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THE HOW

For all classical OPS (Hermite, Laguerre, Jacobi, Charlier, et al.) the n–th polynomial
admits an integral representation. For example Hermite:

Hn(x) =
n!
2n

∮
|w|=1

w−n−1e2xw−w2 dw
2iπ

(1)

Upon rescaling

hn(x) := n−
n
2 Hn(

√
nx) (2)

hn(x) =
n!n−

n
2

2n2iπ

∮
|w|=1

w−n−1e2
√

nxw−w2
dw =

n!n−n

2n2iπ

∮
|ξ |=1

ξ
−n−1e−n(ξ 2−2xξ ) dξ = (3)

=
n!n−n

2n2iπ

∮
|ξ |=1

e−n(ξ 2−2xξ+lnξ ) dξ

ξ
(4)

Then the asymptotics proceeds from a version of the steepest descent analysis of
integrals with a parameter (classical).
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A QUICK RECAP OF STEEPEST DESCENT METHODS

1 Write the integral in the form ∫
Γ

g(z)e−ΛV(z) dz (5)

where Λ →+∞ is the large parameter and Γ is a contour in the complex plane
homotopic to the original one in C minus all singularities of g,eΛV(z).

2 The integral is dominated (a version of stationary phase arguments) by pieces of
Γ near some of the critical points. Formally, if x0 is a critical point V ′(x0) = 0
then (assuming V ′′(x0) ̸= 0)

∫
Γ

g(z)e−ΛV(z) dz ∼ g(x0)e−ΛV(x0)

√
2π

ΛV ′′(x0)

(
1+O(Λ−1)

)
(6)

The dominant behaviour is the one given by the critical point where ℜV(x0) is
maximal (if several have the same, we take the sum of as many terms).

3 The real problem is to decide which critical points are really to be used. This
depends on the following:

Find a homotopy representative of Γ that crosses only those critical points in a
direction of steepest descent, where ℜV has a local/global min.
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Landscape for Hermite’s case: V(ξ ) = ξ 2 −2xξ + lnξ

FIGURE: The red arcs are where the imaginary part is constant and the real part has a minimum at
the critical point. The black arcs have the property that the real part of V(ξ ) is strictly bigger. If

we put the “sea level” of the real part at zero where the critical point ξ = x−
√

x2−2
2 is, the

landscape is the one depicted. The blue parts are the sea (at different depths), the green parts are
the “land”.
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ASYMPTOTICS IN THE NEW MILLENNIUM

For general OPS we do not have an integral representation and classical steepest
descent analysis is not a viable strategy.

Starting with the seminal works of Fokas-Its-Kitaev and the fundamental
asymptotic methods of Deift-Zhou in the late 90’s a new paradigm for studying
OPS (and many other problems based on the inverse-scattering method) has
emerged based on the notion of Riemann Hilbert Problem.

The method is nowadays referred to variably as the “Riemann-Hilbert method”
the ”nonlinear steepest descent method” or the ”Deift-Zhou method”.

Riemann Hilbert problems (RHPs for short) are a class of boundary-value
problems in the complex plane for matrix–valued functions.

The topic has distant ramifications and extends also to the theory of vector
bundles on Riemann surfaces (which are a particular instance of RHPs).

In general there is a cultural dichotomy in the community, by which analysis
oriented researchers speak of RHPs and algebro-geometric researchers of
”clutching functions”, vector bundles etc.

The focus is also different in the respective contexts. Here we present the
minimum to illustrate the ideas in the context of OPs.
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RHP FOR OPS

Let Σ = R and dµ(x) = e−ΛV(x) dx with V(x) (the potential) bounded from below and
growing sufficiently fast at ∞. For example V(x) = x2 (Hermite).

PROBLEM 0.1 (THE RHP FOR ORTHOGONAL POLYNOMIALS: FOKAS-ITS-KITAEV ’90)

Find a 2×2 matrix–valued function Y(z) = Yn(x) with the properties

1 Y(z) is analytic in C± := {±ℜ(z)> 0};

2 The boundary values of Y(z) on the real axis (oriented in the natural direction)
satisfy

Y+(x) = Y−(x)

=:M(x)︷ ︸︸ ︷[
1 dµ(x)

dx
0 1

]
(7)

3 In the sectors arg(z) ∈ (0,π) and arg(z) ∈ (π,2π) the function Y(z) has the
expansion

Y(z) =
(

1+O(
1
z
)

)[
zn 0
0 z−n

]
= (1+O(z−1))znσ3 , σ3 :=

[ 1 0
0 −1

]
(8)

The above expansion is uniforma in the sense that for any R > 0 there exists C > 0
such that for |z|> R, z ̸∈ R,

∥∥Y(z)z−nσ3 −1
∥∥< C

1
|z|

(9)

aThis is not the strongest form of the problem but it is sufficient for us.
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THE MAIN THEOREM

PROPOSITION 0.1 (UNIQUENESS)

If a solution of Prob. 0.1 exists, then it is unique.

Proof. ..... ■

THEOREM 0.1

Problem (0.1) admits a unique solution of the form

Yn(z) :=


pn(z)

1
2iπ

∫
R

pn(x)e−ΛV(x) dx
x− z

−2iπ
hn−1

pn−1(z)
−1

hn−1

∫
R

pn−1(x)e−ΛV(x) dx
x− z

 (10)

where pn,pn−1 are the monic orthogonal polynomials for the measure e−ΛV(x) dx

The proof requires the use of the Sokhotski-Plemelji formula.
The point is that the (1,1) entry contains the n-th OP. The typical asymptotic analysis
consists of

1 find strong asymptotic (pointwise) as n → ∞ in all regions of the complex plane z;

2 same as above but with concurrent limit Λ → ∞ and Λ ≃ tn (t > 0). This is known
as “scaling behaviour asymptotics” or “with varying weight”.
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SOME KEY MOMENTS OF THE DZ METHOD

To get an idea of the method, it consists in

1 “massage” the problem into an equivalent one, a sort of “deformation of
contours” The first step is to change the unknown matrix Yn(x) by an explicit
transformation

Wn(z) := e−
n
2 ℓσ3 Y(z)e−n(g(z)− ℓ

2 )σ3 (11)

where ℓ is a constant and g(z) an appropriate scalar function obtained from a
functional variational problem (see below).

2 After some more steps, the matrix W can be schematically written in the form

Wn(z) = E (z;n)P(z;n) (12)

where P(z) is an explicit matrix function and E is a “remainder” term, namely a
matrix which can be proved to converge pointwise to the identity matrix as
n → ∞.
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EQUILIBRIUM MEASURES: HOW TO FIND THE g–FUNCTION

Given V(x) as above

THEOREM 0.2 (E.G. IN SAFF–TOTIK’S BOOK, CH. 1 [10])

There is a unique probability measure ρ(x)dx minimizing

F [dµ] :=
∫
R

V(x)dµ(x)+
∫
R2

ln
1

|x− y|
dµ(x)dµ(y) (13)

The minimizer ρ(x)dx is characterized by

V(x)+2
∫
R

ln
1

|x− y|
ρ(y)dy+ ℓ≥ 0 x ∈ R (14)

V(x)+2
∫
R

ln
1

|x− y|
ρ(y)dy+ ℓ≡ 0 x ∈ suppρ (15)

The constant ℓ is called (modified) Robin’s constant.

ELECTROSTATIC INTERPRETATION

The functional F describes the energy of a distribution of “electrons” on a wire (R)
subject to

Mutual repulsion with the Coulomb potential of the plane ln 1
|x−x′| ;

Confining external potential V(x)

in the limit we expect a continuous distribution dµ(x) and the most probable one
is the minimizer of the total electrostatic energy. 9 / 26



THEOREM 0.3 (DEIFT ET AL.)

Suppose V(x) is also real-analytic: then suppρ is a finite union of compact intervals.

A simple proof is available (using Shiffer’s variations). It can also be shown that if
V(x) is convex (concave upwards) then there is only one interval of support. Since
additional technical complications arise when there are several intervals, we shall
assume that the support is indeed only one single interval

V ′′(x)> 0 ⇒ suppρ = [a,b] (16)

DEFINITION 0.1 (THE g–FUNCTION)

g(z) :=
∫ b

a
ln(z− y)ρ(y)dy (17)

where g(z) is defined as analytic on C minus the cut from −∞ to b, with the principal
branch of ln; for z approaching R above/below:

ln(z±− y) = ln |z− y|± iπχy≥z (18)

So that for z = x ∈ R

g± (x) =
∫ b

a
ln |x− y|ρ(y)dy± iπχx≤b

∫ b

x
ρ(y)dy (19)

10 / 26



DIRECT CONTRUCTION OF g(z) IN THE ONE–CUT CASE

Assuming that we know existence of the equilibrium measure (and sufficient
smoothness) we want to find the solution of the scalar RHP

V(x)−g+ (x)−g− (x)+ ℓ= 0 ⇒ g′
+
(x)+g− (x) = V ′(x) , x ∈ [a,b] (20)

The following analysis is perfunctory:

let R(z) :=
√

(z−a)(z−b) be the holomorphic function on C\ [a,b] with R(z)∼ z at
infinity. Then (from the argument principle)

R+(x) =−R−(x). (21)

Dividing (20) by R+ we have

1
R+

(g′
+
+g′− ) =

(
g′

R

)
+

−
(

g′

R

)
−
=

V ′

R+
(22)

Thus the function f := g′/R is analytic on C\ [a,b] and

f+(x)− f−(x) =
V ′(x)
R+(x)

x ∈ [a,b] (23)

This RHP is solved with the Sokhotsky-Plemelji formula

f (z) =
∫ b

a

V ′(x)dx
R+(x)(x− z)2iπ

⇒ g′(z) = R(z)
∫ b

a

V ′(x)dx
R+(x)(x− z)2iπ

(24)
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On the other hand we had g(z) = ln(z)+O(z−1) and hence g′(z) = 1
z +O(z−2). The

expansion of the proposed expression at z = ∞ is

g′(z) = R(z)
∫ b

a

V ′(x)dx
R+(x)(x− z)2iπ

=−
∫ b

a

V ′(x)dx
R+(x)2iπ

+
1
z

(
b+a

2

∫ b

a

V ′(x)dx
R+(x)2iπ

−
∫ b

a

xV ′(x)dx
R+(x)2iπ

)
+ . . . (25)

This gives the following two equations (moment conditions) for the two unknowns a,b

−
∫ b

a

V ′(x)dx
R+(x)2iπ

= 0 −
∫ b

a

xV ′(x)dx
R+(x)2iπ

= 1 (26)

For V polynomial, both integrals are computed explicitly and the equations become
algebraic.

EXAMPLE 0.1

For V(x) = t
2 x2 + κ

4 x4 one obtains (exercise!) b =−a and

a =

(
−2t+

√
4t2 +48κ

3κ

) 1
2

(27)
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Another form is as follows: if γ is a counterclockwise contour surrounding [a,b] then
the residue theorem yields

g′(z) = R(z)
∫ b

a

V ′(x)dx
R+(x)(x− z)2iπ

=−1
2

R(z)
∮

γ

V ′(x)dx
R(x)(x− z)2iπ

= (28)

=
V ′(z)

2
− 1

2
R(z)

∮
|x|>|z|

V ′(x)dx
R(x)(x− z)2iπ

= (29)

=
V ′(z)

2
− 1

2
R(z)

∮
|x|>|z|

(V ′(x)−V ′(z))dx
R(x)(x− z)2iπ

=
V ′(z)

2
−M(z)R(z) (30)

where M(z) is patently a polynomial of degree at most degV −2.

Since the equilibrium density is ρ(x) = i g′+(x)
π

we see that

ρ(x) =
1
π

M(x)
√

|x−a| |x−b| (31)

and hence M(z) must remain positive for x ∈ [a,b].
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EXAMPLE 0.2

For V = x2
2 the OP’s involved are the Hermite polynomials: the equilibrium density is

ρ(x) =
1
π

√
2− x2 , x ∈ [−2,2] (32)

and the complex effective potential ϕ

ϕ =
z
√

z2 −2
2

− ln

(
z+

√
z2 −2
2

)
(33)

The plot of arctan(ℜϕ) is below: note that ℜϕ =≡ 0 on the support suppρ = [−2,2].
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EXAMPLE 0.3

In the above example V(x) = t
2 x2 + κ

4 x4 one finds (exercise)

ρ(x) =
1
π

M(x)

√
x2 +

2t−
√

4t2 +48κ

3κ
(34)

M(x) =
κ

2
x2 +

2t+
√

t2 +12κ

6
, (35)

and one can verify (exercise) that M(x) vanishes within the interval of support when t−2
√

κ and
becomes even negative for t <−2

√
κ. This signals that the interval of support for t =−2

√
κ is

about to “split” into two and the assumption that the support is only one interval is about to
become invalid.
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COMPENDIUM OF THE RESULTS OF DZ ANALYSIS

Under the 1–cut assumption we can be rather concise in summarizing the results (for
more cuts, one needs to introduce Theta functions on hyperelliptic Riemann surfaces)

BRIEF SUMMARY

Y(z;n) = e
n
2 ℓσ3 E (z;n)


Ψ∞(z)

[ 1 0
enϕ 1

]
en(g− ℓ

2 )σ3 upper lens

Ψ∞(z) en(g− ℓ
2 )σ3 outside

Ψ∞(z)
[ 1 0

−enϕ 1

]
en(g− ℓ

2 )σ3 lower lens

(36)

where ϕ(z) := V(z)−2g(z)+ ℓ and Ψ∞ is explicit and, away from the endpoints is
extremely simple:

Ψ(z) =
1
2

[1 −i
i −1

]( z−b
z−a

) 1
4 σ3 [1 −i

i −1

]
(37)

[
1 e−nℜϕ

0 1

]

ML =

[
1 0

enϕ 1

]

[
0 1
−1 0

]

Φ = W

Φ = W

[
1 e−nℜϕ

0 1

]

ML =

[
1 0

enϕ 1

]

Φ = WML

Φ = WM−1
L

16 / 26



SUMMARY OF ASYMPOTICS

ASYMPTOTIC ON THE SUPPORT (a,b) (UNIFORM ON COMPACT SUBSETS OF)

pn(x) = ℜ

[(
e

iπ
4

∣∣∣∣ x−b
x−a

∣∣∣∣ 1
4
+ e−

iπ
4

∣∣∣∣ x−a
x−b

∣∣∣∣ 1
4
)

einπ
∫ b

x ρ(s)ds

]
(38)

ON CLOSED SUBSETS OF C\ [a,b] (I.E. outside the lenses)

pn(z) = (Yn)11(z) = eng(z)(E Ψ)11 = Ψ11(z)eng(z)(1+O(n−1)) (39)

=
1
2

[(
z−b
z−a

) 1
4
+

(
z−a
z−b

) 1
4
]

eng(z) (40)

REMARK 0.1

Potential theory arguments (without any RHP) can give the following weak
asymptotics for z outside of the (convex hull of the) support of the equilibrium
measure:

lim
n→∞

1
n

ln |pn(z)|= ℜg(z) (41)

In a way, the RHP and the DZ method have been able to turn the weak asymptotic
into strong, using the same data.

17 / 26



Application: Random Matrices
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RANDOM MATRICES: DEFINITION AND GOALS

The term is very general and indicates the study of particular ensembles of matrices
endowed with a probability measure. Thus the matrix itself is a random variable.

The main objective typically is to study

the statistical properties of the spectra (for square matrices ensembles) or singular
values (for rectangular ensembles). Thus we need to develop an understanding of
the joint probability distribution functions (jpdf) of the eigen/singular-values.

the properties of said statistics when the size of the matrix ensemble tends to
infinity (under suitable assumption on the probability measure).

We only consider a class called “Unitary Ensembles” here.
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Let M be a space of Hermitean matrices (M = M †) of size n×n:
M := {M ∈ Mat(n,n;C), Mij = M⋆

ji}
This is a vector space and thus carries a natural Lebesgue measure (invariant by
translations) which we shall denote by dM.

Mab = Xab + iYab , Xab = Xba , Yab =−Yba (42)

dimM =
n
2
(n+1)+

n
2
(n−1) = n2 (43)

dM :=
n

∏
a=1

dXaa ∏
1≤a<b≤n

dXab dYab (44)
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LEMMA 0.1

The Lebesgue measure on Mat(n,n;C) is invariant under conjugation:
dM = d(CMC−1).

EXERCISE 0.1

Prove the lemma. Hint: the map is linear and so the Jacobian is certainly constant:
show that it is unity.

We recall

THEOREM 0.4

Any Hermitean matrix can be diagonalized by a Unitary matrix U ∈ U (n) and its
eigenvalues are real

U (n) := {U ∈ GLn(C) , U†U = UU† = 1n} (45)

M = U†XU , X = diag(x1,x2, . . . ,xn) , xj ∈ R. (46)

REMARK 0.2

The diagonalization is not unique even if X is semisimple (i.e. with distinct
eigenvalues) because we can decide on an ordering of the eigenvalues. In general there
are n! distinct diagonalizations. The matrix U can be multiplied on the left by an
arbitrary diagonal matrix D = diag(eiθ1 , . . . ,eiθn ).
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THEOREM 0.5

The Lebesgue measure on Mss can be written as

dM = ∆(X)2
n

∏
i=1

dxi dU , ∆(X) := ∏
1≤i<j≤n

(xj − xi) = det
[

xb−1
a

]
1≤a,b≤n

(47)

The connection to Orthogonal Polynomials (in the simplest incarnation) becomes
possible only when the probability measure on M is of the form

dµ(M) =
1
Z

e−TrV(M) dM =
1
Z

e−∑
n
a=1 V(xa) dM = (48)

We stipulate from now on that this is the choice we are presented with, that is that
the reduced jpdf on the eigenvalues is

µ (⃗x) =
1
Z ∏

1≤a<b≤n
(xa − xb)

2
n

∏
a=1

e−V(xa) dxa (49)

with Z the appropriate normalization constant.
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CONNECTION TO OPS: DYSON’S THEOREM

LEMMA 0.2

We have
1
Z ∏

1≤a<b≤n
(xa − xb)

2
n

∏
a=1

e−V(xa) =
1
n!

det
[
K(xa,xb)

]
1≤a,b≤n (50)

where

K(x,y) = e−
V(x)+V(y)

2
n−1

∑
j,k=0

xjyk[M]−1
jk = e−

V(x)+V(y)
2

n−1

∑
j=0

pj(x)pj(y)
∥pj∥2 , (51)

PROPOSITION 0.2

The Kernel K(x,y) has the following properties∫
R

K(x,z)K(z,y)dz = K(z,y) (reproducibility) (52)∫
R

K(x,x)dx = n ( normalization) (53)

23 / 26



DYSON’S THEOREM

THEOREM 0.6

Suppose that a kernel K(x,y) has the properties of reproducibility and normalization
(to n). Then

(a)
∫
R

det[K(xa,xb)]a,b≤r dxr = (n− r+1)det[K(xa,xb)]a,b≤r−1 (54)

(b)
∫
Rn−r

det[K(xa,xb)]a,b≤n dxr+1 . . . dxn = (n− r)!det[K(xa,xb)]a,b≤r−1 (55)

REMARK 0.3

Dyson’s theorem says that the JPDF and all the marginals (partial integrations
thereof) are in the form of a determinant built out of the same kernel ⇒
determinantal random point fields [11].

REMARK 0.4

The whole statistical information is contained in the Kernel expressed by orthogonal
polynomials.

EXAMPLE 0.4 (DENSITY OF EIGENVALUES)

From the JPDF we integrate all variables except one; this gives the density of
eigenvalues (i.e. the expected number of eigenvalues in the interval [x,x+dx].
According to Dyson’s theorem

ρn(x) = Kn(x,x) = e−V(x)
n

∑
j=0

pj(x)2

∥pj∥2 (56)
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