Stability Theorem for \mathbb{Z}_2^n -Lie supergroups

Fatemeh Nikzad Pasikhani, Mohammad Mohammadi, Saad Varsaie

Institute for Advanced Studies in Basic Sciences (IASBS)

July 6, 2023

Introduction

Existing a unique unitary representation as an extension of a pre-representation is called Stability Theorem. In 2012, Stephane, Neeb and Salmasian [4] prove that Stability Theorem holds in a Banach-Lie group. In 2013, Neeb and Salmasian [3] state that this theorem holds in each Lie supergroup. In 2017, Mohammadi and Salmasian [2] assert that under an extra condition, this theorem holds in a \mathbb{Z}_2^n -Lie supergroup. It is worth mentioning that in our work, Stability Theorem is proved unconditionally. Our proof differs from the one in [2]. You can see the concept of \mathbb{Z}_2^n -supergeometry in [1, 2].

\mathbb{Z}_2^n -vector superspace

A direct sum $V = \bigoplus_{\gamma \in \mathbb{Z}_2^n} V^{\gamma}$ is called a \mathbb{Z}_2^n -vector superspace where V^{γ} are vector spaces over a commutative field \mathbb{K} with characteristic 0 for every $\gamma \in \mathbb{Z}_2^n$.

\mathbb{Z}_2^n -superalgebra

A \mathbb{Z}_2^n -vector superspace $V = \bigoplus_{\gamma \in \mathbb{Z}_2^n} V^{\gamma}$ is called a \mathbb{Z}_2^n -superalgebra if there exists an operation of multiplication on V such that $V^{\gamma}V^{\eta} \subset V^{\gamma+\eta}$.

- An element $x \in V^{\gamma}$ is called a \mathbb{Z}_2^n -homogeneous element of degree or weight $\tilde{x} := \gamma$.
- V is called a commutative algebra if for \mathbb{Z}_2^n -homogeneous elements $x, y \in V$ of degree a and b respectively, we have

$$xy = \mathcal{B}(a, b)yx.$$

$$\mathcal{B}(a,b) = (-1)^{\langle a,b \rangle} \text{ where } \langle a,b \rangle = a_1b_1 + a_2b_2 + \dots + a_nb_n.$$

- A \mathbb{Z}_2^n -homogeneous element $x \in V^{\gamma}$ is called odd if $p(\tilde{x}) = p(\gamma) := \mathcal{B}(\gamma, \gamma) = -1.$
- A \mathbb{Z}_2^n -homogeneous element $x \in V^{\gamma}$ is called even if $p(\tilde{x}) = p(\gamma) := \mathcal{B}(\gamma, \gamma) = 1.$

\mathbb{Z}_2^n -Lie superalgebra

A \mathbb{Z}_2^n -vector superspace $\mathfrak{g} = \bigoplus_{a \in \mathbb{Z}_2^n} \mathfrak{g}_a$ is called \mathbb{Z}_2^n -Lie superalgebra if there exists \mathbb{Z}_2^n -superbracket $[.,.] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ on \mathfrak{g} such that i) [.,.] is bilinear and for every $a, b \in \mathbb{Z}_2^n$, we have $[\mathfrak{g}_a, \mathfrak{g}_b] \subset \mathfrak{g}_{a+b}$, ii) for every $x \in \mathfrak{g}_a$ and $y \in \mathfrak{g}_b$ where $a, b \in \mathbb{Z}_2^n$

 $[x,y] = -\mathcal{B}(a,b)[y,x] \ (Graded \ skew - symmetry),$

iii) for every $x \in \mathfrak{g}_a$, $y \in \mathfrak{g}_b$ and $z \in \mathfrak{g}_c$ where $a, b, c \in \mathbb{Z}_2^n$ we have

$$[x, [y, z]] = [[x, y], z] + \mathcal{B}(a, b)\mathcal{B}(a, c)[y, [z, x]]$$

(Graded Jacoby identity).

\mathbb{Z}_2^n -inner product

Let \mathcal{H} be a \mathbb{Z}_2^n -vector superspace. The complex-valued map

 $\langle,\rangle:\mathcal{H}\times\mathcal{H}\to\mathbb{C}$

is called a \mathbb{Z}_2^n -inner product on \mathcal{H} if the following holds:

- i) $\langle \lambda u + \mu v, w \rangle = \lambda \langle u, w \rangle + \mu \langle v, w \rangle$, for $\lambda, \mu \in \mathbb{C}$ and $u, v, w \in \mathcal{H}_a$ where $a \in \mathbb{Z}_2^n$ (Linear in the first argument);
- ii) $\langle w, v \rangle = \mathcal{B}(a, a) \overline{\langle v, w \rangle}$ for $v, w \in \mathcal{H}_a$ where $a \in \mathbb{Z}_2^n$ (Hermitian symmetric);
- iii) $\alpha(a)\langle v,v\rangle \ge 0$, for $v \in \mathcal{H}_a$ where $a \in \mathbb{Z}_2^n$ (nonnegative)

$$\alpha(a) = e^{i\frac{\pi}{2}\mathbf{u}(a)}, where \ \mathbf{u}(a) = |\{1 \le j \le n : a_j = \bar{1}\}|$$

iv) $\langle v, w \rangle = 0$, for $v \in \mathcal{H}_a$ and $w \in \mathcal{H}_b$, $a \neq b$ where $a, b \in \mathbb{Z}_2^n$.

The \mathbb{Z}_2^n -vector superspace \mathcal{H} with a \mathbb{Z}_2^n -inner product \langle, \rangle is called a \mathbb{Z}_2^n -inner product space or \mathbb{Z}_2^n -pre-Hilbert superspace.

Let \langle,\rangle be a \mathbb{Z}_2^n -inner product on \mathcal{H} and let $v, w \in \mathcal{H}_a$ where $a \in \mathbb{Z}_2^n$. An inner product (in the ordinary sense) on \mathcal{H} is defined as fallows

$$\langle v, w \rangle = \alpha(a) \langle v, w \rangle$$

The vector space \mathcal{H} with inner product (,) is a pre-Hilbert space in the usual sense. We now define a norm on \mathcal{H} as fallows

$$||v|| = \sqrt{(v,v)} \tag{1}$$

The vector space \mathcal{H} with this norm is a normed linear space.

\mathbb{Z}_2^n -Hilbert superspace

A \mathbb{Z}_2^n -Hilbert superspace is a complete \mathbb{Z}_2^n -pre-Hilbert superspace with norm defined in (1).

definition of adjoint T^{\dagger}

Let \mathcal{H} be a \mathbb{Z}_2^n -inner product space with product \langle, \rangle and let $T : \mathcal{H} \to \mathcal{H}$ is a \mathbb{C} -linear map of degree a where $a \in \mathbb{Z}_2^n$. The adjoint operator of Tis denoted by T^{\dagger} and defined as follows

$$\langle v, Tw \rangle = \mathcal{B}(a, b) \langle T^{\dagger}v, w \rangle \qquad for \ v \in \mathcal{H}_b$$

definition of adjoint T^*

We now define adjoint T^* with respect to ordinary inner product (,) on \mathbb{Z}_2^n -inner product space \mathcal{H} as fallows

$$(Tv, w) = (v, T^*w)$$
 for every $v, w \in \mathcal{H}$

For \mathbb{C} -linear map $T: \mathcal{H} \to \mathcal{H}$ of degree $a \in \mathbb{Z}_2^n$, we have

$$T^* = \overline{\alpha(a)}T^{\dagger}.$$
 (2)

It fallows that for \mathbb{C} -linear maps $T, S : \mathcal{H} \to \mathcal{H}$ of degrees $a, b \in \mathbb{Z}_2^n$ respectively, we have

$$T^{\dagger\dagger} = T, \qquad (ST)^{\dagger} = \mathcal{B}(b, a) T^{\dagger} S^{\dagger}.$$

By a \mathbb{Z}_2^n -Lie supergroup we mean a Harish-Chandra pair $(G_0, \mathfrak{g}_{\mathbb{C}})$ where G_0 is a common Lie Group and $\mathfrak{g}_{\mathbb{C}}$ is a \mathbb{Z}_2^n -graded Lie superalgebra such that there exists an action $Ad: G_0 \times \mathfrak{g}_{\mathbb{C}} \to \mathfrak{g}_{\mathbb{C}}$ preserves the \mathbb{Z}_2^n -grading and $\mathrm{Ad}|_{\mathfrak{g}_o}: G_0 \times \mathfrak{g}_o \to \mathfrak{g}_o$ is the adjoint action of G_0 on $\mathfrak{g}_o \cong Lie(G_0).[2]$

pre-representation

[2] Let $(G_0, \mathfrak{g}_{\mathbb{C}})$ be a \mathbb{Z}_2^n -Lie supergroup. A 4-tuple $(\pi, \mathcal{H}, \mathfrak{B}, \rho^{\mathfrak{B}})$ is a pre-representation of $(G_0, \mathfrak{g}_{\mathbb{C}})$ if the following holds

- i) (π, \mathcal{H}) is a smooth unitary representation of the Lie group G_0 on the \mathbb{Z}_2^n -graded Hilbert space \mathcal{H} such that $\pi(g)$ preserves the \mathbb{Z}_2^n -grading for every $g \in G_0$.
- ii) \mathfrak{B} is a dense, G_0 -invariant, \mathbb{Z}_2^n -graded subspace of \mathcal{H} such that

$$\mathfrak{B}\subseteq igcap_{x\in\mathfrak{g}_0}\mathcal{D}_x$$

where $\mathcal{D}_x := \{v \in \mathcal{H} : \frac{d}{dt}|_{t=0} \pi(exp_{G_0}(tx))v \ exists\}$ is the domain of the infinitesimal generator $\overline{d\pi}(x)$ of the one-parameter group $t \mapsto \pi(exp_{G_0}(tx))$. Thus $\overline{d\pi}(x)v := \frac{d}{dt}|_{t=0} \pi(exp(tx))v$ and $\mathcal{D}(\overline{d\pi}(x)) = \mathcal{D}_x$.

/ 23

pre-representation

iii) $\rho^{\mathfrak{B}} : \mathfrak{g}_{\mathbb{C}} \to \operatorname{End}_{\mathbb{C}}(\mathfrak{B})$ is a representation of the \mathbb{Z}_2^n -Lie superalgebra $\mathfrak{g}_{\mathbb{C}}$, i.e., for x and y of degree a, b respectively, we have

$$\rho^{\mathfrak{B}}([x,y]) = \rho^{\mathfrak{B}}(x)\rho^{\mathfrak{B}}(y) - \mathcal{B}(a,b)\rho^{\mathfrak{B}}(y)\rho^{\mathfrak{B}}(x).$$

- iv) For every $x \in \mathfrak{g}_0$, $\rho^{\mathfrak{B}}(x) = \overline{\mathrm{d}\pi}(x)|_{\mathfrak{B}}$ and $\rho^{\mathfrak{B}}(x)$ is essentially skew adjoint.
- v) For every x ∈ g_C, ρ^𝔅(x)[†] = -ρ^𝔅(x), i.e., for x of degree a, iα(a)^{1/2}ρ^𝔅(x) is a symmetric operator, i.e., -α(a)ρ^𝔅(x) ⊆ ρ^𝔅(x)^{*}.
 vi) ρ^𝔅 is a homomorphism of G₀-modulus, i.e., for every x ∈ g_C and g ∈ G₀, π(g)ρ^𝔅(x)π(g)⁻¹ = ρ^𝔅(Ad(g)x).

representation

[2] Let $(G_0, \mathfrak{g}_{\mathbb{C}})$ be a \mathbb{Z}_2^n -Lie supergroup. A smooth unitary representation of $(G_0, \mathfrak{g}_{\mathbb{C}})$ is a triple $(\pi, \rho^{\pi}, \mathcal{H})$ with the following properties.

- i) (π, \mathcal{H}) is a smooth unitary representation of the Lie group G_0 on the \mathbb{Z}_2^n -graded Hilbert space \mathcal{H} such that $\pi(g)$ preserves the \mathbb{Z}_2^n -grading for every $g \in G_0$.
- ii) For the space of smooth vectors; \mathcal{H}^{∞} , $\rho^{\pi} : \mathfrak{g}_{\mathbb{C}} \to \operatorname{End}_{\mathbb{C}}(\mathcal{H}^{\infty})$ is a representation of the \mathbb{Z}_2^n -Lie superalgebra $\mathfrak{g}_{\mathbb{C}}$, i.e., for x and y of degrees a, b respectively, one has

$$\rho^{\pi}([x,y]) = \rho^{\pi}(x)\rho^{\pi}(y) - \mathcal{B}(a,b)\rho^{\pi}(y)\rho^{\pi}(x).$$

representation

iii) For every
$$x \in \mathfrak{g}_0$$
, $\rho^{\pi}(x) = \overline{\mathrm{d}\pi}(x)|_{\mathcal{H}^{\infty}}$.

- iv) $\rho^{\pi}(x)^{\dagger} = -\rho^{\pi}(x)$ for every $x \in \mathfrak{g}_{\mathbb{C}}$, i.e., $i\overline{\alpha(a)}^{\frac{1}{2}}\rho^{\pi}(x)$ is a symmetric operator, i.e., $-\overline{\alpha(a)}\rho^{\pi}(x) \subseteq \rho^{\pi}(x)^{*}$ for x of degree a.
- v) ρ^{π} is a homomorphism of G_0 -modulus, i.e., $\pi(g)\rho^{\pi}(x)\pi(g)^{-1} = \rho^{\pi}(\operatorname{Ad}(g)x)$ for every $x \in \mathfrak{g}_{\mathbb{C}}$ and $g \in G_0$.

Stability Theorem

The following auxiliary lemma is needed. See [4, Lemma 2.5] for a proof.

lemma

Let P_1 and P_2 be two symmetric operators on a complex Hilbert space \mathcal{H} such that $\mathcal{D}(P_1) = \mathcal{D}(P_2)$. Let $L \subseteq \mathcal{D}(P_1)$ be a dense linear subspace of \mathcal{H} such that $P_1|_L = P_2|_L$. Assume that $P_1|_L$ is essentially self-adjoint. Then $P_1 = P_2$.

Stability Theorem

Let $(\pi, \mathcal{H}, \mathfrak{B}, \rho^{\mathfrak{B}})$ be a pre-representation of a \mathbb{Z}_2^n -Lie supergroup $(G_0, \mathfrak{g}_{\mathbb{C}})$. Then there exists a unique smooth unitary representation of $(G_0, \mathfrak{g}_{\mathbb{C}})$, say $(\pi, \rho^{\pi}, \mathcal{H})$, such that $\rho^{\pi}(x)|_{\mathfrak{B}} = \rho^{\mathfrak{B}}(x)$.

proof

To prove the existence of ρ^{π} , we set $\rho^{\pi}(x) = \rho^{\mathfrak{B}}(x)$ for every $x \in \mathfrak{g}_{\mathbb{C}}$, where $\overline{\rho^{\mathfrak{B}}(x)}$ is a smallest closed extension on \mathcal{H} . First we show that if $v \in \mathcal{D}^{\infty}$ then $\overline{\rho^{\mathfrak{B}}(x)}v$ belongs to \mathcal{D}^{∞} , where $D^{\infty} := \bigcap_{n \in \mathbb{N}} D^n$ and $D^1 := \bigcap_{x \in \mathfrak{g}_0} D_x$ and for n > 1 $D^n := \{v \in D^1 : \overline{\mathrm{d}\pi}(x)v \in D^{n-1} \quad \forall x \in \mathfrak{g}_0\}.$

Step 1

It is sufficient to prove that $\overline{\rho^{\mathfrak{B}}(x)}v \in \mathcal{D}^n$ for every $x \in \mathfrak{g}_{\mathbb{C}}$ of degree a, $v \in \mathcal{D}^{n+1}$ and $n \in \mathbb{N}$. We do this by induction on n. For $y \in \mathfrak{g}_0, w \in \mathfrak{B}$ and $v \in \mathcal{D}^2$, we have

$$(\overline{\rho^{\mathfrak{B}}(x)}v, \overline{\mathrm{d}\pi}(y)w) = (\overline{\rho^{\mathfrak{B}}(x)}\overline{\mathrm{d}\pi}(y)v, w) + (\overline{\rho^{\mathfrak{B}}([x,y])}v, w)$$

It follows that $\overline{\rho^{\mathfrak{B}}(x)}v \in \mathcal{D}((\overline{\mathrm{d}\pi}(y)|_{\mathfrak{B}})^*)$. Since $(\overline{\mathrm{d}\pi}(y)|_{\mathfrak{B}})^* = (\rho^{\mathfrak{B}}(y))^* = -\overline{\rho^{\mathfrak{B}}(y)} = -\overline{\mathrm{d}\pi}(y)$ then $\overline{\rho^{\mathfrak{B}}(x)}v \in \mathcal{D}(\overline{\mathrm{d}\pi}(y))$.

By induction hypothesis, for $x_1, ..., x_n \in \mathfrak{g}_0$ and, $v \in D^{n+1}$ we obtain

$$(\overline{\mathrm{d}\pi}(x_{n-1})...\overline{\mathrm{d}\pi}(x_1)\overline{\rho^{\mathfrak{B}}(x)}v,\overline{\mathrm{d}\pi}(x_n)w) = (\overline{\mathrm{d}\pi}(x_n)...\overline{\mathrm{d}\pi}(x_2)\overline{\rho^{\mathfrak{B}}([x,x_1])}v,w) + (\overline{\mathrm{d}\pi}(x_n)...\overline{\mathrm{d}\pi}(x_2)\overline{\rho^{\mathfrak{B}}(x)}\overline{\mathrm{d}\pi}(x_1)v,w)$$

A similar computation shows that $\overline{\mathrm{d}\pi}(x_{n-1})...\overline{\mathrm{d}\pi}(x_1)\overline{\rho^{\mathfrak{B}}(x)}v \in D(\overline{\mathrm{d}\pi}(x_n)).$ Consequently, $\overline{\rho^{\mathfrak{B}}(x)}v \in \mathcal{D}^n$.

Since G_0 ia a finite-dimensional Lie group and the representation is smooth, one has $\mathcal{D}^{\infty} = \mathcal{H}^{\infty}[3, \text{ Thm 5.3}].$

We show that $\rho^{\pi} : \mathfrak{g}_{\mathbb{C}} \to \operatorname{End}_{\mathbb{C}}(\mathcal{H}^{\infty})$ is a representation of the \mathbb{Z}_2^n -Lie superalgebra $\mathfrak{g}_{\mathbb{C}}$. For $x \in \mathfrak{g}_{\mathbb{C}}$ of degree a, $v \in \mathcal{D}^{\infty}$ and $c \in \mathbb{R}$ if we set

$$L = \mathfrak{B}, \qquad P_1 v = i \overline{\alpha(a)}^{\frac{1}{2}} \overline{\rho^{\mathfrak{B}}(cx)} v \qquad \text{and} \qquad P_2 = i \overline{\alpha(a)}^{\frac{1}{2}} c \overline{\rho^{\mathfrak{B}}(x)} v$$

by Lemma 15, $P_1 = P_2$ for every $v \in \mathcal{D}^{\infty}$.

For $x, y \in \mathfrak{g}_{\mathbb{C}}$, both of degree a, and $v \in \mathcal{D}^{\infty}$, by apply Lemma 15, a similar reasoning show that,

$$\overline{\rho^{\mathfrak{B}}(x+y)}v = \overline{\rho^{\mathfrak{B}}(x)}v + \overline{\rho^{\mathfrak{B}}(y)}v.$$

We set

$$L = \mathfrak{B}, \quad P_1 v = i\overline{\alpha(a)}^{\frac{1}{2}} \overline{\rho^{\mathfrak{B}}(x+y)} v, \quad P_2 v = i\overline{\alpha(a)}^{\frac{1}{2}} (\overline{\rho^{\mathfrak{B}}(x)} + \overline{\rho^{\mathfrak{B}}(y)}) v$$

Now, in order to prove $\rho^{\mathfrak{B}}$ preserves the Lie braket, let $x, y \in \mathfrak{g}_{\mathbb{C}}$ be of degree a, b, respectively. we define two operators T_1 and T_2 with domains $\mathcal{D}(T_1) = \mathcal{D}(T_2) = \mathcal{D}^{\infty}$ as follows. For $v \in \mathcal{D}^{\infty}$ we set

$$T_1 v = i(\mathcal{B}(a,b)\overline{\alpha(a)\alpha(b)})^{\frac{1}{2}}\overline{\rho^{\mathfrak{B}}([x,y])}v,$$

$$T_2 v = i(\mathcal{B}(a,b)\overline{\alpha(a)\alpha(b)})^{\frac{1}{2}}(\overline{\rho^{\mathfrak{B}}(x)}\ \overline{\rho^{\mathfrak{B}}(y)}v - \mathcal{B}(a,b)\overline{\rho^{\mathfrak{B}}(y)}\ \overline{\rho^{\mathfrak{B}}(x)}v)$$

where let $x, y \in \mathfrak{g}_{\mathbb{C}}$ be of degree a, b, respectively.

Step 3

To prove ρ^{π} is a homomorphism of G_0 -modulus, we apply Lemma 15 with

$$L = \mathfrak{B}, \qquad P_1 = i\overline{\alpha(a)^{\frac{1}{2}}}\pi(g)\overline{\rho^{\mathfrak{B}}(x)}\pi(g)^{-1}, \quad P_2 = i\overline{\alpha(a)}^{\frac{1}{2}}\overline{\rho^{\mathfrak{B}}(Ad(g)x)}.$$

For proving that the smooth unitary representation $(\pi, \rho^{\pi}, \mathcal{H})$ satisfies $\rho^{\pi}(x)|_{\mathfrak{B}} = \rho^{\mathfrak{B}}(x)$, for every $x \in \mathfrak{g}_{\mathbb{C}}$ of degree *a*, apply Lemma 15 with

$$L = \mathfrak{B}, P_1 = i\overline{\alpha(a)}^{\frac{1}{2}}\rho^{\pi}(x)|_{\mathcal{H}^{\infty}} \text{ and } P_2 = i\overline{\alpha(a)}^{\frac{1}{2}}\overline{\rho^{\mathfrak{B}}(x)}$$

. This implies that $\rho^{\pi}(x)$ is unique.

- T. Covolo, J. Grabowski and N. Poncin, *The category of* \mathbb{Z}_2^n -supermanifolds, J. Math. Phys. 57 (2016), no. 7, 073503, 16 pp.
- M. Mohammadi and H. Salmasian, *The Gelfand-Naimark-Segal* construction for unitary representatins of \mathbb{Z}_2^n -graded Lie supergroups, Banach Center Publications., 113 (2017), 263-274.
- K.H. Neeb and H. Salmasian, *Differentiable vectors and unitary representations of Frechet-Lie supergroups*, Math. Z., 275(1-2): 419-451, 2013.
- M. Stephane, K.H. Neeb and H. Salmasian, *Categories of unitary representations of Banach-Lie supergroups and restriction functors*, Pacific Journal of Mathematics 257.2 (2012): 431-469.