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Introduction Preliminary Literature Review

Geophysical background:

Charney J. G., On the Scale of Atmospheric Motions, Astrophysical
Institute, University of Oslo (1948).

LaCasce J. H., Atmosphere-Ocean Dynamics, Dept. of Geosciences,
University of Oslo (2020).

Pedlosky J., Geophysical Fluid Dynamics, Springer (1987).

Methodology:

Olver, P., Equivalence, Invariants and Symmetry, Cambridge
University Press (1995).

Lie Symmetries of the CHM equation for the special case β = F = 1:

Hounkonnou M. N., Kabir M. M., Hasegawa - Mima - Charney -
Obukhov Equation: Symmetry Reductions and Solutions, Int. J.
Contemp. Math. Sciences, Vol.3, p. 145 - 157 (2008).
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Introduction The Charney-Hasegawa-Mima equation

The Charney-Hasegawa-Mima equation:

∂

∂t
(∆u− Fu) + β

∂u

∂x
+ [u,∆u] = 0,

u = u(t, x, y) . . . stream function
t . . . temporal coordinate
(x, y) . . . spatial coordinates
β > 0, F ≥ 0 . . . constants

β = β0
L2

U
, β0 =

2Ωcos θ

RE
, F =

(
L

R

)2

,

R =

√
gD

f
− Rossby radius of deformation

Ω− Earth’s rotation rate, θ − latitude, RE − Earth’s radius

D/L/U − scales ∼ (10km/1000km/10m · s−1)
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Introduction The Charney-Hasegawa-Mima equation

The Coriolis parameter f = 2Ω sin θ - influence of the Coriolis force on the
fluid. f(θ) ≈ f(θ0) + β0y, where y ≡ RE(θ − θ0).

Figure: β - plane model of the CHM equation
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Introduction The Charney-Hasegawa-Mima equation

Assumptions under which the CHM equation holds and was derived:

The flow in non-viscous and the density ρ of the fluid is constant.

The aspect ratio δ is small (oceans D ≈ 5km, L ≈ 5000km and
atmosphere D ≈ 10km, L = 1000km).

δ =
D

L
, D/L− vertical/horizontal scale.

Hydrostatic balance between pressure gradient and gravity

∂p

∂z
= −ρg.

Geostrophic balance between horizontal pressure gradient and Coriolis
pressure.

Small dimensionless Rossby and temporal Rossby numbers

Ro =
U

fL
, RT =

1

fT
, U/T − horizontal velocity/time scale.
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Introduction Infinitesimal method

Infinitesimal method

General n-th order system of PDEs:

∆κ(x,u
(n)) = 0, κ = 1, . . . ,m,

where (x,u(n)) ∈ JnY.
Identification with variety

S∆ = {(x,u(n)) | ∆κ(x,u
(n)) = 0, κ = 1, . . . ,m, }

Solution - any function s(x), such that its graph of n-th prolongation
lies in S∆ (i.e. (x, s(n)(x)) ⊆ S∆).

The Lie point symmetry - any smooth point transformation (action of
the Lie group G), which maps smooth solutions to smooth solutions.

=⇒ S∆ is G− invariant.

Dušan Navrátil Lie Symmetry Analysis of the Charney-Hasegawa-Mima equation 7/28



Introduction Infinitesimal method

Infinitesimal method
Lie algebra g associated to Lie group G is spanned by infinitesimal
generators

X =

p∑
i=1

ξi(x,u)
∂

∂xi
+

q∑
α=1

ϕα(x,u)
∂

∂uα
. (1)

Then n-th prolongation of the vector field X has a form

X(n) =

p∑
i=1

ξi(x,u)
∂

∂xi
+

q∑
α=1

n∑
#J=j=0

ϕαJ (x,u
(j))

∂

∂uαJ
, (2)

with coefficients

ϕαJ = DJQ
α +

p∑
i=1

ξiuαJ,i, α = 1, . . . , q, (3)

where DJQ
α is the total derivative of the characteristic function

Qα = ϕα(x,u)−
p∑

i=1

ξi(x,u)
∂uα

∂xi
, α = 1, . . . , q. (4)
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Introduction Infinitesimal method

Infinitesimal symmetry criterion

Theorem

A connected Lie group G is a symmetry group of the fully regular system
of differential equations ∆ = 0, if and only if the classical infinitesimal
symmetry conditions

X(n)(∆κ) = 0, κ = 1, . . . , r, whenever ∆ = 0,

hold for every infinitesimal generator X ∈ g of G.

Algorithm

Set symmetry criterion for given PDE or system of PDEs

X(n)(∆κ) = 0, κ = 1, . . . , r, whenever ∆ = 0.

Derive coefficients ϕαJ .

Solve the system of determining equations.
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Lie Symmetries of the CHM equation Derivation

The CHM equation with applied Laplacian and Jacobian:

utxx + utyy − Fut + βux + uxuxxy + uxuyyy − uyuxxx − uyuxyy = 0.

Infinitesimal generator X(t, x, y, u) over J0Y

X(t, x, y, u) = τ
∂

∂t
+ χ

∂

∂x
+ ψ

∂

∂y
+ µ

∂

∂u
.

The third prolongation X(3)(t, x, y, u) over J3Y

X(3) = τ
∂

∂t
+ χ

∂

∂x
+ ψ

∂

∂y
+ µ

∂

∂u
+ µt

∂

∂ut
+ µx

∂

∂ux
+ µy

∂

∂uy
+

+µtt
∂

∂utt
+ µtx

∂

∂utx
+ . . .+ µxyy

∂

∂uxyy
+ µyyy

∂

∂uyyy
.
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Lie Symmetries of the CHM equation Derivation

Infinitesimal symmetry criterion:

X(3)(∆1) = µtxx + µtyy − Fµt + βµx + µx(uxxy + uyyy)+

+ ux(µ
xxy + µyyy)− µy(uxxx + uxyy)− uy(µ

xxx + µxyy) = 0, (5)

whenever

utxx + utyy + Fut − βux − uxuxxy − uxuyyy + uyuxxx + uyuxyy = 0. (6)

We derive the coefficients µt, µx, . . . , µyyy, for example

µt = Dtµ− (Dtτ)ut − (Dtχ)ux − (Dtψ)uy,

µxxy = Dxxyµ−Dxxy(τut)−Dxxy(χux)−Dxxy(ψuy)+

+τutxxy + χuxxxy + ψuxxyy,

a insert them into equation (5), together with expressed term from eq. (6)

utxx = −utyy + Fut − βux − uxuxxy − uxuyyy + uyuxxx + uyuxyy.
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Lie Symmetries of the CHM equation Derivation

We obtain the polynomial with indeterminates u, ut, ux, . . . , uyyy:

1 · (µtxx + µtyy − Fµt + βµx)+

ut · (µxxu + µyyu − βτx − 2Fχx)+

ux · (2µtxu + µxxy + µyyy − χtxx − χtyy + Fχt + βχx + βτt)+

uy · (2µtyu − µxxx − µxyy − ψtxx − ψtyy + Fψt − βψx)+

utux · (2µxuu)+

+

...

+

uyuxyy · (3ψy − τt − χx − µu)+

uyuyyy · (−ψx + ψx) = 0.

All brackets has to be equal to zero =⇒ linear PDEs with constant coef.
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Lie Symmetries of the CHM equation Derivation

Solution of linear PDEs with constant coefficients:

Macaulay2 – Linux software for computations in commutative
algebra and algebraic geometry.

We solve in Macaulay2 those equations without general coefficients
β, F .

Remaining equations with general coefficients β, F can be solved
easily by hand.

Algorithm core in Macaulay2:

Linear partial differential equations with constant coefficients have a
same structure as vectors of polynomials

2χxy + 3χxx + ψyy − 2µyu 7→


0

2∂x∂y + 3(∂x)
2

(∂y)
2

−2∂y∂u

 ,

Fundamental Principle of Ehrenpreis–Palamodov.
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Lie Symmetries of the CHM equation Derivation

System of linear PDEs has different solution depending on the F value

F =

(
L

R

)2

=
f2L2

gD
,

where L – characteristic length and R – Rossby radius of deformation.

1 F ≈ 0 (near equator) – Rossby radius of deformation is large.
Planet’s rotation has dominant effect on the flow developent – zonal
flows, jet streams, ocean currents.

2 F > 0 (mid-latitudes) – Influences of the planet’s rotation and
changes in the flow (caused by pressure/temperature gradient,
topografy etc.) are in balance.

3 F ≫ 0 (near north/south poles) – Rossby radius of deformation is
small, planet’s rotation has neglectable effect on the fluid flow.
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Lie Symmetries, F > 0 Lie Algebra gsym

Solution with assumption F > 0 (balance, mid-latitudes):

τ(t) = c1 + c5t,

χ(t, x, y) = c2 −
β

F
c5t− c6y,

ψ(t, x, y) = c3 +
β

F
c6t+ c6x,

µ(t, x, y, u) = c4 +
β2

F 2
c6t+

β

F
c6x+

β

F
c5y − c5u.

Infinitesimal generators of Lie algebra gsym:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
, X4 =

∂

∂u
,

X5 = Ft
∂

∂t
− βt

∂

∂x
+ (βy − Fu)

∂

∂u
,

X6 = −F 2y
∂

∂x
+ (βFt+ F 2x)

∂

∂y
+ (β2t+ βFx)

∂

∂u
.
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Lie Symmetries, F > 0 Lie Group Gsym

Corresponding Lie point transformations (αi – group parameter):

Generators X1, X2, X3, X4:

(t̃, x̃, ỹ, ũ) = (t+ α1, x+ α2, y + α3, u+ α4), α1, α2, α3, α4 ∈ R.

Generator X5

t̃ = teFα5 ,

x̃ = x+
βt

F
(1− eFα5),

ỹ = y,

ũ =
βy

F
(1− e−Fα5) + ue−Fα5 .
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Lie Symmetries, F > 0 Lie Group Gsym

Generator X6, where K =
β

F

t̃ = t,

x̃ = x cos(F 2α6)− y sin(F 2α6) +Kt(cos(F 2α6)− 1),

ỹ = x sin(F 2α6) + y cos(F 2α6) +Kt sin(F 2α6),

ũ = Kx sin(F 2α6) +Ky
(
cos(F 2α6)− 1

)
+K2t sin(F 2α6) + u.

Abbreviating F 2 and reorganizing terms

t̃ = t,

x̃ = (x+Kt) cos(α6)− y sin(α6)−Kt,

ỹ = (x+Kt) sin(α6) + y cos(α6),

ũ = K(x+Kt) sin(α6) +Ky (cos(α6)− 1) + u.
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Lie Symmetries, F > 0 Geometrical interpretation

Geometrical interpretation

Generators X1, X2, X3, X4 – translation in coordinates t, x, y, u.

(t̃, x̃, ỹ, ũ) = (t+ α1, x+ α2, y + α3, u+ α4), α1, α2, α3, α4 ∈ R.

– doesn’t have impact on the fluid velocity fields

Generator X5 – time-length contraction/extension in (t, x) plane

t̃ = teFα5 , x̃ = x+
βt

F
(1− eFα5)

=⇒ t̃2 − t̃1 = (t2 − t1)e
Fα5

1 α5 > 0 – time extension
2 α5 < 0 – time contraction
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Lie Symmetries, F > 0 Geometrical interpretation

Figure: Vector field X5, β = 0.25, F = 1
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Lie Symmetries, F > 0 Geometrical interpretation

Length/time change ratio: - phase velocity K =
β

F
is preserved (x dir.)

x̃− x

t̃− t
= − β

F
, x̃ = x− β

F
(t̃− t).

1) Example of stream function

u = y =⇒ ũ = ỹ

(
e−Fα6 +

β

F

(
1− e−Fα6

))
Change in flow velocity fields:(
∂u

∂y
,−∂u

∂x

)
= (1, 0) =⇒

(
∂ũ

∂y
,−∂ũ

∂x

)
=

(
e−Fα6 +

β

F

(
1− e−Fα6

)
, 0

)
2) Example of stream function

u = x =⇒ ũ =
β

F
ỹ(1− e−Fα6) + x̃e−Fα6

Change in flow velocity fields:(
∂u

∂y
,−∂u

∂x

)
= (0,−1) =⇒

(
∂ũ

∂y
,−∂ũ

∂x

)
=

(
β

F
(1− e−Fα6), e−Fα6

)

Dušan Navrátil Lie Symmetry Analysis of the Charney-Hasegawa-Mima equation 20/28



Lie Symmetries, F > 0 Geometrical interpretation

Length/time change ratio: - phase velocity K =
β

F
is preserved (x dir.)

x̃− x

t̃− t
= − β

F
, x̃ = x− β

F
(t̃− t).

1) Example of stream function

u = y =⇒ ũ = ỹ
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Dušan Navrátil Lie Symmetry Analysis of the Charney-Hasegawa-Mima equation 20/28



Lie Symmetries, F > 0 Geometrical interpretation

Length/time change ratio: - phase velocity K =
β

F
is preserved (x dir.)

x̃− x

t̃− t
= − β

F
, x̃ = x− β

F
(t̃− t).

1) Example of stream function

u = y =⇒ ũ = ỹ
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Lie Symmetries, F > 0 Geometrical interpretation

Generator X6 – rotation around the origin with respect to the phase

velocity in x direction K =
β

F
.

t̃ = t,

x̃ = (x+Kt) cos(α6)− y sin(α6)−Kt,

ỹ = (x+Kt) sin(α6) + y cos(α6),

ũ = K(x+Kt) sin(α6) +Ky (cos(α6)− 1) + u.
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Lie Symmetries, F > 0 Geometrical interpretation

Figure: Vector field X6, β = 0.25, F = 1, t = 10
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Lie Symmetries, F ≫ 0 and F ≈ 0

Solution with assumption F ≫ 0 (neglectable rotation influence):

τ(t) = c1 + c5t,

χ(y) = c2 − c6y,

ψ(x) = c3 + c6x,

µ(u) = c4 − c5u.

Infinitesimal generators of Lie algebra gsym:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
, X4 =

∂

∂u
,

X5 = t
∂

∂t
− u

∂

∂u
,

X6 = −y ∂
∂x

+ x
∂

∂y
.
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Lie Symmetries, F ≫ 0 and F ≈ 0

Corresponding Lie-point transformations and interpretation

Generators X1, X2, X3, X4 – translations

Generator X5 – scaling in temporary coordinate t

(t̃, x̃, ỹ, ũ) =
(
teα5 , x, y, ue−α5

)
.

Generator X6 – rotation in β-plane

(t̃, x̃, ỹ, ũ) = (t, x cos(α6), y sin(α6), u).
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Lie Symmetries, F ≫ 0 and F ≈ 0

Solution with assumption F ≈ 0 (dominant rotation influence):

τ(t) = c1,

χ(t, x, y) = −h(t),

ψ(t, x, y) = c2,

µ(t, x, y, u) = f(t) + h′(t)y.

Infinitesimal generators of Lie algebra gsym:

X1 =
∂

∂t
, X2 =

∂

∂y
,

X3 = −h(t) ∂
∂x

+ h′(t)y
∂

∂u
, X4 = f(t)

∂

∂u
.
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Lie Symmetries, F ≫ 0 and F ≈ 0

Corresponding Lie-point transformations and interpretation

Generators X1, X2 – translations in t, y coordinates

Generator X3 – time-dependent motion along x-coordinate
– by setting α3 = t, h(t) represents planet’s pheripheral velocity
(zonal direction)

t̃ = t,

x̃ = −h(t)α3 + x,

ỹ = y,

ũ = h′(t)yα3 + u.

Generator X4 – any time-dependent change in stream function values

(t̃, x̃, ỹ, ũ) = (t, x, y, f(t)α4 + u).
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Conclusion

Conclusion
For reasonably large F > 0 (mid-latitudes), the CHM equation has
Lie symmetries of translations, time-scaling and rotation, which

preserve phase velocity
β

F
in x-direction.

Special cases of F value (rather theoretical meaning):
1 F ≈ 0 (planet’s rotation is dominant, equator) =⇒ time-dependent

motion symmetries along x and u coordinates
2 F ≫ 0 (planet’s rotation is neglectable, poles) =⇒ rotation symmetry

in spatial (x, y) coordinates and scaling in temporary t coordinate

Figure: Caption
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Conclusion

Conclusion
Translation symmetry is present in all F instances.
The most general solution of the CHM equation (for particular F
instance) – application of all Gsym transformations to coordinates of
the known solution u = u(t, x, y).

Figure: Rossby waves
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