).
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Consider a C 1-map f : E ⊇ U → F as before and a C 1-map
g : V → Y to a locally convex space Y , defined on an open subet
V ⊆ F such that f (U) ⊆ V .

Chain Rule

The composition g ◦ f : U → Y , x 7→ g(f (x)) is C 1 with

d(g ◦ f )(x , y) = dg(f (x), df (x , y)) for all (x , y) ∈ U × E .

Proof. We have

g(f (x + ty))− g(f (x))

t
=

g
(
f (x) + t f (x+ty)−f (x)

t

)
− f (x)

t

= g [1](f (x), f [1](x , y , t), t)

for t 6= 0, which converges to

g [1](f (x), f [1](x , y , 0), 0) = dg(f (x), df (x , y))

as t → 0.
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Remark

If f : E ⊇ U → F is C 1, then the continuous map
f ′(x) := df (x , ·) : E → F is linear for each x ∈ U.

We have df (x , 0y) = df (x , 0) = 0 = 0df (x , y) and for t 6= 0

df (x , ty) = lim
s→0

f (x + sty)− f (x)

s
= t lim

s→0

f (x + sty)− f (x)

st
= tdf (x , y).

For x ∈ U and y1, y2 ∈ E ,

f (x + ty1 + ty2)− f (x)

t
=

f (x + ty1 + ty2)− f (x + ty1)

t

+
f (x + ty1)− f (x)

t

= f [1](x + ty1, y2, t) + f [1](x , y1, t)

converges both to df (x , y1 + y2) and
f [1](x , y2, 0) + f [1](x , y1, 0) = df (x , y1) + df (x , y2) as t → 0. The
limits must coincide.
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Fact

A map f : E ⊇ U →
∏

j∈J Fj =: F to a product of locally convex

spaces with components fj : U → Fj is C 1 if and only if each fj is
C 1. In this case,

df (x , y) = (dfj(x , y))j∈J for all x ∈ U and y ∈ E . (1)

Proof. The projection prj : F → Fj , (yi )i∈J 7→ yj onto the jth
component is continuous and linear. Hence, if f is C 1, then also
fj = prj ◦f is C 1 and
d(fj)(x , y) = d(prj)(f (x), df (x , y)) = prj(df (x , y)), whence (1)
holds.

If all components are C 1, then

f (x + ty)− f (x)

t
=

(
fj(x + ty)− fj(x)

t

)
j∈J

converges to (dfj(x , y))j∈J as t → 0 since this holds
componen-wise.

Helge Glöckner (Paderborn) Introduction to Infinite-Dimensional Lie Groups



Fact

Let f : E ⊇ U → F be a map and F0 ⊆ F be a closed vector
subspace such that f (U) ⊆ F0. Then f is C 1 if and only if
f |F0 : U → F0 is so, and df (x , y) = d(f |F0)(x , y) for all
(x , y) ∈ U × E in this case.

Proof. The inclusion map j : F0 → F is continuous and linear.
Hence, if f |F0 is C 1, then also f = j ◦ f |F0 , with

df (x , y) = dj(f |F0(x), d(f |F0)(x , y)) = j(d(f |F0)(x , y)) = d(f |F0)(x , y).

If f is C 1, then f |F0 is continuous and

f (x + ty)− f (x)

t
→ df (x , y)

in F as t → 0. Note that the difference quotients are in F0; since
F0 is closed, the limit df (x , y) is in F0 as well and the difference
quotients, which coincide with those of f |F0 , converge to df (x , y)
also in F0 using the induced topology.
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The preceding two facts concerning mappings into products and
mappings into closed vector subspaces hold just as well with
C k -maps in place of C 1-maps, and we shall not restate them.
Likewise the Chain Rule (compositions of composable C k -maps are
C k). Higher order differentiability is defined as follows.
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§4 Higher order differentiability

Let E and F be locally convex spaces and U ⊆ E be an open
subset. Let k ∈ N.

Definition

A map f : U → F is called C k+1 if it is C 1 and df : U × E → F is
C k .

Remark

One can shows that f is C k if and only if f is continuous, the
iterated directional derivatives

d j f (x , y1, . . . , yj) := (Dyj · · ·Dy1f )(x)

exist at x ∈ U for all j ∈ N with j ≤ k and y1, . . . , yj ∈ E , and
d j f : U × E j → F is continuous.
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Example. Every continuous linear map α : E → F is C k for all
k ∈ N and hence smooth.

We already know that α is C 1 and that dα : E ×E → F is the map

(x , y) 7→ α(y) .

Thus dα is a continuous linear map and hence C k by induction.
By definition, α is C k+1.

Example. Every continuous bilinear map β : E1× E2 → F is C k for
all k ∈ N and hence smooth.

We already know that β is C 1 and that
dβ : (E1 × E2)× (E1 × E2)→ F is the map

((x1, x2), (y1, y2)) 7→ β(y1, x2) + β(x1, y2) .

Thus dβ = β ◦ α1 + β ◦ α2 with continuous linear maps
α1, α2 : (E1 × E2)2 → E1 × E2. The latter being C k , also dβ is C k ,
by the Chain Rule. Hence β is C k+1.
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Consider a locally convex algebra A (a locally convex space A,
endowed with a continuous bilinear multiplication A× A→ A such
that the assocuative law x(yz) = (xy)z holds and there exists a
neutral element 1 for the multiplication, 1x = x1 = x for all x ∈ A.

Definition

If the unit group A× := {x ∈ A : (∃y ∈ A) xy = yx = 1} is open
in A and the inversion map ι : A× → A, x 7→ x−1 is continuous,
then A is called a continuous inverse algebra or cia.

Fact

If A is a cia, then the inversion map ι : A× → A is smooth. Thus
A× is a Lie group.

Proof. For all a, b ∈ A×, we have

b−1 − a−1 = b−1(a− b)a−1 .

Applying this to a = x and y = x + ty for x ∈ A× and y ∈ A, we
get
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(x + ty)−1 − x−1

t
= (x + ty)−1(−y)x−1 → −x−1yx−1

as t → 0. Thus dι exists and

dι(x , y) = −x−1yx−1 = −ι(x)y ι(x)

is continuous in (x , y), whence ι is C 1. If ι is C k by induction, we
deduce using the Chain Rule and smoothness of the bilinear
algebra multiplication that dι is C k , whence ι is C k+1. We also
used that a map to a product is C k if all of its components are so.

Example. Every Banach algebra A (e.g., C k([0, 1],R)) is a cia and
hence A× a Lie group.

Example. C∞([0, 1],R) is a cia.
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§5 Comparison with calculus in normed spaces

Let (E , ‖ · ‖E ) and (F , ‖ · ‖F ) be Banach spaces, U ⊆ E be an
open subset and f : U → F be a map. Say that f is differentiable
ast x ∈ U if there exists a continuous linear map f ′(x) : E → F
such that the remainder term in the affine-linear approximation

f (y) = f (x) + f ′(x)(y − x) + R(y)

satisfies lim
y→x

R(y)

‖y − x‖E
= 0 .

The f is continuous at x and f ′(x) is unique as

f ′(x)(y) = (Dy f )(x) for all y ∈ E .

Call f continuously Fréchet differentiable (or FC 1) if f is
differentiable at each x ∈ U and f ′ : U → (L(E ,F ), ‖ · ‖op) is
continuous. If f is FC 1 and f ′ is FC k , say that f is FC k+1.

Fact

If f is FC k , then f is C k . If f is C k+1, then f is FC k .

Notably, same notion of smoothness!
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