Integrable quantum field theories between modular theory and the Yang-Baxter equation

Gandalf Lechner

partly joint work with Ricardo Correa da Silva

```
arXiv:2212.02298
```


Geometric Methods in Physics, Białowieża

July 5, 2023

Motivation: Use tools from functional analysis / operator algebras to construct quantum field theory models.

Motivation: Use tools from functional analysis / operator algebras to construct quantum field theory models.

Basic dictionary:

1) Maths
2) Physics

Motivation: Use tools from functional analysis / operator algebras to construct quantum field theory models.

Basic dictionary:

1) Maths
2) Physics

- Hilbert space \mathcal{H}
- standard subspace
$H \subset \mathcal{H}$
- modular theory
- twist operator
$T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$
- von Neumann algebras, twisted Araki-Woods algebras $\mathcal{L}_{T}(H)$

Motivation: Use tools from functional analysis / operator algebras to construct quantum field theory models.

Basic dictionary:

1) Maths

- Hilbert space \mathcal{H}
- standard subspace
$H \subset \mathcal{H}$
- modular theory
- twist operator
$T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$
- von Neumann algebras, twisted Araki-Woods algebras $\mathcal{L}_{T}(H)$

2) Physics

- one-particle space
- localization region in some spacetime
- (Poincaré) symmetries
- two-particle interaction (scattering)
- localized observable algebras

Motivation: Use tools from functional analysis / operator algebras to construct quantum field theory models.

Basic dictionary:

1) Maths

- Hilbert space \mathcal{H}
- standard subspace
$H \subset \mathcal{H}$
- modular theory
- twist operator
$T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$
- von Neumann algebras, twisted Araki-Woods algebras $\mathcal{L}_{T}(H)$

2) Physics

- one-particle space
- localization region in some spacetime
- (Poincaré) symmetries
- two-particle interaction (scattering)
- localized observable algebras

Standard subspaces

Setting: complex Hilbert space \mathcal{H}.

Standard subspaces

Setting: complex Hilbert space \mathcal{H}.

Definition

A standard subspace is an \mathbb{R}-linear closed subspace $H \subset \mathcal{H}$ such that

$$
\overline{H+i H}=\mathcal{H}, \quad H \cap i H=\{0\} .
$$

Standard subspaces

Setting: complex Hilbert space \mathcal{H}.

Definition

A standard subspace is an \mathbb{R}-linear closed subspace $H \subset \mathcal{H}$ such that

$$
\overline{H+i H}=\mathcal{H}, \quad H \cap i H=\{0\}
$$

Maths examples:

- $\mathbb{R} \subset \mathbb{C}, \quad \mathbb{R}^{n} \subset \mathbb{C}^{n}, \quad L^{2}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right) \subset L^{2}\left(\mathbb{R}^{n} \rightarrow \mathbb{C}\right)$

Standard subspaces

Setting: complex Hilbert space \mathcal{H}.

Definition

A standard subspace is an \mathbb{R}-linear closed subspace $H \subset \mathcal{H}$ such that

$$
\overline{H+i H}=\mathcal{H}, \quad H \cap i H=\{0\}
$$

Maths examples:

- $\mathbb{R} \subset \mathbb{C}, \quad \mathbb{R}^{n} \subset \mathbb{C}^{n}, \quad L^{2}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right) \subset L^{2}\left(\mathbb{R}^{n} \rightarrow \mathbb{C}\right)$
- $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ von Neumann algebra, and Ω cyclic/separating vector.

$$
H:=\left\{A \Omega: A=A^{*} \in \mathcal{M}\right\}^{-} \quad \text { is standard. }
$$

Standard subspaces

Setting: complex Hilbert space \mathcal{H}.

Definition

A standard subspace is an \mathbb{R}-linear closed subspace $H \subset \mathcal{H}$ such that

$$
\overline{H+i H}=\mathcal{H}, \quad H \cap i H=\{0\} .
$$

Maths examples:

- $\mathbb{R} \subset \mathbb{C}, \quad \mathbb{R}^{n} \subset \mathbb{C}^{n}, \quad L^{2}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right) \subset L^{2}\left(\mathbb{R}^{n} \rightarrow \mathbb{C}\right)$
- $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ von Neumann algebra, and Ω cyclic/separating vector.

$$
H:=\left\{A \Omega: A=A^{*} \in \mathcal{M}\right\}^{-} \quad \text { is standard. }
$$

Physics examples:

- Let $\rho \in M_{n}(\mathbb{C}), \rho>0$ (density matrix), and

$$
H:=\left\{A \rho: A=A^{*} \in M_{n}(\mathbb{C})\right\} \subset M_{n}(\mathbb{C})=: \mathcal{H}
$$

Standard subspaces

Setting: complex Hilbert space \mathcal{H}.

Definition

A standard subspace is an \mathbb{R}-linear closed subspace $H \subset \mathcal{H}$ such that

$$
\overline{H+i H}=\mathcal{H}, \quad H \cap i H=\{0\} .
$$

Maths examples:

- $\mathbb{R} \subset \mathbb{C}, \quad \mathbb{R}^{n} \subset \mathbb{C}^{n}, \quad L^{2}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right) \subset L^{2}\left(\mathbb{R}^{n} \rightarrow \mathbb{C}\right)$
- $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ von Neumann algebra, and Ω cyclic/separating vector.

$$
H:=\left\{A \Omega: A=A^{*} \in \mathcal{M}\right\}^{-} \quad \text { is standard. }
$$

Physics examples:

- Let $\rho \in M_{n}(\mathbb{C}), \rho>0$ (density matrix), and

$$
H:=\left\{A \rho: A=A^{*} \in M_{n}(\mathbb{C})\right\} \subset M_{n}(\mathbb{C})=: \mathcal{H}
$$

- Let ϕ be a quantum field on spacetime M with vacuum Ω, and $\mathcal{O} \subset M$ open (localization region)

$$
H_{\mathcal{O}}:=\left\{\phi(f) \Omega: f \in C_{c, \mathbb{R}}^{\infty}(M), \operatorname{supp}(f) \subset \mathcal{O}\right\}^{-}
$$

Standard subspaces and modular theory

- Given a standard subspace, have Tomita operator

$$
S_{H}: H+i H \rightarrow H+i H, \quad S_{H}\left(h_{1}+i h_{2}\right)=h_{1}-i h_{2} .
$$

- Polar decomposition: $S_{H}=J_{H} \Delta_{H}^{1 / 2}$.

Standard subspaces and modular theory

- Given a standard subspace, have Tomita operator

$$
S_{H}: H+i H \rightarrow H+i H, \quad S_{H}\left(h_{1}+i h_{2}\right)=h_{1}-i h_{2}
$$

- Polar decomposition: $S_{H}=J_{H} \Delta_{H}^{1 / 2}$.
- Every standard subspace H comes with:
- an internal dynamics (unitaries $\Delta_{H}^{i t}$ satisfy $\Delta_{H}^{i t} H=H$)
- a conjugation (antiunitary involution J_{H} satisfies $J_{H} H=H^{\prime}=$ sympl. complement).

Standard subspaces and modular theory

- Given a standard subspace, have Tomita operator

$$
S_{H}: H+i H \rightarrow H+i H, \quad S_{H}\left(h_{1}+i h_{2}\right)=h_{1}-i h_{2} .
$$

- Polar decomposition: $S_{H}=J_{H} \Delta_{H}^{1 / 2}$.
- Every standard subspace H comes with:
- an internal dynamics (unitaries $\Delta_{H}^{i t}$ satisfy $\Delta_{H}^{i t} H=H$)
- a conjugation (antiunitary involution J_{H} satisfies $J_{H} H=H^{\prime}=$ sympl. complement).
- Given strongly continuous unitary one-parameter group $V(t)=e^{i t X}$ and antiunitary involution J with $[J, V(t)]=0$,

$$
H:=\operatorname{ker}\left(1-J e^{X}\right) \quad \text { is standard. }
$$

- Every standard subspace is of this form.
- In particular, may generate standard subspaces from unitary group representations (Poincaré group, deSitter group, Möbius group, ...)

Twisted Fock spaces

- Setup: Fix Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.

Twisted Fock spaces

- Setup: Fix Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.
- Idea: Define new scalar product $\langle\cdot, \cdot\rangle_{T, n}:=\left\langle\cdot, P_{T, n} \cdot\right\rangle$ on $\mathcal{H}^{\otimes n}$.

Twisted Fock spaces

- Setup: Fix Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.
- Idea: Define new scalar product $\langle\cdot, \cdot\rangle_{T, n}:=\left\langle\cdot, P_{T, n} \cdot\right\rangle$ on $\mathcal{H}^{\otimes n}$.
- Notation:

$$
T_{k}:=1_{\mathcal{H}}^{\otimes(k-1)} \otimes T \otimes 1_{\mathcal{H}}^{\otimes(n-k-1)}
$$

$$
\left|\left|\left|\begin{array}{c}
\mid \\
\mid T \\
T
\end{array}\right|\right|=T_{4}\right.
$$

- Kernels:

$$
P_{T, 1}=1, \quad P_{T, 2}=1+T, \quad P_{T, n+1}=\left(1 \otimes P_{T, n}\right)\left(1+T_{1}+T_{1} T_{2}+\ldots+T_{1} \cdots T_{n}\right) .
$$

Twisted Fock spaces

- Setup: Fix Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.
- Idea: Define new scalar product $\langle\cdot, \cdot\rangle_{T, n}:=\left\langle\cdot, P_{T, n} \cdot\right\rangle$ on $\mathcal{H}^{\otimes n}$.
- Notation:

$$
T_{k}:=1_{\mathcal{H}}^{\otimes(k-1)} \otimes T \otimes 1_{\mathcal{H}}^{\otimes(n-k-1)}
$$

$$
\left|\left|\left|\frac{\mid 1}{T}\right|\right|=T_{4}\right.
$$

- Kernels:

$$
P_{T, 1}=1, \quad P_{T, 2}=1+T, \quad P_{T, n+1}=\left(1 \otimes P_{T, n}\right)\left(1+T_{1}+T_{1} T_{2}+\ldots+T_{1} \cdots T_{n}\right) .
$$

Definition

- Twist: $T=T^{*},\|T\| \leq 1, P_{T, n} \geq 0$ for all n.
- Strict twist: In addition ker $P_{T, n}=\{0\}$.

Twisted Fock spaces

- Setup: Fix Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.
- Idea: Define new scalar product $\langle\cdot, \cdot\rangle_{T, n}:=\left\langle\cdot, P_{T, n} \cdot\right\rangle$ on $\mathcal{H}^{\otimes n}$.
- Notation:

$$
T_{k}: \left.=1_{\mathcal{H}}^{\otimes(k-1)} \otimes T \otimes 1_{\mathcal{H}}^{\otimes(n-k-1)} \quad| |\left|\begin{array}{c}
\text { 皿 } \\
T
\end{array}\right| \right\rvert\,=T_{4}
$$

- Kernels:

$$
P_{T, 1}=1, \quad P_{T, 2}=1+T, \quad P_{T, n+1}=\left(1 \otimes P_{T, n}\right)\left(1+T_{1}+T_{1} T_{2}+\ldots+T_{1} \cdots T_{n}\right) .
$$

Definition

- Twist: $T=T^{*},\|T\| \leq 1, P_{T, n} \geq 0$ for all n.
- Strict twist: In addition $\operatorname{ker} P_{T, n}=\{0\}$.

Definition

T-twisted Fock space

$$
\mathcal{F}_{T}(\mathcal{H}):=\bigoplus_{n \geq 0} \overline{\mathcal{H}^{\otimes n} / \operatorname{ker} P_{T, n}}(\cdot, \cdot\rangle_{T, n}
$$

Examples

- $T= \pm F: v \otimes w \mapsto \pm w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose/Fermi Fock space
- $T=0: \mathcal{F}_{0}(\mathcal{H})=$ full Fock space
- $T=$ linearisation of set-theoretic solution of YBE on $\operatorname{span}(X) \otimes \operatorname{span}(X)$

Examples

- $T= \pm F: v \otimes w \mapsto \pm w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose/Fermi Fock space
- $T=0: \mathcal{F}_{0}(\mathcal{H})=$ full Fock space
- $T=$ linearisation of set-theoretic solution of YBE on $\operatorname{span}(X) \otimes \operatorname{span}(X)$

Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])
Let $T=T^{*} \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H}),\|T\| \leq 1$.
(1) If $\|T\| \leq \frac{1}{2}$, then T is a strict twist.
(2) If $T \geq 0$, then T is a strict twist.
(3) If

$$
T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2} \quad \text { (Yang-Baxter equation) }
$$

then T is a twist (strict twist if $\|T\|<1$).

Examples

- $T= \pm F: v \otimes w \mapsto \pm w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose/Fermi Fock space
- $T=0: \mathcal{F}_{0}(\mathcal{H})=$ full Fock space
- $T=$ linearisation of set-theoretic solution of YBE on $\operatorname{span}(X) \otimes \operatorname{span}(X)$

Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])

Let $T=T^{*} \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H}),\|T\| \leq 1$.
(1) If $\|T\| \leq \frac{1}{2}$, then T is a strict twist.
(2) If $T \geq 0$, then T is a strict twist.
(3) If

$$
T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2} \quad \text { (Yang-Baxter equation) }
$$

then T is a twist (strict twist if $\|T\|<1$).

Examples

- $T= \pm F: v \otimes w \mapsto \pm w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose/Fermi Fock space
- $T=0: \mathcal{F}_{0}(\mathcal{H})=$ full Fock space
- $T=$ linearisation of set-theoretic solution of YBE on $\operatorname{span}(X) \otimes \operatorname{span}(X)$

Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])

Let $T=T^{*} \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H}),\|T\| \leq 1$.
(1) If $\|T\| \leq \frac{1}{2}$, then T is a strict twist.
(2) If $T \geq 0$, then T is a strict twist.
(3) If

$$
T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2} \quad \text { (Yang-Baxter equation) }
$$

then T is a twist (strict twist if $\|T\|<1$).

Examples

- $T= \pm F: v \otimes w \mapsto \pm w \otimes v$ (flip): $\mathcal{F}_{F}(\mathcal{H})=$ Bose/Fermi Fock space
- $T=0: \mathcal{F}_{0}(\mathcal{H})=$ full Fock space
- $T=$ linearisation of set-theoretic solution of YBE on $\operatorname{span}(X) \otimes \operatorname{span}(X)$

Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])

Let $T=T^{*} \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H}),\|T\| \leq 1$.
(1) If $\|T\| \leq \frac{1}{2}$, then T is a strict twist.
(2) If $T \geq 0$, then T is a strict twist.
(3) If

$$
T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2} \quad \text { (Yang-Baxter equation) }
$$

then T is a twist (strict twist if $\|T\|<1$).

From now on: \mathcal{H} Hilbert space, T arbitrary twist.

- On $\mathcal{F}_{T}(\mathcal{H})$, have (left) creation/annihilation operators $a_{L, T}(\xi), \xi \in \mathcal{H}$:

$$
\begin{aligned}
a_{L, T}^{\star}(\xi) \Omega & =\xi, & & \Omega: \text { Fock vacuum } \\
a_{L, T}^{\star}(\xi)\left[\Psi_{n}\right] & =\left[\xi \otimes \Psi_{n}\right], & & \Psi_{n} \in \mathcal{H}^{\otimes n} .
\end{aligned}
$$

These are bounded for $\|T\|<1$.

- On $\mathcal{F}_{T}(\mathcal{H})$, have (left) creation/annihilation operators $a_{L, T}(\xi), \xi \in \mathcal{H}$:

$$
\begin{aligned}
a_{L, T}^{\star}(\xi) \Omega & =\xi, & & \Omega: \text { Fock vacuum } \\
a_{L, T}^{\star}(\xi)\left[\Psi_{n}\right] & =\left[\xi \otimes \Psi_{n}\right], & & \Psi_{n} \in \mathcal{H}^{\otimes n} .
\end{aligned}
$$

These are bounded for $\|T\|<1$.

- Left field operators:

$$
\phi_{L, T}(\xi):=a_{L, T}^{\star}(\xi)+a_{L, T}(\xi) .
$$

- On $\mathcal{F}_{T}(\mathcal{H})$, have (left) creation/annihilation operators $a_{L, T}(\xi), \xi \in \mathcal{H}$:

$$
\begin{aligned}
a_{L, T}^{\star}(\xi) \Omega & =\xi, & & \Omega: \text { Fock vacuum } \\
a_{L, T}^{\star}(\xi)\left[\Psi_{n}\right] & =\left[\xi \otimes \Psi_{n}\right], & & \Psi_{n} \in \mathcal{H}^{\otimes n} .
\end{aligned}
$$

These are bounded for $\|T\|<1$.

- Left field operators:

$$
\phi_{L, T}(\xi):=a_{L, T}^{\star}(\xi)+a_{L, T}(\xi) .
$$

Now recall standard subspaces!

- On $\mathcal{F}_{T}(\mathcal{H})$, have (left) creation/annihilation operators $a_{L, T}(\xi), \xi \in \mathcal{H}$:

$$
\begin{aligned}
a_{L, T}^{\star}(\xi) \Omega & =\xi, & & \Omega: \text { Fock va } \\
a_{L, T}^{\star}(\xi)\left[\Psi_{n}\right] & =\left[\xi \otimes \Psi_{n}\right], & & \Psi_{n} \in \mathcal{H}^{\otimes n} .
\end{aligned}
$$

These are bounded for $\|T\|<1$.

- Left field operators:

$$
\phi_{L, T}(\xi):=a_{L, T}^{\star}(\xi)+a_{L, T}(\xi) .
$$

Now recall standard subspaces!

Definition

$H \subset \mathcal{H}$ standard subspace, T twist. The (left) twisted Araki-Woods algebra is

$$
\mathcal{L}_{T}(H):=\left\{\phi_{L, T}(h): h \in H\right\}^{\prime \prime} \subset \mathcal{B}\left(\mathcal{F}_{T}(\mathcal{H})\right) .
$$

- On $\mathcal{F}_{T}(\mathcal{H})$, have (left) creation/annihilation operators $a_{L, T}(\xi), \xi \in \mathcal{H}$:

$$
\begin{aligned}
a_{L, T}^{\star}(\xi) \Omega & =\xi, & & \Omega: \text { Fock va } \\
a_{L, T}^{\star}(\xi)\left[\Psi_{n}\right] & =\left[\xi \otimes \Psi_{n}\right], & & \Psi_{n} \in \mathcal{H}^{\otimes n} .
\end{aligned}
$$

These are bounded for $\|T\|<1$.

- Left field operators:

$$
\phi_{L, T}(\xi):=a_{L, T}^{\star}(\xi)+a_{L, T}(\xi) .
$$

Now recall standard subspaces!

Definition

$H \subset \mathcal{H}$ standard subspace, T twist. The (left) twisted Araki-Woods algebra is

$$
\mathcal{L}_{T}(H):=\left\{\phi_{L, T}(h): h \in H\right\}^{\prime \prime} \subset \mathcal{B}\left(\mathcal{F}_{T}(\mathcal{H})\right) .
$$

Generalizes many known constructions. Structure depends heavily on H and T.

- On $\mathcal{F}_{T}(\mathcal{H})$, have (left) creation/annihilation operators $a_{L, T}(\xi), \xi \in \mathcal{H}$:

$$
\begin{aligned}
a_{L, T}^{\star}(\xi) \Omega & =\xi, & & \Omega: \text { Fock va } \\
a_{L, T}^{\star}(\xi)\left[\Psi_{n}\right] & =\left[\xi \otimes \Psi_{n}\right], & & \Psi_{n} \in \mathcal{H}^{\otimes n} .
\end{aligned}
$$

These are bounded for $\|T\|<1$.

- Left field operators:

$$
\phi_{L, T}(\xi):=a_{L, T}^{\star}(\xi)+a_{L, T}(\xi) .
$$

Now recall standard subspaces!

Definition

$H \subset \mathcal{H}$ standard subspace, T twist. The (left) twisted Araki-Woods algebra is

$$
\mathcal{L}_{T}(H):=\left\{\phi_{L, T}(h): h \in H\right\}^{\prime \prime} \subset \mathcal{B}\left(\mathcal{F}_{T}(\mathcal{H})\right) .
$$

Generalizes many known constructions. Structure depends heavily on H and T.

- $\left(H=H^{\prime}, T=0\right) \rightarrow \mathcal{L}_{T}(H)=L \mathbb{F}_{\operatorname{dim} \mathcal{H}}$ [Voiculescu].
- (H arbitrary, $T=0) \rightarrow$ "free Araki-Woods factor" [Shlyakhtenko]
- (H arbitrary, $T=q F) \rightarrow q$-deformed Araki-Woods factors [Kumar/Skalski/Wasilewski]
- $\left(H=H_{\mathcal{O}}, T=F\right) \rightarrow \mathcal{L}_{T}(H)=$ free field observable algebra loc. in \mathcal{O}.

Questions

- For general T (and general H), only little is known about $\mathcal{L}_{T}(H)$.

Questions

- For general T (and general H), only little is known about $\mathcal{L}_{T}(H)$.
- Maths questions: Is $\mathcal{L}_{T}(H)$ a factor? What is its type? Do we have standard vectors? Can we recover H ? ...

Questions

- For general T (and general H), only little is known about $\mathcal{L}_{T}(H)$.
- Maths questions: Is $\mathcal{L}_{T}(H)$ a factor? What is its type? Do we have standard vectors? Can we recover H ? ...
- In QFT applications, we want to interpret $\mathcal{L}_{T}(H)$ as the algebra of all quantum observables in a QFT with "interaction T " that are localized in a region described by H, and Ω as the vacuum.
- Physics questions: Is this interpretation possible? Can we construct a full QFT? Which T may we consider? ...

Questions

- For general T (and general H), only little is known about $\mathcal{L}_{T}(H)$.
- Maths questions: Is $\mathcal{L}_{T}(H)$ a factor? What is its type? Do we have standard vectors? Can we recover H ? ...
- In QFT applications, we want to interpret $\mathcal{L}_{T}(H)$ as the algebra of all quantum observables in a QFT with "interaction T " that are localized in a region described by H, and Ω as the vacuum.
- Physics questions: Is this interpretation possible? Can we construct a full QFT? Which T may we consider? ...

There is considerable overlap between the maths and physics questions.

Questions

- For general T (and general H), only little is known about $\mathcal{L}_{T}(H)$.
- Maths questions: Is $\mathcal{L}_{T}(H)$ a factor? What is its type? Do we have standard vectors? Can we recover H ? ...
- In QFT applications, we want to interpret $\mathcal{L}_{T}(H)$ as the algebra of all quantum observables in a QFT with "interaction T " that are localized in a region described by H, and Ω as the vacuum.
- Physics questions: Is this interpretation possible? Can we construct a full QFT? Which T may we consider? ...

There is considerable overlap between the maths and physics questions.

Standardness of the vacuum

Basic fact in QFT: For localized quantum observable algebras, need vacuum Ω standard, i.e. cyclic:

$$
\mathcal{L}_{T}(H) \Omega \subset \mathcal{F}_{T}(\mathcal{H}) \quad \text { dense }
$$

and separating ("no annihilation operators")

$$
A \in \mathcal{L}_{T}(H), A \Omega=0 \Longrightarrow A=0
$$

Standardness of the vacuum

Basic fact in QFT: For localized quantum observable algebras, need vacuum Ω standard, i.e. cyclic:

$$
\mathcal{L}_{T}(H) \Omega \subset \mathcal{F}_{T}(\mathcal{H}) \quad \text { dense }
$$

and separating ("no annihilation operators")

$$
A \in \mathcal{L}_{T}(H), A \Omega=0 \Longrightarrow A=0 .
$$

For which (T, H) is Ω standard for $\mathcal{L}_{T}(H)$?

Standardness of the vacuum

Basic fact in QFT: For localized quantum observable algebras, need vacuum Ω standard, i.e. cyclic:

$$
\mathcal{L}_{T}(H) \Omega \subset \mathcal{F}_{T}(\mathcal{H}) \quad \text { dense }
$$

and separating ("no annihilation operators")

$$
A \in \mathcal{L}_{T}(H), A \Omega=0 \Longrightarrow A=0
$$

For which (T, H) is Ω standard for $\mathcal{L}_{T}(H)$?

- Basic assumption in the following: Twist T compatible with dynamics of H :

$$
\left[T, \Delta_{H}^{i t} \otimes \Delta_{H}^{i t}\right]=0 .
$$

Standardness of the vacuum

Basic fact in QFT: For localized quantum observable algebras, need vacuum Ω standard, i.e. cyclic:

$$
\mathcal{L}_{T}(H) \Omega \subset \mathcal{F}_{T}(\mathcal{H}) \quad \text { dense }
$$

and separating ("no annihilation operators")

$$
A \in \mathcal{L}_{T}(H), A \Omega=0 \Longrightarrow A=0
$$

For which (T, H) is Ω standard for $\mathcal{L}_{T}(H)$?

- Basic assumption in the following: Twist T compatible with dynamics of H :

$$
\left[T, \Delta_{H}^{i t} \otimes \Delta_{H}^{i t}\right]=0 .
$$

- Lemma: Ω always cyclic for $\mathcal{L}_{T}(H)$. But in general not separating.

Standardness of the vacuum

Basic fact in QFT: For localized quantum observable algebras, need vacuum Ω standard, i.e. cyclic:

$$
\mathcal{L}_{T}(H) \Omega \subset \mathcal{F}_{T}(\mathcal{H}) \quad \text { dense }
$$

and separating ("no annihilation operators")

$$
A \in \mathcal{L}_{T}(H), A \Omega=0 \Longrightarrow A=0
$$

For which (T, H) is Ω standard for $\mathcal{L}_{T}(H)$?

- Basic assumption in the following: Twist T compatible with dynamics of H :

$$
\left[T, \Delta_{H}^{i t} \otimes \Delta_{H}^{i t}\right]=0
$$

- Lemma: Ω always cyclic for $\mathcal{L}_{T}(H)$. But in general not separating.
- In order to have Ω separating for $\mathcal{L}_{T}(H)$, need KMS-property.

Standardness of the vacuum

Basic fact in QFT: For localized quantum observable algebras, need vacuum Ω standard, i.e. cyclic:

$$
\mathcal{L}_{T}(H) \Omega \subset \mathcal{F}_{T}(\mathcal{H}) \quad \text { dense }
$$

and separating ("no annihilation operators")

$$
A \in \mathcal{L}_{T}(H), A \Omega=0 \Longrightarrow A=0
$$

For which (T, H) is Ω standard for $\mathcal{L}_{T}(H)$?

- Basic assumption in the following: Twist T compatible with dynamics of H :

$$
\left[T, \Delta_{H}^{i t} \otimes \Delta_{H}^{i t}\right]=0
$$

- Lemma: Ω always cyclic for $\mathcal{L}_{T}(H)$. But in general not separating.
- In order to have Ω separating for $\mathcal{L}_{T}(H)$, need KMS-property.

KMS requires analytic properties of n-point functions.

In graphical notation

In graphical notation

In graphical notation

In graphical notation

Theorem ([Correa da Silva / L 22])

$H \subset \mathcal{H}$ standard subspace, T compatible twist. Then Ω is separating for $\mathcal{L}_{T}(H)$ if and only if T is braided $\left(T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2}\right)$ and crossing-symmetric.
$H \subset \mathcal{H}$ standard subspace, T compatible twist. Then Ω is separating for $\mathcal{L}_{T}(H)$ if and only if T is braided $\left(T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2}\right)$ and crossing-symmetric.

Definition

T is called crossing-symmetric (w.r.t. H) if for all $\psi_{1}, \ldots, \psi_{4} \in \mathcal{H}$, the function

$$
f(t):=\left\langle\psi_{2} \otimes \psi_{1},\left(\Delta_{H}^{i t} \otimes 1\right) T\left(1 \otimes \Delta_{H}^{-i t}\right)\left(\psi_{3} \otimes \psi_{4}\right)\right\rangle
$$

has an analytic bounded continuation to the strip $\mathbb{S}_{1 / 2}$ and

$$
f\left(t+\frac{i}{2}\right)=\left\langle\psi_{1} \otimes J_{H} \psi_{4},\left(1 \otimes \Delta_{H}^{i t}\right) T\left(\Delta_{H}^{-i t} \otimes 1\right)\left(J_{H} \psi_{2} \otimes \psi_{3}\right)\right\rangle .
$$

Theorem ([Correa da Silva / L 22])

$H \subset \mathcal{H}$ standard subspace, T compatible twist. Then Ω is separating for $\mathcal{L}_{T}(H)$ if and only if T is braided $\left(T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2}\right)$ and crossing-symmetric.

Definition

T is called crossing-symmetric (w.r.t. H) if for all $\psi_{1}, \ldots, \psi_{4} \in \mathcal{H}$, the function

$$
f(t):=\left\langle\psi_{2} \otimes \psi_{1},\left(\Delta_{H}^{i t} \otimes 1\right) T\left(1 \otimes \Delta_{H}^{-i t}\right)\left(\psi_{3} \otimes \psi_{4}\right)\right\rangle
$$

has an analytic bounded continuation to the strip $\mathbb{S}_{1 / 2}$ and

$$
f\left(t+\frac{i}{2}\right)=\left\langle\psi_{1} \otimes J_{H} \psi_{4},\left(1 \otimes \Delta_{H}^{i t}\right) T\left(\Delta_{H}^{-i t} \otimes 1\right)\left(J_{H} \psi_{2} \otimes \psi_{3}\right)\right\rangle .
$$

- Crossing symmetry and Yang-Baxter equation both come from physics and are usually taken as assumptions, but can here be derived from modular theory.
- Many examples of braided crossing-symmetric twists are known. The simplest are $T=q \cdot F$ (flip), $-1 \leq q \leq 1$.
- Simplest counterexamples: $T=q \cdot 1$.

Braided twists and left-right duality

For braided twists $\left(T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2}\right)$, there exists also a "right" version of our "left" construction $\leadsto \mathcal{R}_{T}(H)$.

Braided twists and left-right duality

For braided twists $\left(T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2}\right)$, there exists also a "right" version of our "left" construction $\leadsto \mathcal{R}_{T}(H)$.

Proposition ([Correa da Silva / L 22])

Let T be braided and crossing symmetric.
a) The Tomita operator S of $\left(\mathcal{L}_{T}(H), \Omega\right)$ is given by

$$
S\left[\psi_{1} \otimes \ldots \otimes \psi_{n}\right]=\left[S_{H} \psi_{n} \otimes \ldots \otimes S_{H} \psi_{1}\right]
$$

b) Left-right duality holds:

$$
\mathcal{L}_{T}(H)^{\prime}=\mathcal{R}_{T}\left(H^{\prime}\right)
$$

Braided twists and left-right duality

For braided twists $\left(T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2}\right)$, there exists also a "right" version of our "left" construction $\leadsto \mathcal{R}_{T}(H)$.

Proposition ([Correa da Silva / L 22])

Let T be braided and crossing symmetric.
a) The Tomita operator S of $\left(\mathcal{L}_{T}(H), \Omega\right)$ is given by

$$
S\left[\psi_{1} \otimes \ldots \otimes \psi_{n}\right]=\left[S_{H} \psi_{n} \otimes \ldots \otimes S_{H} \psi_{1}\right]
$$

b) Left-right duality holds:

$$
\mathcal{L}_{T}(H)^{\prime}=\mathcal{R}_{T}\left(H^{\prime}\right)
$$

- From our perspective, the braided and crossing-symmetric twists are the most interesting ones (classification unknown).
- Result on modular data generalizes many known results. [Eckmann/Osterwalder '73, Leyland/Roberts/Testard '78, Shlyakhtenko '97, Baumgärtel/Jurke/Lledo '02, Buchholz/L/Summers '11, L '12]
- In situation of theorem, $\mathcal{L}_{T}(H)$ is a factor for $\|T\|<1$. ([Yang '23] for $\operatorname{dim} \mathcal{H}<\infty$, and [Correa da Silva/L '23] for $\operatorname{dim} \mathcal{H}=\infty$)

For braided compatible crossing-symmetric twist, $\mathcal{L}_{T}(H)$ satisfies some requirements from QFT. Now: "upgrade": $\mathcal{L}_{T}(H) \leadsto$ full QFT.

Example

Hilbert space and standard subspace:

$$
\begin{aligned}
\mathcal{H} & =L^{2}(\mathbb{R}, d \theta) \otimes \mathcal{K}, \quad \operatorname{dim} \mathcal{K}<\infty \\
\theta & \longmapsto \psi^{\alpha}(\theta), \quad \alpha \in\{1, \ldots, \operatorname{dim} \mathcal{K}\} \\
\left(\Delta_{H}^{i t} \psi\right)^{\alpha}(\theta) & =\psi^{\alpha}(\theta-2 \pi t), \\
\left(J_{H} \psi\right)^{\alpha}(\theta) & =\overline{\psi^{\bar{\alpha}}(\theta)} \quad \text { with } \alpha \mapsto \bar{\alpha} \text { bijection (charge conjugation) }
\end{aligned}
$$

For braided compatible crossing-symmetric twist, $\mathcal{L}_{T}(H)$ satisfies some requirements from QFT. Now: "upgrade": $\mathcal{L}_{T}(H) \leadsto$ full QFT.

Example

Hilbert space and standard subspace:

$$
\begin{aligned}
\mathcal{H} & =L^{2}(\mathbb{R}, d \theta) \otimes \mathcal{K}, \quad \operatorname{dim} \mathcal{K}<\infty \\
\theta & \longmapsto \psi^{\alpha}(\theta), \quad \alpha \in\{1, \ldots, \operatorname{dim} \mathcal{K}\} \\
\left(\Delta_{H}^{i t} \psi\right)^{\alpha}(\theta) & =\psi^{\alpha}(\theta-2 \pi t), \\
\left(J_{H} \psi\right)^{\alpha}(\theta) & =\overline{\psi^{\bar{\alpha}}(\theta)} \quad \text { with } \alpha \mapsto \bar{\alpha} \text { bijection (charge conjugation) }
\end{aligned}
$$

(H is a vector-valued Hardy space on $\{z: 0<\operatorname{Im}(z)<\pi\}$ with a bound. cond.)

For braided compatible crossing-symmetric twist, $\mathcal{L}_{T}(H)$ satisfies some requirements from QFT. Now: "upgrade": $\mathcal{L}_{T}(H) \leadsto$ full QFT.

Example

Hilbert space and standard subspace:

$$
\begin{aligned}
\mathcal{H} & =L^{2}(\mathbb{R}, d \theta) \otimes \mathcal{K}, \quad \operatorname{dim} \mathcal{K}<\infty \\
\theta & \longmapsto \psi^{\alpha}(\theta), \quad \alpha \in\{1, \ldots, \operatorname{dim} \mathcal{K}\} \\
\left(\Delta_{H}^{i t} \psi\right)^{\alpha}(\theta) & =\psi^{\alpha}(\theta-2 \pi t), \\
\left(J_{H} \psi\right)^{\alpha}(\theta) & =\overline{\psi^{\bar{\alpha}}(\theta)} \quad \text { with } \alpha \mapsto \bar{\alpha} \text { bijection (charge conjugation) }
\end{aligned}
$$

(H is a vector-valued Hardy space on $\{z: 0<\operatorname{Im}(z)<\pi\}$ with a bound. cond.)

- Many crossing symmetric compatible braided twists are known (integrable systems)

$$
\left(T_{S} f\right)\left(\theta_{1}, \theta_{2}\right)=S\left(\theta_{1}-\theta_{2}\right) f\left(\theta_{2}, \theta_{1}\right)
$$

- Matrix-valued function S has to solve YBE with spectral parameter:

$$
S(\theta)_{1} S\left(\theta+\theta^{\prime}\right)_{2} S\left(\theta^{\prime}\right)_{1}=S\left(\theta^{\prime}\right)_{2} S\left(\theta+\theta^{\prime}\right)_{1} S(\theta)_{2}
$$

For braided compatible crossing-symmetric twist, $\mathcal{L}_{T}(H)$ satisfies some requirements from QFT. Now: "upgrade": $\mathcal{L}_{T}(H) \leadsto$ full QFT.

Example

Hilbert space and standard subspace:

$$
\begin{aligned}
\mathcal{H} & =L^{2}(\mathbb{R}, d \theta) \otimes \mathcal{K}, \quad \operatorname{dim} \mathcal{K}<\infty \\
\theta & \longmapsto \psi^{\alpha}(\theta), \quad \alpha \in\{1, \ldots, \operatorname{dim} \mathcal{K}\} \\
\left(\Delta_{H}^{i t} \psi\right)^{\alpha}(\theta) & =\psi^{\alpha}(\theta-2 \pi t), \\
\left(J_{H} \psi\right)^{\alpha}(\theta) & =\overline{\psi^{\bar{\alpha}}(\theta)} \quad \text { with } \alpha \mapsto \bar{\alpha} \text { bijection (charge conjugation) }
\end{aligned}
$$

(H is a vector-valued Hardy space on $\{z: 0<\operatorname{Im}(z)<\pi\}$ with a bound. cond.)

- Many crossing symmetric compatible braided twists are known (integrable systems)

$$
\left(T_{S} f\right)\left(\theta_{1}, \theta_{2}\right)=S\left(\theta_{1}-\theta_{2}\right) f\left(\theta_{2}, \theta_{1}\right)
$$

- Explicit example ("Sinh-Gordon model") $\mathcal{K}=\mathbb{C}, J_{H} z=\bar{z}$,

$$
S(\theta)=\frac{\sinh \theta-i a}{\sinh \theta+i a}
$$

Localisation in Rindler wedges

Representation-theoretic perspective on $\mathcal{H}=L^{2}(\mathbb{R}, d \theta)$ and Δ_{H}, J_{H} :

- $\Delta_{H}^{i t}, J_{H}$ come from a unitary positive energy representation of the Poincaré group. Geometric meaning:

$$
\begin{aligned}
\Delta_{H}^{i t}: & \text { represents Lorentz boosts } \\
J_{H}: & \text { represents spacetime reflection } x \mapsto-x
\end{aligned}
$$

Localisation in Rindler wedges

Representation-theoretic perspective on $\mathcal{H}=L^{2}(\mathbb{R}, d \theta)$ and Δ_{H}, J_{H} :

- $\Delta_{H}^{i t}, J_{H}$ come from a unitary positive energy representation of the Poincaré group. Geometric meaning:

$$
\begin{aligned}
\Delta_{H}^{i t}: & \text { represents Lorentz boosts } \\
J_{H}: & \text { represents spacetime reflection } x \mapsto-x
\end{aligned}
$$

Localisation in Rindler wedges

Representation-theoretic perspective on $\mathcal{H}=L^{2}(\mathbb{R}, d \theta)$ and Δ_{H}, J_{H} :

- $\Delta_{H}^{i t}, J_{H}$ come from a unitary positive energy representation of the Poincaré group. Geometric meaning:

$$
\begin{aligned}
\Delta_{H}^{i t}: & \text { represents Lorentz boosts } \\
J_{H}: & \text { represents spacetime reflection } x \mapsto-x
\end{aligned}
$$

- \rightarrow We should interpret $\mathcal{L}_{T}(H)$ as the observables localized in the Rindler wedge $W=\left\{\left(x_{0}, x_{1}\right) \in \mathbb{R}^{2}: x_{1}>\left|x_{0}\right|\right\}$.

Sharper localisation and subfactors

Sharper localisation and subfactors

Sharper localisation and subfactors

Which observables are localised in the green region (double cone) \mathcal{O} ?

$$
\mathcal{O}=W \cap(W+x)^{\prime} \quad \text { relative causal complement }
$$

Sharper localisation and subfactors

Which observables are localised in the green region (double cone) \mathcal{O} ?

$$
\mathcal{O}=W \cap(W+x)^{\prime} \quad \text { relative causal complement }
$$

- Causality requires: Observables localised in \mathcal{O} are elements of

$$
\begin{aligned}
\mathcal{A}(\mathcal{O}) & =\mathcal{L}_{T}(H) \cap \mathcal{L}_{T}(U(x) H)^{\prime} \quad \text { relative commutant } \\
& =\mathcal{R}_{T}\left(H^{\prime}\right)^{\prime} \cap \mathcal{L}_{T}(U(x) H)^{\prime}
\end{aligned}
$$

Sharper localisation and subfactors

Which observables are localised in the green region (double cone) \mathcal{O} ?

$$
\mathcal{O}=W \cap(W+x)^{\prime} \quad \text { relative causal complement }
$$

- Causality requires: Observables localised in \mathcal{O} are elements of

$$
\begin{aligned}
\mathcal{A}(\mathcal{O}) & =\mathcal{L}_{T}(H) \cap \mathcal{L}_{T}(U(x) H)^{\prime} \quad \text { relative commutant } \\
& =\mathcal{R}_{T}\left(H^{\prime}\right)^{\prime} \cap \mathcal{L}_{T}(U(x) H)^{\prime}
\end{aligned}
$$

- Need to make sure $\mathcal{A}(\mathcal{O}) \neq \mathbb{C} 1$ (existence of local observables)

Sharper localisation and subfactors

Which observables are localised in the green region (double cone) \mathcal{O} ?

$$
\mathcal{O}=W \cap(W+x)^{\prime} \quad \text { relative causal complement }
$$

- Causality requires: Observables localised in \mathcal{O} are elements of

$$
\begin{aligned}
\mathcal{A}(\mathcal{O}) & =\mathcal{L}_{T}(H) \cap \mathcal{L}_{T}(U(x) H)^{\prime} \quad \text { relative commutant } \\
& =\mathcal{R}_{T}\left(H^{\prime}\right)^{\prime} \cap \mathcal{L}_{T}(U(x) H)^{\prime}
\end{aligned}
$$

- Need to make sure $\mathcal{A}(\mathcal{O}) \neq \mathbb{C} 1$ (existence of local observables)
- Mathematical question: Given inclusion of standard subspaces $K \subset H$, analyze relative commutant of inclusion

$$
\mathcal{L}_{T}(K) \subset \mathcal{L}_{T}(H) .
$$

This is typically a subfactor (both algebras have trivial centre).

Relative commutants

- Elements of $\mathcal{A}(\mathcal{O})=\mathcal{R}_{T}\left(H^{\prime}\right)^{\prime} \cap \mathcal{L}_{T}(K)^{\prime}$ commute with both left and right fields and are very hard to compute (\sim perturbative approaches to QFT, formfactor programme)

Relative commutants

- Elements of $\mathcal{A}(\mathcal{O})=\mathcal{R}_{T}\left(H^{\prime}\right)^{\prime} \cap \mathcal{L}_{T}(K)^{\prime}$ commute with both left and right fields and are very hard to compute (\sim perturbative approaches to QFT, formfactor programme)
- Focus here: Establish existence and properties of QFT without computing the local fields.

Relative commutants

- Elements of $\mathcal{A}(\mathcal{O})=\mathcal{R}_{T}\left(H^{\prime}\right)^{\prime} \cap \mathcal{L}_{T}(K)^{\prime}$ commute with both left and right fields and are very hard to compute (\sim perturbative approaches to QFT, formfactor programme)
- Focus here: Establish existence and properties of QFT without computing the local fields.

Theorem (Buchholz, D'Antoni, Longo)

Suppose $A \subset B$ are von Neumann factors with Ω cyclic/separating for both, and

$$
\Xi: A \rightarrow \mathcal{H}, \quad \Xi(a):=\Delta_{B, \Omega}^{1 / 4} a \Omega
$$

is nuclear ("modular nuclearity condition). Then $A^{\prime} \cap B \cong A^{\prime} \otimes B$.

Relative commutants

- Elements of $\mathcal{A}(\mathcal{O})=\mathcal{R}_{T}\left(H^{\prime}\right)^{\prime} \cap \mathcal{L}_{T}(K)^{\prime}$ commute with both left and right fields and are very hard to compute (\sim perturbative approaches to QFT, formfactor programme)
- Focus here: Establish existence and properties of QFT without computing the local fields.

Theorem (Buchholz, D'Antoni, Longo)

Suppose $A \subset B$ are von Neumann factors with Ω cyclic/separating for both, and

$$
\Xi: A \rightarrow \mathcal{H}, \quad \Xi(a):=\Delta_{B, \Omega}^{1 / 4} a \Omega
$$

is nuclear ("modular nuclearity condition). Then $A^{\prime} \cap B \cong A^{\prime} \otimes B$.
"Non-locality result" for twists with $\|T\|<1$:

Theorem (Correa da Silva/L 23)

Let T be a crossing-symmetric braided twist compatible with $K \subset H$. Suppose $\|T\|<1$ and that $\left.\Delta_{H}^{1 / 4}\right|_{K}$ is not compact. Then

$$
\mathcal{L}_{T}(K)^{\prime} \cap \mathcal{L}_{T}(H)=\mathbb{C} 1
$$

- Intuition: Things become more non-local for $\|T\|<1$, with $T=0$ (\sim free group factor) being the extreme case.
- Intuition: Things become more non-local for $\|T\|<1$, with $T=0$ (\sim free group factor) being the extreme case.

Picture of spectrum $\sigma(T F)$:

- Intuition: Things become more non-local for $\|T\|<1$, with $T=0$ (\sim free group factor) being the extreme case.

Picture of spectrum $\sigma(T F)$:

- Intuition: Things become more non-local for $\|T\|<1$, with $T=0$ (\sim free group factor) being the extreme case.

Picture of spectrum $\sigma(T F)$:

- Intuition: Things become more non-local for $\|T\|<1$, with $T=0$ (\sim free group factor) being the extreme case.

Picture of spectrum $\sigma(T F)$:

unitary twist

- Intuition: Things become more non-local for $\|T\|<1$, with $T=0$ (\sim free group factor) being the extreme case.

Picture of spectrum $\sigma(T F)$:

unitary twist

$$
\text { twist with }\|T\|<1
$$

- Local QFT seems to require $\|T\|=1$ (not fully settled yet).

Local Observables

Modular nuclearity has been checked in various cases:

Local Observables

Modular nuclearity has been checked in various cases:

- $S=-1$ (Ising model) [L 05]
- $\mathcal{K}=\mathbb{C}$, S : unitary regular scattering function (S extends to analytic bounded function on strip $-\varepsilon<\operatorname{Im}(z)<\pi+\varepsilon)$. Then we have modular nuclearity at least for x large enough [L 08]
- $\mathcal{K}=\mathbb{C}^{N}$: unitary regular matrix-valued scattering function satisfying an "intertwiner property" [Alazzawi L '16]

Local Observables

Modular nuclearity has been checked in various cases:

- $S=-1$ (Ising model) [L 05]
- $\mathcal{K}=\mathbb{C}$, S : unitary regular scattering function (S extends to analytic bounded function on strip $-\varepsilon<\operatorname{Im}(z)<\pi+\varepsilon)$. Then we have modular nuclearity at least for x large enough [L 08]
- $\mathcal{K}=\mathbb{C}^{N}$: unitary regular matrix-valued scattering function satisfying an "intertwiner property" [Alazzawi L '16]

Local Observables

Modular nuclearity has been checked in various cases:

- $S=-1$ (Ising model) [L 05]
- $\mathcal{K}=\mathbb{C}$, S : unitary regular scattering function (S extends to analytic bounded function on strip $-\varepsilon<\operatorname{Im}(z)<\pi+\varepsilon)$. Then we have modular nuclearity at least for x large enough [L 08]
- $\mathcal{K}=\mathbb{C}^{N}$: unitary regular matrix-valued scattering function satisfying an "intertwiner property" [Alazzawi L '16]
- Approach not restricted to Minkowski space. \rightarrow Models on deSitter space, the real line, the circle (CFT), higher dimensions ..

Interaction and integrability

Theorem

In any of the situations where modular nuclearity holds (on \mathbb{R}^{1+1}), one gets a QFT model satisfying all basic requirements:

- Locality
- Covariance
- Positivity of the energy
- Reeh-Schlieder property of the vacuum
- ...

What is the physical meaning of the twist T ?

Theorem

In a model based on wedge-localized H and unitary twist $T=T_{S}$, one may do (Haag-Ruelle) scattering theory.

- The two-particle S-matrix is elastic and given by $S\left(\theta_{1}-\theta_{2}\right)$.
- The full S-matrix can be computed and factorizes.
- A proof of asymptotic completeness can be given.

Interaction and integrability

Theorem

In any of the situations where modular nuclearity holds (on \mathbb{R}^{1+1}), one gets a QFT model satisfying all basic requirements:

- Locality
- Covariance
- Positivity of the energy
- Reeh-Schlieder property of the vacuum

What is the physical meaning of the twist T ?

Theorem

In a model based on wedge-localized H and unitary twist $T=T_{S}$, one may do (Haag-Ruelle) scattering theory.

- The two-particle S-matrix is elastic and given by $S\left(\theta_{1}-\theta_{2}\right)$.
- The full S-matrix can be computed and factorizes.
- A proof of asymptotic completeness can be given.
- This structure is familiar from integrable models!

Outlook

- Many integrable models are not realized in constructive QFT (Glimm/Jaffe), but can be constructed (without quantization) by these methods.

Outlook

- Many integrable models are not realized in constructive QFT (Glimm/Jaffe), but can be constructed (without quantization) by these methods.
- Many crucial properties of integrable QFT can be derived from modular theory:
- Yang-Baxter equation
- Crossing symmetry
- (Unitarity)

Outlook

- Many integrable models are not realized in constructive QFT (Glimm/Jaffe), but can be constructed (without quantization) by these methods.
- Many crucial properties of integrable QFT can be derived from modular theory:
- Yang-Baxter equation
- Crossing symmetry
- (Unitarity)
- Comparison to other approaches: We don't arrive at formulae for n-point functions, but rather at the net of local observable algebras $\mathcal{O} \mapsto \mathcal{A}(\mathcal{O})$.
- Less explicit, but better for structural analysis ("constructive algebraic QFT" [Summers])

Outlook

- Many integrable models are not realized in constructive QFT (Glimm/Jaffe), but can be constructed (without quantization) by these methods.
- Many crucial properties of integrable QFT can be derived from modular theory:
- Yang-Baxter equation
- Crossing symmetry
- (Unitarity)
- Comparison to other approaches: We don't arrive at formulae for n-point functions, but rather at the net of local observable algebras $\mathcal{O} \mapsto \mathcal{A}(\mathcal{O})$.
- Less explicit, but better for structural analysis ("constructive algebraic QFT" [Summers])
- For various twists, the construction is not yet fully understood:
- higher dimensions
- $\|T\|<1$, we get QFT models based on braid group representations .. interpretation?

