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Abstract The course provides an overview to the theory and applications of orthogonal polynomials (OPs) The undergraduate student
most likely encounters OPs when discussing separation of variables in solutions of important PDEs, notably the harmonic oscillator in
quantum mechanics (i.e. Hermite polynomials). However, their applications cover a much wider range of topics, whose list includes (but is
not limited to): elements of combinatorics, number theory (e.g. the proof that the Euler constant is transcendental); integrable systems
(e.g. the Toda lattice equations); stochastic models (random matrices); special equations (Painlevé equations).
The topics covered in the course will be :

Origins, definitions and fundamental properties.

Asymptotic analysis for large degrees; elements of nonlinear steepest descent analysis

Some applications to spectral theory of large random matrices (hopefully with mention of Fredholm determinants and
Tracy-Widom distribution, time permitting).

The course is aimed at graduate students (or advanced undergraduate) with a solid grasp of complex analysis (contour integration,

conformal properties of holomorphic functions, Cauchy theorem(s)), linear algebra and elementary measure theory.
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Introduction

Why study Orthogonal Polynomials (OPs):

1 Special functions: solutions of PDE’s by separation of variables e.g. Harmonic Oscillator,

Hydrogen Atom.

2 Pure mathematics: theory of approximation of functions, continued fractions (number

theory),

3 Applications to special dynamical systems: Toda lattice equations, special solutions of

nonlinear ODEs/PDEs.

4 Applications to probabilistic systems: Random Matrices, hopping models on the line

5 Recent applications in Data Science
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First definitions: analytic version

Let dµpxq be a positive measure on Γ “ R such that

1 @ℓ P N, xℓ
P L2

pR, dµq; in particular all the moments exist properly:

µℓ :“

ż

R
x
ℓ
dµpxq

2 the function F psq :“
şs

´8
dµpxq “ µ

`

p´8, ss
˘

has infinite number of points of increase.

Definition 1

The Orthogonal Polynomial System (OPS) for the measure dµ is the orthogonal system of

L2
pR, dµq obtained by Gram-Schmidt process starting from the dense system of functions

1, x, x2, . . . , xℓ, ¨ ¨ ¨ “ Crxs (i.e. a flag). By convention we denote the monic OPs by

pnpxq “ xn
` . . . :

ż

R
pnpxqpmpxq dµpxq “ hnδnm.

First observations/remarks

All the polynomials pn have real coefficients; we can dispose of the conjugation.

The Gram-Schmidt process depends on the order of the initial linearly independent system;

the GS process on the sequence 1, x2, x, x4, x3, .... also produces OPs, but not the same!

The terminology ”Orthogonal Polynomials” almost always refers to the standard flag

1, x, x2, . . . .
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Algebraic definition: (non)-hermitian OPs

Definition 2

A moment functional L is a linear map L : Crxs Ñ C

Thus L is uniquely determined by its moments

Lpx
j

q “ µj , j “ 0, 1, . . .

The integration of the previous slide gives an example:

Lpppxqq “

ż

ppxq dµpxq

Definition 3

The (generalized or ”non hermitian”) OPS associated to L are monic polynomials (if they exist)

␣

pnpxq : deg pn “ n, n “ 0, 1, 2, . . . ,
(

such that

Lppnpmq “

"

0 if n ‰ m

hn ‰ 0 if n “ m

Note the absence of conjugation! It is rather a bilinear pairing ă p, q ą:“ Lppqq

Exercise 1

Prove the following equivalent characterization (either setup): the sequence tpnpxqunPN of

polynomials is orthogonal if and only if pn K xℓ, @ℓ ď n ´ 1.
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Asymptotics of (Orthogonal) polynomials I

In several applications it is important to know the asymptotic behaviour when n Ñ 8

1 For the classical OPs (Hermite/Laguerre/Jacobi) there are explicit integral formulas; this

allows easy access to asymptotic behaviour. Important for example in Quantum Mechanics:

´
1

2
ψ

2
pxq `

x2

2
ψpxq “ λψpxq,

ż

|ψpxq|
2
dx ă `8

λn :“ n ` 1
2 ψnpxq “

b

1
2nn! e

´ x2

2 Hnpxq Eigenfunctions

Hnpxq “ p´1q
nex

2 dn

dxn e´x2
“

“ n!
2iπ

ű

|w|“1
w´n´1e2xw´w2

dw Hermite polynomials
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Asymptotics of (Orthogonal) polynomials II

Random Matrices

Random Matrix theory is relatively recent, although the roots go back to Wigner in the 50’s.

The “resurgence” of random matrix theory has been relatively recent also due to outstanding

applications to number theory, combinatorics, string theory, integrable systems. For

example the Gaussian Unitary Ensemble:

dµpMq “
1

ZN

e
´TrM2

dM , ZN :“

ż

HN

e
´TrM2

dM

what is the probability that an eigenvalue lies in a certain interval?

Theorem 4 (F. J. Dyson. Correlation between the eigenvalues of a random matrix. Comm. Math.

Phys., 19 (1970), 235–250.)

The probability of an eigenvalue λ of M to lie in the interval ra, bs is given by

Prpλ P ra, bsq “

ż b

a

ρN pλq dλ (1)

ρN pλq :“
1

N

N´1
ÿ

j“0

H2
j pλq

?
π2jj!

e
´λ2

(2)

KN pλ, µq “
HN pλqHN´1pµq ´ HN pµqHN´1pλq

2N`1N !pλ ´ µq
(3)
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Asymptotics of (Orthogonal) polynomials III

Example of asymptotic result: Where are the zeroes of the Taylor polynomials of ez?

e
z

ÝÑ Pnpzq “

n
ÿ

j“0

1

j!
z
j

The exponential function has no zeroes! Pnpzq has n zeroes!. They fly away : upon rescaling

pnpzq :“ Pnpnzq

the zeroes of pnpzq become dense on the curve

γ :“ tz : |ze
1´z

| “ 1 , |z| ď 1u (Szegö, 1924)
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First properties I

Proposition 1 (Fourier expansion property)

For any polynomial πpxq of degree d we have

πpxq “

d
ÿ

k“0

ckpkpxq (4)

ck :“
Lpπpkq

Lpp2kq
“

xπ, pky

xpk, pky
(5)

Proposition 2 (Three-term recurrence relation)

Any OPS satisfies a three term recurrence relation of the form

xpnpxq “ pn`1pxq ` βnpnpxq ` λn´1pn´1 ,

Proof: ............... ■
We will see below that the sequence λn are nonzero (if the OPS exists)
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First properties II

The subspace PN of polynomials of degree ď N ´ 1 has a dedicated orthogonal projector which is

represented by the integral operator:

KN rπs :“
n´1
ÿ

j“0

xπ, pjy

xpj , pjy
pjpxq “

ż

πpyq

KN px,yq
hkkkkkkkkkkikkkkkkkkkkj

N´1
ÿ

j“0

pjpyqpjpxq

hj

dµpyq

A consequence of the three term recurrence relation we have

Theorem 5 (Christoffel-Darboux Identity)

Let tpnuN be the (monic) OPs for a moment functional L so that Lpp2nq “ hn Then the

following identity holds

KN px, yq “

N´1
ÿ

n“0

pnpxqpnpyq

hn

“
1

h
N´1

p
N

pxqp
N´1

pyq ´ p
N´1

pxqp
N

pyq

x ´ y
(6)

(The expression on the RHS is called the Bezoutian of pn and pn`1)

Exercise 2

Prove the Christoffel-Darboux Identity using the three term recurrence relation. Hint: multiply
both sides by px ´ yq.
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First properties III

Definition 6

The n-th Hankel determinant is defined as

∆n :“ det
“

µi`j

‰

0ďi,jďn´1
“ det

»

—

—

—

—

—

—

–

µ0 µ1 . . . µn´1

µ1 µ2 . . . µn

µ2 µn`2

.

.

.
.
.
.

µn´1 µn . . . µ2n´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Proposition 3

A necessary and sufficient condition for the existence of an OPS is that ∆n ‰ 0, @n P N.

Exercise 3

If L is the moment functional of a positive measure (setup 1) then ∆n ą 0 for all n. Hint: Show

that the Hankel matrix is positive definite by integrating
ş

R

´

řn
j“0 cjx

j
¯2

dµpxq ą 0
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Construction I

Here they are:

pnpxq :“
1

∆n

det

»

—

—

—

—

—

—

—

—

–

µ0 µ1 µ2 . . . µn

µ1 µ2 . . . µn`1

µ2 µn`2

.

.

.
.
.
.

µn´1 µn . . . µ2n´2 µ2n´1

1 x x2 . . . xn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

This formula is exact, but it is not useful for either numerical or asymptotic analysis (due to typical

instability and ill-condition of the matrix of moments).
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Exercises I

Problem 7

Let tpnpxqu be a sequence of monic polynomials of degree n (pnpxq “ xn
` . . . ) satisfying a

recurrence relation of the form

xpnpxq “ pn`1pxq ` βnpnpxq ` λn´1pn´1pxq , n “ 0, . . . , p´1pxq ” 0.

where λn are (possibly complex) nonzero constants for all n P N. Show that

two consecutive polynomials cannot share a common root;

the polynomials pn`1pxq can be written as

pn`1pxq “ CharPoly

»

—

—

—

—

—

—

—

—

—

—

–

β0 1

λ0 β1 1

λ1 β2 1

λ2

. . .
. . .

. . .
. . . 1

λn´1 βn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Find the eigenvectors for the above matrix corresponding to each eigenvalue [Hint: write the

three–term recurrence relation in matrix form]
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Exercises II

Problem 8

Consider the continued fraction expansion

qn`1pxq

pn`1pxq
“

´λ0

x ´ β0 `
´λ1

x´β1`
´λ2

. . .`
´λn´1
x´βn´1

(7)

and show that the denominators are indeed the OPs.

Problem 9

The following formulas hold (also for the “algebraic version” if we ignore the inequalities in the

statements)

ż

R
p
2
n dµ “ hn “

∆n`1

∆n

ą 0 (8)

λn´1 “
hn

hn´1

“
∆n`1∆n´1

∆2
n

ą 0 (9)

Hint: use the determinantal expression for pn.
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Inverse problems I

As we have seen, any OPS satisfies a three–term recurrence relation; the converse holds true as

well as in the following theorem, due to Favard

Theorem 10 (Favard’s theorem)

Let tβnunPN and tλnunPN be two arbitrary sequences of numbers with λn ‰ 0. Let pnpxq be

defined by the recurrence formula

pn`1pxq “ px ´ βnqpnpxq ´ λn´1pn´1pxq

p´1 :“ 0, p0 :“ 1 . (10)

Then there exist a unique (up to multiplicative constant) moment functional L : Crxs Ñ C such

that the pn’s form its OPS. The moment matrix is positive definite if and only if βn P R and

λn ą 0.

For the proof we refer to e.g. [1]
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Inverse problems II

About the moment problem

Suppose that we are given a sequence of (real) numbers µk and we are asked:

Question 1 Is there a positive measure dµ on R such that

ż

R
x
j
dµpxq “ µj , j ě 0

Question 2 If such measure exists, is it unique?

The union of these questions constitute the Hamburger moment problem.

The answer to the first one is in the affirmative as long as all Hankel determinants are strictly

positive.

Theorem 11

A positive measure dµpxq exists if and only if ∆n ą 0, n P N.

The proof (which could be a presentation) is essentially based on Gauss’ quadrature formula and

Helly’s theorems. Note that –quite obviously– we must have µ0 ą 0.

The second question is much more delicate. If the moments satisfy the conditions ∆n ą 0 (and

hence a measure exists), in general it is difficult to characterize when such measure is unique.
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Gram-Schmidt like you (probably) have not seen it

The “correct” (numerically stable) GS process goes as follows:

1 Construct the Gram matrix (matrix of inner products) of your ordered basis:

H “

„
ż

R
x
j`k´2

dµpxq

ȷ8

j,k“1

“

»

—

—

–

µ0 µ1 µ2 µ3 . . .

µ1 µ2 µ3 . . .

µ2 µ3 . . .

µ3 . . .

fi

ffi

ffi

fl

2 Perform LDU decomposition (i.e. Gauss–Jordan elimination, a.k.a., essentially, Cholesky

decomposition)

H “ LDL
t
, L “

»

—

—

—

—

—

—

–

1 0 0 0 . . .

‹ 1 0 0 . . .

‹ ‹ 1 0 . . .

‹ ‹ ‹ 1 . . .

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ 1 ` N

3 [Exercise] The OPS can be arranged as an infinite vector

ppxq :“ pp0pxq, p1pxq, . . . , pnpxq, . . . q
t (“wave vector”) and

ppxq “ L
´1

»

—

—

—

—

—

—

–

1

x

x2

x3

.

.

.

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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Some examples: “classical” OPS I

Definition 12

Hermite polynomials The Hermite polynomials are defined by the conditions

ż

R
e

´x2
HnpxqHmpxq dx “

?
π2

n
n!δmn

The generating function for Hermite polynomials is defined (formally at first) by

Gpx;wq :“
8
ÿ

n“0

Hnpxq

n!
w

n

We have immediately

Proposition 4

The generating function for the Hermite polynomials is given by

Gpx;wq “ e
2xw´w2
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Some examples: “classical” OPS II

We then verify the orthogonality. To this end we compute

ż

R
Gpx;wqGpx; zqe

´x2
dx “

ż

R
e

´x2`2xpw`zq´w2´z2
dx “ (11)

“ e
´w2´z2

ż

R
e

´x2`2xpw`zq
dx “ (12)

e
´w2´z2`pz`wq2

ż

R
e

´px´z´wq2
dx “ e

2zw
ż

R
e

´s2
ds “

?
πe

2zw (13)

Writing out the two generating functions(and using dominated convergence to pull out the sum)

8
ÿ

n“0

8
ÿ

m“0

z
n
w

m
ż

HnpxqHmpxq

n!m!
e

´x2
dx “

?
π

8
ÿ

n“0

2nznwn

n!

Comparing the two double series we conclude that

ż

R
e

´x2
HnpxqHmpxq dx “

?
π2

n
n!δmn

■
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Some examples: “classical” OPS III

The generaiting function yields more formulas

y
2

´ 2xy
1

` 2ny “ 0 , y “ Hnpxq (14)

e
´x2

Hnpxq “ p´1q
n

ˆ

d

dx

˙n

e
´x2

(15)

Hnpxq

n!
“

rn{2s
ÿ

ν“0

p´1q
ν

ν!

p2xq
n´2ν

pn ´ 2νq!
(16)

lim
xÑ8

x
´n
Hnpxq “ 2

n (17)

Hnpxq “ 2xHn´1pxq ´ 2pn ´ 1qHn´2pxq

H0 “ 1, H1 “ 2x (18)

n
ÿ

ν“0

HνpxqHνpyq

2νν!
“

1

2n`1n!

Hn`1pxqHnpyq ´ HnpxqHn`1pyq

x ´ y
(19)

H
1
npxq “ 2nHn´1pxq , Hnpxq “ 2xHn´1pxq ´ H

1
n´1pxq (20)

n
ÿ

ν“0

ˆ

n

ν

˙

HνpxqHn´νpyq “ 2
n{2

Hnp
?
2px ` yqq (21)

Hnpxq “
n!

2iπ

¿

|w|“1

w
´n´1

e
2xw´w2

dw (22)

In particular formula 22 is useful to obtain asymptotics for large n using the standard steepest

descent method.
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Charlier polynomials

These are orthogonal in a “discrete” sense.

Gpx;wq :“ e
´aw

p1 ` wq
x

“

8
ÿ

m“0

p´aq
mwm

m!

8
ÿ

n“0

ˆ

x

n

˙

w
n

Using the Cauchy product formula for the two series one finds

Gpx;wq “

8
ÿ

n“0

Pnpxqw
n
, Pnpxq “

n
ÿ

k“0

ˆ

x

k

˙

p´aq
n´k

pn ´ kq!
(23)

Note that Pnpxq are indeed polynomials of degree n since

ˆ

x

k

˙

“
xpx ´ 1qpx ´ 2q ¨ ¨ ¨ px ´ k ` 1q

k!

They are called Charlier polynomials

8
ÿ

k“0

PmpkqPnpkq
ak

k!
“

eaan

n!
δnm

This sum can be interpreted as an integral with respect to a measure (up to an overall

multiplicative constant) supported on N and of the form

dµpxq “

8
ÿ

n“0

ak

k!
δx“n

where δx“n here means the “Dirac delta” mass distribution.
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Laguerre polynomials

They are orthogonal polynomials satisfying

ż

8

0

e
´x
x
α
L

pαq
n pxqL

pαq
m pxq dx “ Γpα ` 1q

ˆ

n ` α

n

˙

δnm (24)

L
pαq
n pxq “

1

n!
x

´α
e
x dn

dxn

´

x
n`α

e
´x

¯

(25)

L
pαq
n pxq “

n
ÿ

k“0

ˆ

n ` α

n ´ k

˙

p´xq
k

k!
(26)

Formula (25) can be reexpressed as

L
pαq
n “

1

2iπ

¿

|t|“1{2

e
xt
t´1

p1 ´ tqα`1tn`1
dt

The generating function is

Gpx;wq “
1

p1 ´ wqα`1
exp

ˆ

wx

w ´ 1

˙

(27)
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Asymptotic methods and questions
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Why? How?

Certain questions naturally arise in studying OPS:

1 What is the behaviour of the zeros of the OPS? Are they “predictable” for large degrees?

This is also important for numerical applications due to, e.g., the Gauss quadrature methods:

Theorem 13 (Gauss quadrature formula)

There exist (positive) numbers A
pnq

1 , . . . , Apnq
n such that, for any polynomial πpxq of degree

ď 2n ´ 1 we have

ż

R
πpxq dµpxq “

n
ÿ

j“1

A
pnq

j πpx
pnq

j q

where x
pnq

j are the roots of pnpxq (OP). The numbers are given by

A
pnq

j :“

ż

R

pnpxq

px ´ x
pnq

j qp1
npx

pnq

j q
dµpxq

2 The Hankel determinants themselves ∆n are of interest in application to the Toda and

Kadomtsev-Petviashvili equations, and their large n behaviour.

3 In the application to Random Matrices, this is necessary to address the questions of

universality (see later).
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Hermite at a glance

[See Wikipedia]
ż

R
e

´x2
HnpxqHmpxq dx “

?
π2

n
n!δmn

1 The “bulk” asymptotic: for |x| ăă 2n ` 1

e
´ x2

2 Hnpxq „

ˆ

2n

e

˙n
2 ?

2 cos

¨

˝x

d

2n ` 1 ´
x2

3
´
nπ

2

˛

‚

˜

1 ´
x2

2n ` 1

¸´ 1
4

2 The “edge” asymptotic: for x “
?
2n ` 1 ` t

?
2n

1
6

and |t|Opn
1
6 q

e
´ x2

2 Hnpxq “ π
1
4 2

n
2

` 1
4

?
n!n

´ 1
12

´

Ai ptq ` O
´

n
´ 2

3

¯¯

where Ai is the Airy function, namely the only solution of

f
2

ptq “ tfptq

that is bounded for t P R (any other solution is unbounded).

Remark 1

Note that there is a transition of behaviour (in spirit not different from phase transitions in

thermodynamics) from the (growing) region |x| ăă
?
2n ` 1 and the region |x| »

?
2n ` 1

(outside it is possible and easier to derive formulas too). For this reason often one studies the OPS

in the “rescaled” variable z “
?
nx so that the “bulk” consists of the interval p´

?
2,

?
2q and

the “edge” becomes
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Visual Aid:

Rescaled, orthonormal eigenfunction

ψnpzq :“
1

?
hn

e
´nz2

Hnp
?
nzq

ψnpzq with n “ 100. Observe the

visible envelope of oscillations in the

interval |z| ă
?
2. Observe the “chirp”

and decay outside.

ψnp

b

2n`1
n ` t

?
2n

2
3

q (black) with

n “ 100 versus
b

2
πAiptq (red).

Observe the visible shift of phase as we

get further in the bulk.
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