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Standard subspaces
Setting: complex Hilbert space H.

Definition
A standard subspace is an R-linear closed subspace H ⊂H such that

H + iH =H, H ∩ iH = {0}.

Maths examples:
R ⊂ C, Rn ⊂ Cn, L2(Rn → R) ⊂ L2(Rn → C)
M ⊂ B(H) von Neumann algebra, and Ω cyclic/separating vector.

H ∶= {AΩ ∶ A = A∗ ∈M}− is standard.

Physics examples:
Let ρ ∈Mn(C), ρ > 0 (density matrix), and

H ∶= {Aρ ∶ A = A∗ ∈Mn(C)} ⊂Mn(C) =∶H

Let ϕ be a quantum field on spacetime M with vacuum Ω, and
O ⊂M open (localization region)

HO ∶= {ϕ(f)Ω ∶ f ∈ C∞c,R(M), supp(f) ⊂ O}−
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Standard subspaces and modular theory
▶ Given a standard subspace, have Tomita operator

SH ∶H + iH →H + iH, SH(h1 + ih2) = h1 − ih2.

▶ Polar decomposition: SH = JH∆
1/2
H .

▶ Every standard subspace H comes with:
an internal dynamics (unitaries ∆it

H satisfy ∆it
HH =H)

a conjugation (antiunitary involution JH satisfies JHH =H ′=
sympl. complement).

▶ Given strongly continuous unitary one-parameter group V (t) = eitX
and antiunitary involution J with [J,V (t)] = 0,

H ∶= ker(1 − JeX) is standard.

▶ Every standard subspace is of this form.
▶ In particular, may generate standard subspaces from unitary group

representations (Poincaré group, deSitter group, Möbius group, ... )
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Twisted Fock spaces [Bożejko/Speicher; Jørgensen/Schmitt/Werner]

▶ Setup: Fix Hilbert space H and T ∈ B(H⊗H).

▶ Idea: Define new scalar product ⟨ ⋅ , ⋅ ⟩T,n ∶= ⟨ ⋅ , PT,n ⋅ ⟩ on H⊗n.
▶ Notation:

Tk ∶= 1⊗(k−1)H ⊗ T ⊗ 1
⊗(n−k−1)
H T 4= T

▶ Kernels:

PT,1 = 1, PT,2 = 1 + T, PT,n+1 = (1⊗ PT,n)(1 + T1 + T1T2 + . . . + T1⋯Tn).

Definition

Twist: T = T ∗, ∥T ∥ ≤ 1, PT,n ≥ 0 for all n.
Strict twist: In addition kerPT,n = {0}.

Definition
T -twisted Fock space

FT (H) ∶=⊕
n≥0
H⊗n/kerPT,n

⟨ ⋅ , ⋅ ⟩T,n
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Examples

T = ±F ∶ v ⊗w ↦ ±w ⊗ v (flip): FF (H) = Bose/Fermi Fock space
T = 0: F0(H) = full Fock space
T = linearisation of set-theoretic solution of YBE on span(X)⊗ span(X)

Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])
Let T = T ∗ ∈ B(H⊗H), ∥T ∥ ≤ 1.

1 If ∥T ∥ ≤ 1
2
, then T is a strict twist.

2 If T ≥ 0, then T is a strict twist.
3 If

T1T2T1 = T2T1T2 (Yang-Baxter equation)

then T is a twist (strict twist if ∥T ∥ < 1).

From now on: H Hilbert space, T arbitrary twist.

6 / 19



Examples

T = ±F ∶ v ⊗w ↦ ±w ⊗ v (flip): FF (H) = Bose/Fermi Fock space
T = 0: F0(H) = full Fock space
T = linearisation of set-theoretic solution of YBE on span(X)⊗ span(X)

Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])
Let T = T ∗ ∈ B(H⊗H), ∥T ∥ ≤ 1.

1 If ∥T ∥ ≤ 1
2
, then T is a strict twist.

2 If T ≥ 0, then T is a strict twist.
3 If

T1T2T1 = T2T1T2 (Yang-Baxter equation)

then T is a twist (strict twist if ∥T ∥ < 1).

From now on: H Hilbert space, T arbitrary twist.

6 / 19



Examples

T = ±F ∶ v ⊗w ↦ ±w ⊗ v (flip): FF (H) = Bose/Fermi Fock space
T = 0: F0(H) = full Fock space
T = linearisation of set-theoretic solution of YBE on span(X)⊗ span(X)

Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])
Let T = T ∗ ∈ B(H⊗H), ∥T ∥ ≤ 1.

1 If ∥T ∥ ≤ 1
2
, then T is a strict twist.

2 If T ≥ 0, then T is a strict twist.
3 If

T1T2T1 = T2T1T2 (Yang-Baxter equation)

then T is a twist (strict twist if ∥T ∥ < 1).

From now on: H Hilbert space, T arbitrary twist.

6 / 19



Examples

T = ±F ∶ v ⊗w ↦ ±w ⊗ v (flip): FF (H) = Bose/Fermi Fock space
T = 0: F0(H) = full Fock space
T = linearisation of set-theoretic solution of YBE on span(X)⊗ span(X)

Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])
Let T = T ∗ ∈ B(H⊗H), ∥T ∥ ≤ 1.

1 If ∥T ∥ ≤ 1
2
, then T is a strict twist.

2 If T ≥ 0, then T is a strict twist.
3 If

T1T2T1 = T2T1T2 (Yang-Baxter equation)

then T is a twist (strict twist if ∥T ∥ < 1).

From now on: H Hilbert space, T arbitrary twist.

6 / 19



Examples

T = ±F ∶ v ⊗w ↦ ±w ⊗ v (flip): FF (H) = Bose/Fermi Fock space
T = 0: F0(H) = full Fock space
T = linearisation of set-theoretic solution of YBE on span(X)⊗ span(X)

Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])
Let T = T ∗ ∈ B(H⊗H), ∥T ∥ ≤ 1.

1 If ∥T ∥ ≤ 1
2
, then T is a strict twist.

2 If T ≥ 0, then T is a strict twist.
3 If

T1T2T1 = T2T1T2 (Yang-Baxter equation)

then T is a twist (strict twist if ∥T ∥ < 1).

From now on: H Hilbert space, T arbitrary twist.
6 / 19



▶ On FT (H), have (left) creation/annihilation operators aL,T (ξ), ξ ∈H:
a⋆L,T (ξ)Ω = ξ, Ω ∶ Fock vacuum

a⋆L,T (ξ)[Ψn] = [ξ ⊗Ψn], Ψn ∈H⊗n.

These are bounded for ∥T ∥ < 1.

▶ Left field operators:
ϕL,T (ξ) ∶= a⋆L,T (ξ) + aL,T (ξ).

Now recall standard subspaces!

Definition
H ⊂H standard subspace, T twist. The (left) twisted Araki-Woods algebra is

LT (H) ∶= {ϕL,T (h) ∶ h ∈H}′′ ⊂ B(FT (H)).

Generalizes many known constructions. Structure depends heavily on H and T .

(H =H ′, T = 0) → LT (H) = LFdimH [Voiculescu].
(H arbitrary, T = 0) →“free Araki-Woods factor” [Shlyakhtenko]
(H arbitrary, T = qF ) → q-deformed Araki-Woods factors
[Kumar/Skalski/Wasilewski]
(H =HO, T = F ) → LT (H) = free field observable algebra loc. in O.
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Questions
▶ For general T (and general H), only little is known about LT (H).

▶ Maths questions: Is LT (H) a factor? What is its type? Do we
have standard vectors? Can we recover H? ...

▶ In QFT applications, we want to interpret LT (H) as the algebra of
all quantum observables in a QFT with “interaction T” that are
localized in a region described by H, and Ω as the vacuum.

▶ Physics questions: Is this interpretation possible? Can we
construct a full QFT? Which T may we consider? ...

There is considerable overlap between the maths and physics questions.
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Standardness of the vacuum
Basic fact in QFT: For localized quantum observable algebras, need
vacuum Ω standard, i.e. cyclic:

LT (H)Ω ⊂ FT (H) dense

and separating (“no annihilation operators”)

A ∈ LT (H), AΩ = 0 Ô⇒ A = 0.

For which (T,H) is Ω standard for LT (H)?

▶ Basic assumption in the following: Twist T compatible with
dynamics of H:

[T,∆it
H ⊗∆it

H] = 0.

▶ Lemma: Ω always cyclic for LT (H). But in general not separating.
▶ In order to have Ω separating for LT (H), need KMS-property.

KMS requires analytic properties of n-point functions.
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Theorem ([Correa da Silva / L 22])
H ⊂H standard subspace, T compatible twist. Then Ω is separating for
LT (H) if and only if T is braided (T1T2T1 = T2T1T2) and
crossing-symmetric.
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has an analytic bounded continuation to the strip S1/2 and

f(t + i
2
) = ⟨ψ1 ⊗ JHψ4, (1⊗∆it

H)T (∆−itH ⊗ 1)(JHψ2 ⊗ψ3)⟩.

Crossing symmetry and Yang-Baxter equation both come from
physics and are usually taken as assumptions, but can here be
derived from modular theory.
Many examples of braided crossing-symmetric twists are known.
The simplest are T = q ⋅ F (flip), −1 ≤ q ≤ 1.
Simplest counterexamples: T = q ⋅ 1.
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Braided twists and left-right duality
For braided twists (T1T2T1 = T2T1T2), there exists also a “right” version of our
“left” construction ↝RT (H).

Proposition ([Correa da Silva / L 22])
Let T be braided and crossing symmetric.

a) The Tomita operator S of (LT (H),Ω) is given by

S[ψ1 ⊗ . . .⊗ψn] = [SHψn ⊗ . . .⊗ SHψ1]

b) Left-right duality holds:

LT (H)′ =RT (H ′).

▶ From our perspective, the braided and crossing-symmetric twists are the
most interesting ones (classification unknown).

▶ Result on modular data generalizes many known results.
[Eckmann/Osterwalder ’73, Leyland/Roberts/Testard ’78, Shlyakhtenko
’97, Baumgärtel/Jurke/Lledo ’02, Buchholz/L/Summers ’11, L ’12]
In situation of theorem, LT (H) is a factor for ∥T ∥ < 1. ([Yang ’23] for
dimH <∞, and [Correa da Silva/L ’23] for dimH =∞)
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For braided compatible crossing-symmetric twist, LT (H) satisfies some
requirements from QFT. Now: “upgrade”: LT (H)↝ full QFT.

Example
Hilbert space and standard subspace:

H = L2(R, dθ)⊗K, dimK <∞
θ z→ ψα(θ), α ∈ {1, . . . ,dimK}

(∆it
Hψ)α(θ) = ψα(θ − 2πt),

(JHψ)α(θ) = ψα(θ) with α↦ α bijection (charge conjugation)

(H is a vector-valued Hardy space on {z ∶ 0 < Im(z) < π} with a bound. cond.)
Many crossing symmetric compatible braided twists are known (integrable
systems)

(TSf)(θ1, θ2) = S(θ1 − θ2)f(θ2, θ1).
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Many crossing symmetric compatible braided twists are known (integrable
systems)

(TSf)(θ1, θ2) = S(θ1 − θ2)f(θ2, θ1).

Matrix-valued function S has to solve YBE with spectral parameter:

S(θ)1S(θ + θ′)2S(θ′)1 = S(θ′)2S(θ + θ′)1S(θ)2.
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For braided compatible crossing-symmetric twist, LT (H) satisfies some
requirements from QFT. Now: “upgrade”: LT (H)↝ full QFT.

Example
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(JHψ)α(θ) = ψα(θ) with α↦ α bijection (charge conjugation)

(H is a vector-valued Hardy space on {z ∶ 0 < Im(z) < π} with a bound. cond.)
Many crossing symmetric compatible braided twists are known (integrable
systems)

(TSf)(θ1, θ2) = S(θ1 − θ2)f(θ2, θ1).

Explicit example (“Sinh-Gordon model”) K = C, JHz = z,

S(θ) = sinh θ − ia
sinh θ + ia
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Localisation in Rindler wedges
Representation-theoretic perspective on H = L2(R, dθ) and ∆H , JH :

∆it
H , JH come from a unitary positive energy representation of the

Poincaré group. Geometric meaning:

∆it
H ∶ represents Lorentz boosts
JH ∶ represents spacetime reflection x↦ −x

→ We should interpret LT (H) as the observables localized in the
Rindler wedge W = {(x0, x1) ∈ R2 ∶ x1 > ∣x0∣}.
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Which observables are localised in the green region (double cone) O?
O =W ∩ (W + x)′ relative causal complement

▶ Causality requires: Observables localised in O are elements of
A(O) = LT (H) ∩LT (U(x)H)′ relative commutant

=RT (H ′)′ ∩LT (U(x)H)′

▶ Need to make sure A(O) ≠ C1 (existence of local observables)
▶ Mathematical question: Given inclusion of standard subspaces

K ⊂H, analyze relative commutant of inclusion
LT (K) ⊂ LT (H).

This is typically a subfactor (both algebras have trivial centre).
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Relative commutants
▶ Elements of A(O) =RT (H ′)′ ∩LT (K)′ commute with both left and

right fields and are very hard to compute (↝ perturbative approaches to
QFT, formfactor programme)

▶ Focus here: Establish existence and properties of QFT without
computing the local fields.

Theorem (Buchholz, D’Antoni, Longo)
Suppose A ⊂ B are von Neumann factors with Ω cyclic/separating for both, and

Ξ ∶ A→H, Ξ(a) ∶=∆1/4
B,ΩaΩ

is nuclear (“modular nuclearity condition). Then A′ ∩B ≅ A′ ⊗B.

“Non-locality result” for twists with ∥T ∥ < 1:

Theorem (Correa da Silva/L 23)
Let T be a crossing-symmetric braided twist compatible with K ⊂H. Suppose
∥T ∥ < 1 and that ∆

1/4
H ∣K is not compact. Then

LT (K)′ ∩LT (H) = C1.
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Intuition: Things become more non-local for ∥T ∥ < 1, with T = 0
(∼ free group factor) being the extreme case.

Picture of spectrum σ(TF ):

Local QFT seems to require ∥T ∥ = 1 (not fully settled yet).
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Intuition: Things become more non-local for ∥T ∥ < 1, with T = 0
(∼ free group factor) being the extreme case.

Picture of spectrum σ(TF ):

T = 0 T = FT = −F

unitary twist

T = 0

twist with ∥T ∥ < 1

Local QFT seems to require ∥T ∥ = 1 (not fully settled yet).
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Local Observables
Modular nuclearity has been checked in various cases:

S = −1 (Ising model) [L 05]
K = C, S: unitary regular scattering function (S extends to analytic
bounded function on strip −ε < Im(z) < π + ε). Then we have
modular nuclearity at least for x large enough [L 08]
K = CN : unitary regular matrix-valued scattering function satisfying
an “intertwiner property” [Alazzawi L ’16]
Approach not restricted to Minkowski space. → Models on deSitter
space, the real line, the circle (CFT), higher dimensions ..

time

space

W
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Interaction and integrability
Theorem
In any of the situations where modular nuclearity holds (on R1+1), one gets a
QFT model satisfying all basic requirements:

Locality
Covariance
Positivity of the energy
Reeh-Schlieder property of the vacuum
...

What is the physical meaning of the twist T?

Theorem
In a model based on wedge-localized H and unitary twist T = TS , one may do
(Haag-Ruelle) scattering theory.

The two-particle S-matrix is elastic and given by S(θ1 − θ2).
The full S-matrix can be computed and factorizes.
A proof of asymptotic completeness can be given.

▶ This structure is familiar from integrable models!
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(Haag-Ruelle) scattering theory.

The two-particle S-matrix is elastic and given by S(θ1 − θ2).
The full S-matrix can be computed and factorizes.
A proof of asymptotic completeness can be given.

▶ This structure is familiar from integrable models! 18 / 19



Outlook
▶ Many integrable models are not realized in constructive QFT

(Glimm/Jaffe), but can be constructed (without quantization) by
these methods.

▶ Many crucial properties of integrable QFT can be derived from
modular theory:

Yang-Baxter equation
Crossing symmetry
(Unitarity)

▶ Comparison to other approaches: We don’t arrive at formulae for
n-point functions, but rather at the net of local observable algebras
O ↦ A(O).

▶ Less explicit, but better for structural analysis (“constructive
algebraic QFT” [Summers])

▶ For various twists, the construction is not yet fully understood:
higher dimensions
∥T ∥ < 1, we get QFT models based on braid group
representations .. interpretation?
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