Noncommutative Cartan C^* -subalgebras

Bartosz K. Kwaśniewski, University of Białystok

XL Workshop on Geometric Methods in Physics, Białowieża 2023.07.06

• 1940 (Von Neumann) $L^{\infty}(X, \mu) \rtimes G$ are factors for free group actions

History

• 1971 (Vershik) 1977 (Feldman-Moore)

Cartan W^* -subalgebra $L^{\infty}(X, \mu) \subseteq \mathcal{M} \iff$ measure equivalence relation on (X, μ) with a twist

- 1986 Kumjian: C*-diagonal $C_0(X) \subseteq B \iff$ principle étale locally compact Hausdorff groupoid with a twist
- 2008 Renault: Cartan C*-subalgebra C₀(X) ⊆ B ⇐⇒ topologically principle étale Hausdorff groupoids with a twist
- 2011 Exel: Noncommutative Cartan C*-subalgebra A ⊆ B
 ⇒ Fell bundle over an inverse semigroup
- 2020 BKK, Meyer: Noncommutative Cartan A ⊆ B ⇔ closed purely outer Fell bundle over an inverse semigroup

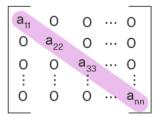
For an inclusion of C^* -algebras $A \subseteq B$ we put

 $N(A) := \{b \in B : bAb^* \subseteq A, b^*Ab \subseteq A\}$ normalizers

We say that $A \subseteq B$ is regular if $B = \overline{span} N(A)$ and AB = B.

Def. Inclusion of C^* -algebras $A \subseteq B$ is **Cartan** \iff it is regular, A is **maximal abelian** in B and there is a faithful conditional expectation $E : B \rightarrow A$.

Ex. Diagonal matrices $A \cong \mathbb{C}^n$ are Cartan in $B = M_n(\mathbb{C})$



For an inclusion of C^* -algebras $A \subseteq B$ we put

 $N(A) := \{b \in B : bAb^* \subseteq A, b^*Ab \subseteq A\}$ normalizers

We say that $A \subseteq B$ is regular if $B = \overline{span} N(A)$

Def. Inclusion of C^* -algebras $A \subseteq B$ is **Cartan** \iff it is regular, A is **maximal abelian** in B and there is a faithful conditional expectation $E : B \rightarrow A$.

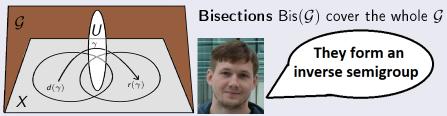
Ex. Diagonal matrices
$$A \cong \mathbb{C}^n$$
 are Cartan in $B = M_n(\mathbb{C})$

Ex. For a discrete group action G on a loc. compact Hausdorff X

$$C_0(X) \subseteq C_0(X) \rtimes_r G$$
 is Cartan $\iff \begin{array}{c} C_0(X) ext{ is maximal abelian} \ ext{ in } C_0(X) \rtimes_r G \end{array}$

 \iff the action is topologically free

Let \mathcal{G} be a locally compact Hausdorff groupoid with unit space X, s.t. range, domain $r, d : \mathcal{G} \to X \subseteq \mathcal{G}$ are local homeomorphisms (étale).



Then $C_c(\mathcal{G}) = \operatorname{span} \{ f \in C_c(U) : U \in \operatorname{Bis}(\mathcal{G}) \}$ is a *-algebra where

$$(f * g)(\gamma) := \sum_{r(\eta)=r(\gamma)} f(\eta) \cdot g(\eta^{-1} \cdot \gamma), \qquad (f^*)(\gamma) := \overline{f(\gamma^{-1})}.$$

The reduced C^* -algebra $C^*_r(\mathcal{G})$ is the completion of $C_c(\mathcal{G})$ s.t. $C_c(\mathcal{G}) \ni f \mapsto f|_X \in C_c(X)$ extends to a faithful $E : C^*_r(\mathcal{G}) \to C_0(X)$. Let \mathcal{G} be a locally compact Hausdorff groupoid with unit space X, s.t. range, domain $r, d : \mathcal{G} \to X \subseteq \mathcal{G}$ are local homeomorphisms (étale). Then $C_c(\mathcal{G}) = \operatorname{span} \{ f \in C_c(U) : U \in \operatorname{Bis}(\mathcal{G}) \}$ is a *-algebra where

$$(f * g)(\gamma) := \sum_{r(\eta)=r(\gamma)} f(\eta) \cdot g(\eta^{-1} \cdot \gamma), \qquad (f^*)(\gamma) := \overline{f(\gamma^{-1})}.$$

The reduced C^* -algebra $C^*_r(\mathcal{G})$ is the completion of $C_c(\mathcal{G})$ s.t. $C_c(\mathcal{G}) \ni f \mapsto f|_X \in C_c(X)$ extends to a faithful $E : C^*_r(\mathcal{G}) \to C_0(X)$.

Ex. If $\mathcal{G} = X \times X$ is the full equivalence relation on $X = \{1, ..., n\}$,

$$(x, y) \cdot (y, z) = (x, z),$$
 $(x, y)^{-1} = (y, x),$

then $C(X) \cong \mathbb{C}^n$ are diagonal matrices in $C^*_r(\mathcal{G}) \cong M_n(\mathbb{C})$.

Thm. (Renault 2008)

 $A \subseteq B$ is a Cartan inclusion $\iff A \cong C_0(X)$ and $B \cong C_r^*(\mathcal{G}, \Sigma)$ for a topologically free twisted étale LCH groupoid (\mathcal{G}, Σ) .

Lem. (*A* possibly noncommutative)

Any regular C^* -inclusion $A \subseteq B$ has an inverse semigroup grading

 $S := \{M \subseteq N(A) : M \text{ is a closed linear space } AM \subseteq M, MA \subseteq M\}$ with operations inherited from B is an inverse semigroup with unit A:

> $M, N \in S \implies MN$ closed span $\in S, M^* \in S$

$$(MM^*M = M, M^*MM^* = M^*)$$
 and $B = \overline{\sum_{M \in S} M}.$

Def. Let S be an inverse semigroup with unit 1.

A **Fell bundle** over S is a family $\mathcal{B} = \{B_g\}_{g \in S}$ of Banach spaces equipped with multiplications $B_g \times B_h \to B_{gh}$, involutions $B_g \to B_g^*$ and inclusions $B_g \hookrightarrow B_h$ for $g \leq h$, maps satisfying natural axioms.

Then $A := B_1$ is a C^* -algebra, each B_g is a (Hilbert) A-bimodule. They embed into the **reduced** C^* -algebra $C^*_r(\mathcal{B})$ forming S-grading.

J.M.G. Fell

Rem. Consider a C^* -inclusion $A \subseteq B$ (A possibly noncommutative) **a** $A' \cap B \subseteq A$ and <u>A is commutative</u> $\iff A \subseteq B$ is maximal abelian **b** every $v \in A' \cap B$ defines an A-bimodule map $A \ni a \mapsto a \cdot v \in B$

Def. A virtual commutant is an A-bimodule map $I \rightarrow B$ defined on $I \lhd A$. Regular C^* -inclusion $A \subseteq B$ is noncommutative Cartan \iff any virtual commutant has range in A and there is a faithful conditional expectation $E: B \rightarrow A$.

Ruy Exel

Thm. (Exel 2011)

 $A \subseteq B$ is noncommutative Cartan $\Longrightarrow B \cong C^*_r(\mathcal{B})$ for a Fell bundle $\mathcal{B} = \{B_g\}_{g \in S}$ with $B_1 = A$.

Question:

Which Fell bundles $\mathcal{B} = \{B_g\}_{g \in S}$ give Cartan inclusions?

Def. (BKK, Meyer) Let $\mathcal{B} = \{B_g\}_{g \in S}$ be Fell bundle over S, $A := B_1$

 \mathcal{B} is closed if $B_g = B_{g,1} \oplus B_{g,1}^{\perp}$ as A-bimodules for $B_{g,1} := B_g \cap A$, $g \in S$ \mathcal{B} is purely outer if $B_{g,1}^{\perp}$ is purely outer as an A-bimodule, $g \in S$.

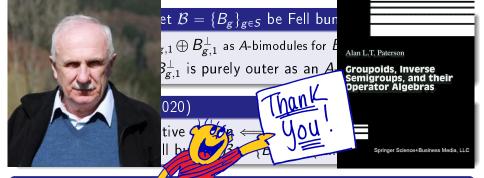
Thm. (BKK, Meyer 2020)

 $A \subseteq B$ is noncommutative Cartan $\iff B \cong C_r^*(\mathcal{B})$ and $A = B_1$ for a closed, purely outer Fell bundle $\mathcal{B} = \{B_g\}_{g \in S}$ (unique after refinement)

Cor. Let $A \subseteq B$ be a regular C^* -inclusion with A simple. TFAE:

- **()** $A \subseteq B$ is a noncommutative Cartan subalgebra
- **2** $B \cong C^*_r(\mathcal{B})$ for an **outer Fell bundle** $\mathcal{B} = (B_g)_{g \in G}$ over a **group** G with the unit fiber $B_1 = A$ (\mathcal{B} and G are uniquely determined)
- **3** $A \subseteq B$ is a **C***-irreducible, i.e. all intermediate $A \subseteq C \subseteq B$ are simple

Ex. The **CAR** algebra $M_{2^{\infty}}$ is a noncommutative Cartan subalgebra of the **Cuntz** algebra $\mathcal{O}_2 = C^*(S_1, S_2 \text{ isometries} : S_1S_1^* + S_2S_2^* = 1)$



Cor. Let $A \subseteq B$ be a regular C^* -inclusion with A simple. TFAE:

() $A \subseteq B$ is a noncommutative Cartan subalgebra

2 $B \cong C_r^*(\mathcal{B})$ for an **outer Fell bundle** $\mathcal{B} = (B_g)_{g \in G}$ over a **group** G with the unit fiber $B_1 = A$ (\mathcal{B} and G are uniquely determined)

3 $A \subseteq B$ is a **C***-irreducible, i.e. all intermediate $A \subseteq C \subseteq B$ are simple

Ex. The **CAR** algebra $M_{2^{\infty}}$ is a noncommutative Cartan subalgebra of the **Cuntz** algebra $\mathcal{O}_2 = C^*(S_1, S_2 \text{ isometries} : S_1S_1^* + S_2S_2^* = 1)$