Lie Symmetry Analysis of the Charney-Hasegawa-Mima equation

Dušan Navrátil
Brno University of Technology
Faculty of Mechanical Engineering, Institute of Mathematics

$$
\text { July 6, } 2023
$$

Content

(1) Introduction

- Preliminary Literature Review
- The Charney-Hasegawa-Mima equation
- Infinitesimal method
(2) Lie Symmetries of the CHM equation
- Derivation
(3) Lie Symmetries, $F>0$
- Lie Algebra $\mathfrak{g}_{\text {sym }}$
- Lie Group $G_{\text {sym }}$
- Geometrical interpretation

4. Lie Symmetries, $F \gg 0$ and $F \approx 0$
(5) Conclusion

Geophysical background:

- Charney J. G., On the Scale of Atmospheric Motions, Astrophysical Institute, University of Oslo (1948).
- LaCasce J. H., Atmosphere-Ocean Dynamics, Dept. of Geosciences, University of Oslo (2020).
- Pedlosky J., Geophysical Fluid Dynamics, Springer (1987).

Methodology:

- Olver, P., Equivalence, Invariants and Symmetry, Cambridge University Press (1995).
Lie Symmetries of the CHM equation for the special case $\beta=F=1$:
- Hounkonnou M. N., Kabir M. M., Hasegawa - Mima - Charney Obukhov Equation: Symmetry Reductions and Solutions, Int. J. Contemp. Math. Sciences, Vol.3, p. 145-157 (2008).

The Charney-Hasegawa-Mima equation:

$$
\frac{\partial}{\partial t}(\Delta u-F u)+\beta \frac{\partial u}{\partial x}+[u, \Delta u]=0
$$

$$
\begin{array}{lll}
u=u(t, x, y) & \ldots & \text { stream function } \\
t & \ldots & \text { temporal coordinate } \\
(x, y) & \ldots & \text { spatial coordinates } \\
\beta>0, F \geq 0 & \ldots & \text { constants }
\end{array}
$$

$$
\begin{aligned}
& \beta=\beta_{0} \frac{L^{2}}{U}, \quad \beta_{0}=\frac{2 \Omega \cos \theta}{R_{E}}, \quad F=\left(\frac{L}{R}\right)^{2} \\
& R=\frac{\sqrt{g D}}{f}-\text { Rossby radius of deformation }
\end{aligned}
$$

Ω - Earth's rotation rate, θ - latitude, R_{E} - Earth's radius

$$
D / L / U-\text { scales } \sim\left(10 \mathrm{~km} / 1000 \mathrm{~km} / 10 \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)
$$

The Coriolis parameter $f=2 \Omega \sin \theta$ - influence of the Coriolis force on the fluid. $f(\theta) \approx f\left(\theta_{0}\right)+\beta_{0} y$, where $y \equiv R_{E}\left(\theta-\theta_{0}\right)$.

Figure: β - plane model of the CHM equation

Assumptions under which the CHM equation holds and was derived:

- The flow in non-viscous and the density ρ of the fluid is constant.

Assumptions under which the CHM equation holds and was derived:

- The flow in non-viscous and the density ρ of the fluid is constant.
- The aspect ratio δ is small (oceans $D \approx 5 \mathrm{~km}, L \approx 5000 \mathrm{~km}$ and atmosphere $D \approx 10 \mathrm{~km}, L=1000 \mathrm{~km})$.

$$
\delta=\frac{D}{L}, \quad D / L-\text { vertical/horizontal scale. }
$$

Assumptions under which the CHM equation holds and was derived:

- The flow in non-viscous and the density ρ of the fluid is constant.
- The aspect ratio δ is small (oceans $D \approx 5 \mathrm{~km}, L \approx 5000 \mathrm{~km}$ and atmosphere $D \approx 10 \mathrm{~km}, L=1000 \mathrm{~km})$.

$$
\delta=\frac{D}{L}, \quad D / L-\text { vertical/horizontal scale. }
$$

- Hydrostatic balance between pressure gradient and gravity

$$
\frac{\partial p}{\partial z}=-\rho g .
$$

Assumptions under which the CHM equation holds and was derived:

- The flow in non-viscous and the density ρ of the fluid is constant.
- The aspect ratio δ is small (oceans $D \approx 5 \mathrm{~km}, L \approx 5000 \mathrm{~km}$ and atmosphere $D \approx 10 \mathrm{~km}, L=1000 \mathrm{~km})$.

$$
\delta=\frac{D}{L}, \quad D / L-\text { vertical/horizontal scale. }
$$

- Hydrostatic balance between pressure gradient and gravity

$$
\frac{\partial p}{\partial z}=-\rho g
$$

- Geostrophic balance between horizontal pressure gradient and Coriolis pressure.

Assumptions under which the CHM equation holds and was derived:

- The flow in non-viscous and the density ρ of the fluid is constant.
- The aspect ratio δ is small (oceans $D \approx 5 \mathrm{~km}, L \approx 5000 \mathrm{~km}$ and atmosphere $D \approx 10 \mathrm{~km}, L=1000 \mathrm{~km})$.

$$
\delta=\frac{D}{L}, \quad D / L-\text { vertical/horizontal scale. }
$$

- Hydrostatic balance between pressure gradient and gravity

$$
\frac{\partial p}{\partial z}=-\rho g .
$$

- Geostrophic balance between horizontal pressure gradient and Coriolis pressure.
- Small dimensionless Rossby and temporal Rossby numbers

$$
R_{o}=\frac{U}{f L}, \quad R_{T}=\frac{1}{f T}, \quad U / T-\text { horizontal velocity/time scale. }
$$

Infinitesimal method

General n-th order system of PDEs:

$$
\Delta_{\kappa}\left(\mathbf{x}, \mathbf{u}^{(n)}\right)=0, \quad \kappa=1, \ldots, m
$$

where $\left(\mathbf{x}, \mathbf{u}^{(n)}\right) \in J^{n} Y$. Identification with variety

$$
\mathcal{S}_{\Delta}=\left\{\left(\mathbf{x}, \mathbf{u}^{(n)}\right) \mid \Delta_{\kappa}\left(\mathbf{x}, \mathbf{u}^{(n)}\right)=0, \quad \kappa=1, \ldots, m,\right\}
$$

- Solution - any function $s(\mathbf{x})$, such that its graph of n-th prolongation lies in \mathcal{S}_{Δ} (i.e. $\left.\left(\mathbf{x}, s^{(n)}(\mathbf{x})\right) \subseteq \mathcal{S}_{\Delta}\right)$.
- The Lie point symmetry - any smooth point transformation (action of the Lie group G), which maps smooth solutions to smooth solutions.
$\Longrightarrow \mathcal{S}_{\Delta}$ is G - invariant.

Infinitesimal method

Lie algebra \mathfrak{g} associated to Lie group G is spanned by infinitesimal generators

$$
\begin{equation*}
X=\sum_{i=1}^{p} \xi^{i}(\mathbf{x}, \mathbf{u}) \frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{q} \phi^{\alpha}(\mathbf{x}, \mathbf{u}) \frac{\partial}{\partial u^{\alpha}} . \tag{1}
\end{equation*}
$$

Then n-th prolongation of the vector field X has a form

$$
\begin{equation*}
X^{(n)}=\sum_{i=1}^{p} \xi^{i}(\mathbf{x}, \mathbf{u}) \frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{q} \sum_{\# J=j=0}^{n} \phi_{J}^{\alpha}\left(\mathbf{x}, \mathbf{u}^{(j)}\right) \frac{\partial}{\partial u_{J}^{\alpha}}, \tag{2}
\end{equation*}
$$

with coefficients

$$
\begin{equation*}
\phi_{J}^{\alpha}=D_{J} Q^{\alpha}+\sum_{i=1}^{p} \xi^{i} u_{J, i}^{\alpha}, \quad \alpha=1, \ldots, q, \tag{3}
\end{equation*}
$$

where $D_{J} Q^{\alpha}$ is the total derivative of the characteristic function

$$
\begin{equation*}
Q^{\alpha}=\phi^{\alpha}(\mathbf{x}, \mathbf{u})-\sum_{i=1}^{p} \xi^{i}(\mathbf{x}, \mathbf{u}) \frac{\partial u^{\alpha}}{\partial x^{i}}, \quad \alpha=1, \ldots, q \tag{4}
\end{equation*}
$$

Infinitesimal symmetry criterion

Theorem

A connected Lie group G is a symmetry group of the fully regular system of differential equations $\Delta=0$, if and only if the classical infinitesimal symmetry conditions

$$
X^{(n)}\left(\Delta_{\kappa}\right)=0, \quad \kappa=1, \ldots, r, \quad \text { whenever } \Delta=0,
$$

hold for every infinitesimal generator $X \in \mathfrak{g}$ of G.
Algorithm

- Set symmetry criterion for given PDE or system of PDEs

$$
X^{(n)}\left(\Delta_{\kappa}\right)=0, \quad \kappa=1, \ldots, r, \quad \text { whenever } \quad \Delta=0
$$

- Derive coefficients ϕ_{J}^{α}.
- Solve the system of determining equations.

The CHM equation with applied Laplacian and Jacobian:

$$
u_{t x x}+u_{t y y}-F u_{t}+\beta u_{x}+u_{x} u_{x x y}+u_{x} u_{y y y}-u_{y} u_{x x x}-u_{y} u_{x y y}=0
$$

Infinitesimal generator $X(t, x, y, u)$ over $J^{0} Y$

$$
X(t, x, y, u)=\tau \frac{\partial}{\partial t}+\chi \frac{\partial}{\partial x}+\psi \frac{\partial}{\partial y}+\mu \frac{\partial}{\partial u}
$$

The third prolongation $X^{(3)}(t, x, y, u)$ over $J^{3} Y$

$$
\begin{aligned}
X^{(3)} & =\tau \frac{\partial}{\partial t}+\chi \frac{\partial}{\partial x}+\psi \frac{\partial}{\partial y}+\mu \frac{\partial}{\partial u}+\mu^{t} \frac{\partial}{\partial u_{t}}+\mu^{x} \frac{\partial}{\partial u_{x}}+\mu^{y} \frac{\partial}{\partial u_{y}}+ \\
& +\mu^{t t} \frac{\partial}{\partial u_{t t}}+\mu^{t x} \frac{\partial}{\partial u_{t x}}+\ldots+\mu^{x y y} \frac{\partial}{\partial u_{x y y}}+\mu^{y y y} \frac{\partial}{\partial u_{y y y}} .
\end{aligned}
$$

Infinitesimal symmetry criterion:

$$
\begin{gather*}
X^{(3)}\left(\Delta_{1}\right)=\mu^{t x x}+\mu^{t y y}-F \mu^{t}+\beta \mu^{x}+\mu^{x}\left(u_{x x y}+u_{y y y}\right)+ \\
+u_{x}\left(\mu^{x x y}+\mu^{y y y}\right)-\mu^{y}\left(u_{x x x}+u_{x y y}\right)-u_{y}\left(\mu^{x x x}+\mu^{x y y}\right)=0, \tag{5}
\end{gather*}
$$

whenever

$$
\begin{equation*}
u_{t x x}+u_{t y y}+F u_{t}-\beta u_{x}-u_{x} u_{x x y}-u_{x} u_{y y y}+u_{y} u_{x x x}+u_{y} u_{x y y}=0 \tag{6}
\end{equation*}
$$

We derive the coefficients $\mu^{t}, \mu^{x}, \ldots, \mu^{y y y}$, for example

$$
\begin{gather*}
\mu^{t}=D_{t} \mu-\left(D_{t} \tau\right) u_{t}-\left(D_{t} \chi\right) u_{x}-\left(D_{t} \psi\right) u_{y}, \\
\mu^{x x y}=D_{x x y} \mu-D_{x x y}\left(\tau u_{t}\right)-D_{x x y}\left(\chi u_{x}\right)-D_{x x y}\left(\psi u_{y}\right)+ \\
+\tau u_{t x x y}+\chi u_{x x x y}+\psi u_{x x y y} \tag{6}
\end{gather*}
$$

a insert them into equation (5), together with expressed term from eq.

$$
u_{t x x}=-u_{t y y}+F u_{t}-\beta u_{x}-u_{x} u_{x x y}-u_{x} u_{y y y}+u_{y} u_{x x x}+u_{y} u_{x y y} .
$$

We obtain the polynomial with indeterminates $u, u_{t}, u_{x}, \ldots, u_{y y y}$:

$$
\begin{gathered}
1 \cdot\left(\mu_{t x x}+\mu_{t y y}-F \mu_{t}+\beta \mu_{x}\right)+ \\
u_{t} \cdot\left(\mu_{x x u}+\mu_{y y u}-\beta \tau_{x}-2 F \chi_{x}\right)+ \\
u_{x} \cdot\left(2 \mu_{t x u}+\mu_{x x y}+\mu_{y y y}-\chi_{t x x}-\chi_{t y y}+F \chi_{t}+\beta \chi_{x}+\beta \tau_{t}\right)+ \\
u_{y} \cdot\left(2 \mu_{t y u}-\mu_{x x x}-\mu_{x y y}-\psi_{t x x}-\psi_{t y y}+F \psi_{t}-\beta \psi_{x}\right)+ \\
u_{t} u_{x} \cdot\left(2 \mu_{x u u}\right)+ \\
+ \\
\vdots \\
+ \\
u_{y} u_{x y y} \cdot\left(3 \psi_{y}-\tau_{t}-\chi_{x}-\mu_{u}\right)+ \\
u_{y} u_{y y y} \cdot\left(-\psi_{x}+\psi_{x}\right)=0
\end{gathered}
$$

All brackets has to be equal to zero \Longrightarrow linear PDEs with constant coef.

Solution of linear PDEs with constant coefficients:

- Macaulay2 - Linux software for computations in commutative algebra and algebraic geometry.
- We solve in Macaulay2 those equations without general coefficients β, F.
- Remaining equations with general coefficients β, F can be solved easily by hand.
Algorithm core in Macaulay2:
- Linear partial differential equations with constant coefficients have a same structure as vectors of polynomials

$$
2 \chi_{x y}+3 \chi_{x x}+\psi_{y y}-2 \mu_{y u} \mapsto\left(\begin{array}{c}
0 \\
2 \partial_{x} \partial_{y}+3\left(\partial_{x}\right)^{2} \\
\left(\partial_{y}\right)^{2} \\
-2 \partial_{y} \partial_{u}
\end{array}\right)
$$

- Fundamental Principle of Ehrenpreis-Palamodov.

System of linear PDEs has different solution depending on the F value

$$
F=\left(\frac{L}{R}\right)^{2}=\frac{f^{2} L^{2}}{g D}
$$

where L - characteristic length and R - Rossby radius of deformation.
(1) $F \approx 0$ (near equator) - Rossby radius of deformation is large.

Planet's rotation has dominant effect on the flow developent - zonal flows, jet streams, ocean currents.
(2) $F>0$ (mid-latitudes) - Influences of the planet's rotation and changes in the flow (caused by pressure/temperature gradient, topografy etc.) are in balance.
(3) $F \gg 0$ (near north/south poles) - Rossby radius of deformation is small, planet's rotation has neglectable effect on the fluid flow.

Solution with assumption $F>0$ (balance, mid-latitudes):

$$
\begin{gathered}
\tau(t)=c_{1}+c_{5} t, \\
\chi(t, x, y)=c_{2}-\frac{\beta}{F} c_{5} t-c_{6} y, \\
\psi(t, x, y)=c_{3}+\frac{\beta}{F} c_{6} t+c_{6} x, \\
\mu(t, x, y, u)=c_{4}+\frac{\beta^{2}}{F^{2}} c_{6} t+\frac{\beta}{F} c_{6} x+\frac{\beta}{F} c_{5} y-c_{5} u .
\end{gathered}
$$

Infinitesimal generators of Lie algebra $\mathfrak{g}_{\text {sym }}$:

$$
\begin{gathered}
X_{1}=\frac{\partial}{\partial t}, X_{2}=\frac{\partial}{\partial x}, X_{3}=\frac{\partial}{\partial y}, X_{4}=\frac{\partial}{\partial u} \\
X_{5}=F t \frac{\partial}{\partial t}-\beta t \frac{\partial}{\partial x}+(\beta y-F u) \frac{\partial}{\partial u} \\
X_{6}=-F^{2} y \frac{\partial}{\partial x}+\left(\beta F t+F^{2} x\right) \frac{\partial}{\partial y}+\left(\beta^{2} t+\beta F x\right) \frac{\partial}{\partial u} .
\end{gathered}
$$

Corresponding Lie point transformations ($\alpha_{i}-$ group parameter):

- Generators $X_{1}, X_{2}, X_{3}, X_{4}$:

$$
(\tilde{t}, \tilde{x}, \tilde{y}, \tilde{u})=\left(t+\alpha_{1}, x+\alpha_{2}, y+\alpha_{3}, u+\alpha_{4}\right), \quad \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \mathbb{R}
$$

- Generator X_{5}

$$
\begin{array}{ccc}
\tilde{t} & = & t e^{F \alpha_{5}}, \\
\tilde{x} & = & x+\frac{\beta t}{F}\left(1-e^{F \alpha_{5}}\right), \\
\tilde{y} & = & y, \\
\tilde{u} & = & \frac{\beta y}{F}\left(1-e^{-F \alpha_{5}}\right)+u e^{-F \alpha_{5}} .
\end{array}
$$

- Generator X_{6}, where $K=\frac{\beta}{F}$

$$
\begin{array}{rlc}
\tilde{t} & = & t, \\
\tilde{x} & = & x \cos \left(F^{2} \alpha_{6}\right)-y \sin \left(F^{2} \alpha_{6}\right)+K t\left(\cos \left(F^{2} \alpha_{6}\right)-1\right), \\
\tilde{y} & = & x \sin \left(F^{2} \alpha_{6}\right)+y \cos \left(F^{2} \alpha_{6}\right)+K t \sin \left(F^{2} \alpha_{6}\right), \\
\tilde{u} & = & K x \sin \left(F^{2} \alpha_{6}\right)+K y\left(\cos \left(F^{2} \alpha_{6}\right)-1\right)+K^{2} t \sin \left(F^{2} \alpha_{6}\right)+u .
\end{array}
$$

Abbreviating F^{2} and reorganizing terms

$$
\begin{array}{rlc}
\tilde{t} & = & t, \\
\tilde{x} & = & (x+K t) \cos \left(\alpha_{6}\right)-y \sin \left(\alpha_{6}\right)-K t, \\
\tilde{y} & = & (x+K t) \sin \left(\alpha_{6}\right)+y \cos \left(\alpha_{6}\right), \\
\tilde{u} & = & K(x+K t) \sin \left(\alpha_{6}\right)+K y\left(\cos \left(\alpha_{6}\right)-1\right)+u .
\end{array}
$$

Geometrical interpretation

- Generators $X_{1}, X_{2}, X_{3}, X_{4}$ - translation in coordinates t, x, y, u.

$$
(\tilde{t}, \tilde{x}, \tilde{y}, \tilde{u})=\left(t+\alpha_{1}, x+\alpha_{2}, y+\alpha_{3}, u+\alpha_{4}\right), \quad \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \mathbb{R}
$$

- doesn't have impact on the fluid velocity fields
- Generator X_{5} - time-length contraction/extension in (t, x) plane

$$
\begin{aligned}
\tilde{t} & =t e^{F \alpha_{5}}, \tilde{x}=x+\frac{\beta t}{F}\left(1-e^{F \alpha_{5}}\right) \\
& \Longrightarrow \quad \tilde{t}_{2}-\tilde{t}_{1}=\left(t_{2}-t_{1}\right) e^{F \alpha_{5}}
\end{aligned}
$$

(1) $\alpha_{5}>0$ - time extension
(2) $\alpha_{5}<0$ - time contraction

Figure: Vector field $X_{5}, \beta=0.25, F=1$

Length/time change ratio: - phase velocity $K=\frac{\beta}{F}$ is preserved (x dir.)

$$
\frac{\tilde{x}-x}{\tilde{t}-t}=-\frac{\beta}{F}, \quad \tilde{x}=x-\frac{\beta}{F}(\tilde{t}-t) .
$$

Length/time change ratio: - phase velocity $K=\frac{\beta}{F}$ is preserved (x dir.)

$$
\frac{\tilde{x}-x}{\tilde{t}-t}=-\frac{\beta}{F}, \quad \tilde{x}=x-\frac{\beta}{F}(\tilde{t}-t) .
$$

1) Example of stream function

$$
u=y \Longrightarrow \tilde{u}=\tilde{y}\left(e^{-F \alpha_{6}}+\frac{\beta}{F}\left(1-e^{-F \alpha_{6}}\right)\right)
$$

Change in flow velocity fields:

$$
\left(\frac{\partial u}{\partial y},-\frac{\partial u}{\partial x}\right)=(1,0) \Longrightarrow\left(\frac{\partial \tilde{u}}{\partial y},-\frac{\partial \tilde{u}}{\partial x}\right)=\left(e^{-F \alpha_{6}}+\frac{\beta}{F}\left(1-e^{-F \alpha_{6}}\right), 0\right)
$$

Length/time change ratio: - phase velocity $K=\frac{\beta}{F}$ is preserved (x dir.)

$$
\frac{\tilde{x}-x}{\tilde{t}-t}=-\frac{\beta}{F}, \quad \tilde{x}=x-\frac{\beta}{F}(\tilde{t}-t) .
$$

1) Example of stream function

$$
u=y \Longrightarrow \tilde{u}=\tilde{y}\left(e^{-F \alpha_{6}}+\frac{\beta}{F}\left(1-e^{-F \alpha_{6}}\right)\right)
$$

Change in flow velocity fields:
$\left(\frac{\partial u}{\partial y},-\frac{\partial u}{\partial x}\right)=(1,0) \Longrightarrow\left(\frac{\partial \tilde{u}}{\partial y},-\frac{\partial \tilde{u}}{\partial x}\right)=\left(e^{-F \alpha_{6}}+\frac{\beta}{F}\left(1-e^{-F \alpha_{6}}\right), 0\right)$
2) Example of stream function

$$
u=x \Longrightarrow \tilde{u}=\frac{\beta}{F} \tilde{y}\left(1-e^{-F \alpha_{6}}\right)+\tilde{x} e^{-F \alpha_{6}}
$$

Change in flow velocity fields:

$$
\left(\frac{\partial u}{\partial y},-\frac{\partial u}{\partial x}\right)=(0,-1) \Longrightarrow\left(\frac{\partial \tilde{u}}{\partial y},-\frac{\partial \tilde{u}}{\partial x}\right)=\left(\frac{\beta}{F}\left(1-e^{-F \alpha_{6}}\right), e^{-F \alpha_{6}}\right)
$$

- Generator X_{6} - rotation around the origin with respect to the phase velocity in x direction $K=\frac{\beta}{F}$.

$$
\begin{array}{ccc}
\tilde{t} & = & t, \\
\tilde{x} & = & (x+K t) \cos \left(\alpha_{6}\right)-y \sin \left(\alpha_{6}\right)-K t, \\
\tilde{y} & = & (x+K t) \sin \left(\alpha_{6}\right)+y \cos \left(\alpha_{6}\right), \\
\tilde{u} & = & K(x+K t) \sin \left(\alpha_{6}\right)+K y\left(\cos \left(\alpha_{6}\right)-1\right)+u .
\end{array}
$$

Figure: Vector field $X_{6}, \beta=0.25, F=1, t=10$

Solution with assumption $F \gg 0$ (neglectable rotation influence):

$$
\begin{aligned}
& \tau(t)=c_{1}+c_{5} t \\
& \chi(y)=c_{2}-c_{6} y \\
& \psi(x)=c_{3}+c_{6} x \\
& \mu(u)=c_{4}-c_{5} u
\end{aligned}
$$

Infinitesimal generators of Lie algebra $\mathfrak{g}_{s y m}$:

$$
\begin{aligned}
X_{1}=\frac{\partial}{\partial t}, X_{2} & =\frac{\partial}{\partial x}, X_{3}=\frac{\partial}{\partial y}, X_{4}=\frac{\partial}{\partial u} \\
X_{5} & =t \frac{\partial}{\partial t}-u \frac{\partial}{\partial u} \\
X_{6} & =-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y} .
\end{aligned}
$$

Corresponding Lie-point transformations and interpretation

- Generators $X_{1}, X_{2}, X_{3}, X_{4}$ - translations
- Generator X_{5} - scaling in temporary coordinate t

$$
(\tilde{t}, \tilde{x}, \tilde{y}, \tilde{u})=\left(t e^{\alpha_{5}}, x, y, u e^{-\alpha_{5}}\right)
$$

- Generator X_{6} - rotation in β-plane

$$
(\tilde{t}, \tilde{x}, \tilde{y}, \tilde{u})=\left(t, x \cos \left(\alpha_{6}\right), y \sin \left(\alpha_{6}\right), u\right)
$$

Solution with assumption $F \approx 0$ (dominant rotation influence):

$$
\begin{gathered}
\tau(t)=c_{1} \\
\chi(t, x, y)=-h(t) \\
\psi(t, x, y)=c_{2} \\
\mu(t, x, y, u)=f(t)+h^{\prime}(t) y .
\end{gathered}
$$

Infinitesimal generators of Lie algebra $\mathfrak{g}_{\text {sym }}$:

$$
\begin{gathered}
X_{1}=\frac{\partial}{\partial t}, \quad X_{2}=\frac{\partial}{\partial y} \\
X_{3}=-h(t) \frac{\partial}{\partial x}+h^{\prime}(t) y \frac{\partial}{\partial u}, \quad X_{4}=f(t) \frac{\partial}{\partial u} .
\end{gathered}
$$

Corresponding Lie-point transformations and interpretation

- Generators X_{1}, X_{2} - translations in t, y coordinates
- Generator X_{3} - time-dependent motion along x-coordinate - by setting $\alpha_{3}=t, h(t)$ represents planet's pheripheral velocity (zonal direction)

$$
\begin{array}{rlc}
\tilde{t} & = & t, \\
\tilde{x} & = & -h(t) \alpha_{3}+x, \\
\tilde{y} & = & y, \\
\tilde{u} & = & h^{\prime}(t) y \alpha_{3}+u .
\end{array}
$$

- Generator X_{4} - any time-dependent change in stream function values

$$
(\tilde{t}, \tilde{x}, \tilde{y}, \tilde{u})=\left(t, x, y, f(t) \alpha_{4}+u\right)
$$

Conclusion

- For reasonably large $F>0$ (mid-latitudes), the CHM equation has Lie symmetries of translations, time-scaling and rotation, which preserve phase velocity $\frac{\beta}{F}$ in x-direction.
- Special cases of F value (rather theoretical meaning):
(1) $F \approx 0$ (planet's rotation is dominant, equator) \Longrightarrow time-dependent motion symmetries along x and u coordinates
(2) $F \gg 0$ (planet's rotation is neglectable, poles) \Longrightarrow rotation symmetry in spatial (x, y) coordinates and scaling in temporary t coordinate

Conclusion

- Translation symmetry is present in all F instances.
- The most general solution of the CHM equation (for particular F instance) - application of all $G_{\text {sym }}$ transformations to coordinates of the known solution $u=u(t, x, y)$.

Figure: Rossby waves

