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UNIVERSALITY IN RANDOM MATRICES

Recall: Let .# be a space of Hermitean matrices (M = .#") of size n x n:
M = {M € Mat(n,n;C), My = M};}

Map =Xap +1Yap, s, Xab =Xpa s Yap = —Ypa (1)
dim.# = (n+1)—|—g(n—1):n2 (2)
dM := H dXao [  dXawpdYe (3)
a=1 1<a<b<n U
al t . d
Probability measure: M= U( ~"n> U Aﬁzi)ﬂdﬁ
du(M) = %e—ATfV(M) M = Lo AT Vi) gy 7 (4)

> nomall2gf™Non

Induced j.p.d.f. on eigenvalues:

1 h 1
K= 1<139< (o =) l—lle_AV(xa)dxa B —det |Kin (xXas %) 1<a,b<n (5)
SAsn “ -/\t/(r‘
where DMW W J e (x)r (x)o‘(X = S K
! ()50) T A rer) pu()pn15) — PP (3
K, (x,y) = AM pi\x)piy) i _A YOV pr(X)pn—1(Y) —pn(Y)Pn—1(X 6
(x )= 2 Jgé pjl[2 : 2 1Pn_i|?(x—) (6)

A kn B0
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DYSON’S THEOREM

Suppose that a kernel K(x,y) has the properties of reproducibility and normalization
(ton). Then
(a) /Rdet[K(xa,xb)]%bgr dx, = (n—r+1)det[K(xq,%p) |0 p<r—1 (7)
(b) - det|K (xq,%p )|ap<n X1 - - Ay = (n— 1) det|K (xa, Xp)]a,p<r—1 (8)
y

REMARK 0.1

Dyson’s theorem says that the JPDF and all the marginals (partial integrations
thereof) are in the form of a determinant built out of the same kernel =
determinantal random point fields [17].
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REMARK 0.2

The whole statistical information is contained in the Kernel expressed by orthogonal
polynomials.

EXAMPLE 0.1 (DENSITY OF EIGENVALUES)

From the JPDF we integrate all variables except one; this gives the density of
eigenvalues (i.e. the expected number of eigenvalues in the interval [x,x+ dx].
According to Dyson’s theorem

2

n

Pu(x) = Ky (x,x) = W Y 2 (X>2
j=0 Pl

4
EXAMPLE 0.2 (PAIR CORRELATIONS OF EIGENVALUES)

From the JPDF we integrate all variables except 2; this gives the correlations of
eigenvalues (i.e. the expected number of eigenvalues in the interval

[, x +dx| x [y,y+dy].

(9)

(x,)

by | = Kn (o) Ka(y,y) = Ka(x,y)° (10)

Y, X

Py —der| e o

| I—|

y
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EXAMPLE: GAUSSIAN UNITARY ENSEMBLE

Consider the simplest example V- >§ N\-= N=n
=
1 — N a2 reduced meas. - 2 N x2
du(M) = ——e 2 dM — 0 dpe(®) =[] —x0) [ Je 2V dx (11)
n j<k Jj=1

Note: the entries of M;; are independent and normal but the eigenvalues x; are not

independent.
If H,(x) are the (monic) Hermite orthogonal polynomials

/H We 2 dx = by s Ho(xX) = X" +... . hy— /270! (12)
then the kernel is
N n—1 \/N
K, (x,y) = e~ 1 (+7) H,(vVNx)H,(VN 13
(x,) ngn!()(y) (13)

The density of eigennvalues can be computed in closed form and has a limit as
n =N — oo given by the Wigner semicircle law

(14)
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EXAMPLE: LAGUERRE UNITARY ENSEMBLE

Consider now the positive semidefinite Hermitean matrices M with the probability
measure

1 reauced meas. — n — .
du(M) = Z—(detM)ae_NTerM duced ¢ du,(X) = I |(xj—xk)2| |xae Nidx;  (15)
n j<k j=1

If L,,(x) are the Laguerre orthogonal polynomials:

/ L (LD (5% dx = hy S, Iy = T AT (16)
R_|_ n'
_ d n
(a) X “e* d" —x.n+o\ __ —o (a o 1) n+o
L, (x) = o (e7X"%) =x X (17)
then the kernel is
(o) (a)
x L Nx)L: " (N
K\ (x,y) =N"le T D(a41) Z ( fx)+l () (18)

and the density tends asymptotically to pe(x .(Marchenko Pastur):
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UNIVERSALITY OF THE KERNEL

For the GUE (Hermite case) one can prove the
Sine-kernel (Universality) in the Bulk

-, &(FJ"‘( Mq{eua-ﬂar“
lim K(MMH n ): sin (7(n — &)

n—eo 1P (xg ) np(xg)’ ’ np (xo) w(n—:¢)
Airy-kernel (Universality) at the Edge: ((fou Hmm‘&)

im 1k, < V% 5. ﬂn) _ AI(G)AI'(n) - AT(E)Ai(n)

N—es NS 2N &=
::‘ECAi(§717)
The notion of universality is akin to the Central limit theorem in statistics:
L1 X — NX;

ov/N

— N(0,1)

where X; are 11D random variables (with finite second moment < (X; — X;)? >= 0?)

Note the scaling and the scale of the fluctuations (i.e. v/N).

(19)

(20)

(21)

(22)

For RMM, the universality classes exhibit themselves in suitable scaling regimes and

spectral regions.
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UNIVERSALITY (EDGE)

We are “zooming in” to the edge of the spectrum at x = \/2; for example the density
of eigenvalues is

1 V2

N3—pN<¢é+ v2 )N (47(8))" — AP (&) (23)
2N3 e

N=20 N=70
0.8

0.7

0.6

0.5

0.4

FIGURE: Comparison between the actual density and the Airy density (in red )

The first proof that the kernels of any (generic) Random Matrix Unitary model enjoys
the same Sine kernel and Airy kernel universal behaviour (independently of the details

of the potential V) was the main accomplishment of the theory of OPS and the
nonlinear steepest descent method in the late '90 by
Deift-Kriecherbauer-McLaughlin-Venakides-Zhou [12].
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Application: Toda equations '
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Dynamical system n particles xi,...,x, on the line

12 5 n—1
H = 5 le] _i_kzlexk_xk—l
]: —_—

. e Xp_1—X Xk —X
X = Pk, Pk =X = k=17 _ @tk ™*k+1

Flaschka-Manakov: introduce new variables

ay —‘%, by = %eXk_;k_l
then arrange them into matrices:
-~ a; by 0 0 7 Y b1 0
by ay b ' b 0 b
7= 0 b a o |"B=| 0o -m o
- by
L 0 0 b, ap 0 0

(24)

(25)

(26)

(27)
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The equations of motion become: M[L(ﬂ] ™ (L.Cf“)

d
—J =[B,J] = The spectrum of J is conserved (28)

dr °
(t) — N2¢
( 20 &) iud (JM((,\ M)) O

which are equivalent to

by = bj(anp1 —an)  an=2(b2—b2 ). (29)
Suppose now we have infinitely many particles and arrange them into the same
(semi-infinite) matrices: multiply J on the left by D and on the right by D~ with
D :=diag(1,by,by,...,by,...) (30)
Ca | 0 0 T
b% a 1
7=l 0 B a . 0 (31)
1
0 0 b, a |
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This is the Jacobi matrix describing a three-term recurrence relation! By Favard’s
theorem, there is a measure du(z;t) (depending on t!') whose monic OPS satisfies

= 0O
2Pn(2) = Pus1(2) + ani1Pn(2) +bopu1(z), n=0,1,.... P (32)
Pe =4

/R Pu(2)Pm(2) A (z31) = I (1) S (33)

The measure du(z;t) evolves as follows:

d(z;1) = e du(z;0) (34)

Thus, the solutions of the semi—infinite Toda lattice chain are parametrized by positive
measures on the real line.

v
REMARK 0.3 (HINT ON HOW TO PROVE IT)

The orthonormal polynomials satisy the relation (in matrix form) z7(z;¢) = J (1) (z;1).
@ Show that 0,7 = —(Jy+2J_)7, where J =J, +Jy+J_ are the three diagonals.
@ Compute d;J and compare with [J,B] where B=J, —J_.

il
[i 575;7,—”0!/4 ‘éézm

T,

A\

.
\
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OPS AND KP

In the Toda example the equations can be shown to be equivalent to the following for
the Hankel matrix of moments (note change of letter (x)= 2¢ for convenience)

(35)
(36)
(Hirota bilinear form)
Consider an arbitrary measure (e.g. cpctly supported) du(z) and define
) = [ 0T ) (37)
Define similarly
2,3 n—1 n—1
Ta(x,y,t) := det [/ za+bexz+yzl+t7dﬂ(zf)] = det [Haer(x,yaf)] (38)
—_— R a,b=0 a,b=0

Then one can prove

The function u(x,y,t) := 29 1In7,(x,y,t) satifies the Kadomtsev-Petviashvili equation

W&tux — uxxx)x = 3% (39)

- ———————— o I B — | S =
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RATIONAL SOLUTIONS OF PAINLEVE EQUATIONS

The Painlevé equations are a class of 2nd order ODEs

(V=R yt) e C)s 33 (40)

that appear recurrently in math-phys: they have the

PAINLEVE PROPERTY (SCHEMATIZING)

The member of the general family of solutions has only poles for its movable
singularities (i.e., singularities whose position is not already evident in the equation
and depend on the initial conditions).
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dzy

C’ ;;;f ::(iy2-+-t
d2
Q d72y:2y3+zy+a
d*y dy\*> dy y oy
— =t = | —y—=+ot o
@ Ve (dt) Yar T —|—[3y—|—06t—|—}/t

42 dy\*
® y—y:%(—y) +B+2(7 — )y 4 + 3
dy (1 1 dy\*> ldy  (y—1) B Yy, Y+1)
() (Z2) -2 Ll A
o dr? (2y+y—1)<dt> (a2 (ay+y YT y—1
L, 1o dy\ > L, 11 Yy,
2\y y—=1 y—t/) \dt t t—1 y—t) dt
)

t r—1 t(t—1)
e (‘”’3 2”<y—1>2+5<y—r>2>

RATIONAL SOLUTIONS

Except PI, all have special rational (but also algebraic and other types) solutions.
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RATIONAL SOLUTIONS OF PII

d2u(t
dbzg ) = 2u(t)® +tu(t) + a, (41)
Rational solution iff oo =n € Z;
d Yn_l(l‘)
n [) = __'1 112
un (1) 4, log v, () (42)

with Y, the Vorob'ev—Yablonski polynomials of degree n(n+1)/2.

Va1 (01 (1) = 020 =4[V (Y = (Y4(0)?], n>1,16C (VY)
with Y()(l‘) = I,Yl(t) = 1.

The regularity of the pattern of zeroes
of Y,(t) observed numerically by Clark-
son ['03], and explained (asymptoti-
cally and analytically ) by Buckingham—
Miller ['14], B—Bothner ['14]; gener-
alized to the hierarchy in Balogh-B—
Bothner ['15].
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CONNECTION WITH OPS

THEOREM 0.4 ([5])

For any n > 1, we have

[(zk",“r det [wesj2(0)]) (43)

||:|

where |y| denotes the floor function of a real numbery and

3

exp [—— — tx] Z i (x (44)

or equivalently

o =, DS (45)
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WHERE ARE THE POLES?

@ Poles of rational solutions are zeros of V-Y polynomials;
@ Squares of V-Y are Hankel determinants of moments;

@ Hankel dets’ of moments are zero iff the n-th OP does not exist.
Thus:

@ Study the solvability (for large n) of the Fokas-lts-Kitaev RHP; this can be done
via the Deift—Zhou method;

@ Poles can only occur if the number of cuts of the g-function > 2

-~ —

On[’c) = A z“
(e —

Haclel/

---.-....--.
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STARZ!

FIGURE: The roots of the rescaled higher Vorob’ev-Yablonski polynomials, corresponding to
rational solutions of higher versions of the PIl equation.
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CONCLUSIONS

There are generalizations

© Multiple orthogonal polynomials: related to multi-matrix models, simultaneous
Padé approximations,

@ OPS emerge from Padé problems (approximation by rational functions). If the
function we approximate is periodic it is natural to use periodic functions (ratio of
periodic functions). If the function is elliptic (doubly periodic), it is natural to use

ratio of elliptic functions g, & etc.
A new theory of Padé approximation theory (orthogonal sections) on higher genus

surfaces begins q@’
© The topic is connected with potential theory on the plane and on algebraic

surfaceg 8D
W) = @ (2 "2Y)

51 5
W(;)=f o ) (7t
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