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Contact structures

C ⊂ TM – a corank-1 distribution on M

τC : TM → LC = TM/C – the canonical projection.

Definition

A hyperplane field C ⊂ TM we call a contact structure if
the 2-form on C,

νC : C ×M C → LC , νC(X, Y ) = τC([X, Y ]),

is nondegenerate. Any nonvanishing (local) 1-form η such
that C = ker(η) we call a contact form generating C.

dim(M) = 2n+ 1

Characterization of contact forms: η ∧ (dη)n ̸= 0.

ker(η) = ker(fη) if f ̸= 0 – conformal equivalence
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Darboux Theorem and Reeb vector field

A contact manifold (M,C) we call trivial (or
co-oriented) if there is fixed a global contact form η
such that C = ker(η).
(M,C) is trivializable (co-orientable) if there exists a
global contact form η such that C = ker(η).

Important: Not all contact manifolds are trivializable.
Examples will follow.

On every trivial contact manifold (M, η) there is a unique
vector field R (the Reeb vector field) such that

⟨η,R⟩ = 1 and iRdη = 0.

Theorem (Contact Darboux Theorem)

If η is a contact form, then locally η = dz − pi dq
i.

dη = dpi ∧ dqi and R = ∂z. Similar η lives on R∗ × T∗Q.
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Contact dynamics

In physics literature: thermodynamics (equilibrium and
non-equilibrium), statistical mechanics, Hamiltonian and
Lagrangian mechanics, study of systems with dissipation,
etc., contact structures are generally co-oriented: (M, η).

The contact dynamics Xc
Ĥ

associated with a ‘contact

Hamiltonian’ Ĥ : M → R (ad hoc definition):

iXc
Ĥ
η = −Ĥ, iXc

Ĥ
dη = dĤ −R(Ĥ)η.

Strongly depends on the choice of η even on trivializable
contact manifolds.

In Darboux coordinates,

Xc
Ĥ
=

∂Ĥ

∂pi
∂qi −

(
∂Ĥ

∂qi
+

∂Ĥ

∂z
pi

)
∂pi +

(
pi
∂Ĥ

∂pi
− Ĥ

)
∂z.
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Contactomorphisms

Definition

Contactomorphisms between contact manifolds (M1, C1)
and (M2, C2) are diffeomorphisms φ : M1 →M2 such that
Tφ(C1) = C2.

Contactomorphisms map (local) contact forms determining
the contact distributions into (local) contact forms in the
same class of conformal equivalence,

φ∗(η2) = fη1, f ̸= 0.

Contact vector fields on a contact manifold (M,C) are
vector fields on M whose (local) flows are (local)
contactomorphisms:

£X(Y ) = [Y,X] ∈ C if Y ∈ C.
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Double vector bundles

Theorem (Grabowski-Rotkiewicz)

Every vector bundle τ : E →M is uniquely determined by
the multiplication by reals on E, i.e., by homotheties

hs : E → E, hs(v) = sv

(equivalently, by the Euler vector field ∇E). Note that
τ = h0. A double vector bundle (DVB) is a manifold F
with two VB structures whose homotheties commute,

h1
t ◦ h2

s = h2
s ◦ h1

t ,

(whose Euler vector fields commute, [∇1,∇2] = 0).

Example

TE Tτ //

τE ��

TM
τ��

E τ //M

T∗E
T∗τ //

πE ��

E∗

π��
E τ //M

Janusz Grabowski Contact geometry 6 / 25



Digressions on linearity
Additional multiplications by reals (homotheties):

(dTh)s = Ths, (dT∗h)s = s(Ths−1)
∗.

DVB ⇝ linearity

a vector field X on E is linear ⇔ X : E → TE is a
morphism of VB: τ : E →M into Tτ : TE → TM ;

a 2-form ω on E is linear ⇔ h∗
s(ω) = sω

⇔ ω♭ : TE → T∗E is a morphism of DVB;

A distribution C on E is linear ⇔ Ths(C) ⊂ C
⇔ C is a double vector subbundle of TE

Cotangent bundles are the only linear symplectic manifolds.

R× = R \ {0} – the multiplicative group of invertible reals.
There is an analogy between VB and R×-principal bundles
τ : P →M : the principal action hs : P → P is defined only
for s ̸= 0 and linearity is replaced by homogeneity.
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Vector and R×-principal bundles
For a vector bundle τ : E →M denote

E× = {v ∈ E : v ̸= 0} = E \ 0M .

Note that E× is always an R×-principal bundle with the
action by homotheties hs restricted to s ̸= 0.

Line (rank 1) bundles L ↔ Principal R×-bundles P = L×

L = P ×R× R – the associated line bundle.
—————————————————————
Lifts of an R×-principal action on P to TP and T∗P like
for VB: (dTh)s = Ths, (dT∗h)s = s(Ths−1)

∗, s ̸= 0.

Note that dT∗h is not the standard lift of a group action to
T∗P which is (Ths−1)∗.

Double structures, R×-principal + VB structures are clear:
the R×- and R-actions commute, e.g., TP, T∗P .
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Symplectizations of contact forms

Let η be a nonvanishing 1-form on M . Then, η spans a line
subbundle [η] in the vector bundle T∗M . Hence, [η]× is
canonically an R×-principal bundle with the R×-action
inherited from the multiplication by reals in T∗M .
With ωM we denote the canonical symplectic form on T∗M .

Proposition

A nonvanishing 1-form η on M is a contact form if and
only if the R×-principal bundle [η]× ⊂ T∗M is a symplectic
submanifold of (T∗M,ωM).

Φη : R× ×M ∋ (s, x) 7→ sη(x) ∈ [η]× ⊂ T∗M

is an isomorphism of R×-bundles.

ωη = Φ∗
η(ωM)(s, x) = d(sη)(s, x) = ds ∧ η(x) + s dη(x) .

Hence, η is a contact form if and only if ωη is symplectic .
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Symplectizations of contact manifolds
Note that [η] = (ker(η))o depends only on the conformal
class of η.

Corollary

A corank-1 distribution C ⊂ TM is a contact structure if
and only if P = (Co)× = (L∗

C)
× is a symplectic submanifold

in T∗M , with the symplectic form ωC = ωM

∣∣
P
.

If η is a local contact form determining C on U ⊂M , then
P
∣∣
U
= R× × U and

ωC(s, x) = ds ∧ η(x) + s dη(x).

Attention: The R×-bundle P = (Co)× is generally not
trivializable.
Since ωM is linear, the symplectic form ωC on the
R×-principal bundle P = (Co)× is homogeneous:
h∗
s(ωC) = sωC , s ̸= 0.
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Symplectic R×-bundles

This can be expressed also by: £∇ωM = ωM on T∗M , and
£∇P

ωC = ωC , where ∇P is the restriction of the Euler
vector field ∇ to P – the generator of the R×-action hs.

Definition

A symplectic R×-bundle (P, τ,M, h, ω) is a principal
R×-bundle τ : P →M with an R×-action

h : R× × P → P , R× × P ∋ (s, x) 7→ hs(x) ∈ P ,

equipped additionally with a symplectic form ω which is
1-homogeneous, (hs)

∗(ω) = s · ω.

Isomorphisms of symplectic R×-bundles are R×-equivariant
symplectomorphisms.
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Euler vector field and Liouville 1-form

The following objects live on every symplectic R×-bundle:

the Euler vector field, being the generator of the
(R+, ·)-action,

∇P (x) =
d

dt

∣∣∣
t=0

(het(x)) =
d

dt

∣∣∣
t=1

(ht(x)),

and a nonvanishing 1-form θ = i∇P
ω, the Liouville

form.

Theorem

If (P, τ,M, h, ω) is a symplectic R×-bundle, then θ is
semi-basic, and ω = dθ. For any local trivialization
P
∣∣
U
≃ R× × U of the principal bundle τ : P →M , we have

∇P = s∂s, and there is a contact form η on U such that

ω(s, x) = ds ∧ η(x) + s · dη(x);
θ(s, x) = s · η(x).
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Contact mfd = symplectic R×-bundle
Theorem

Any symplectic R×-bundle (P, τ,M, h, ω) induces
canonically a contact structure C = Tτ(ker(θ)) on M ,
together with an isomorphism

P
ΦP //

τ

��

(Co)×

πM

��
M

idM //M

of symplectic R×-bundles. Here, θ is the Liouville form on
P and ΦP (x) = θ(x). In other words, there is a one-to-one
correspondence between isomorphism classes of contact
manifolds and isomorphism classes of symplectic
R×-bundles.

We call (P, τ,M, h, ω) a symplectic cover of (M,C).
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Examples

Example (Projectivizations of cotangent bundles)

The R×-bundle P = (T∗M)× with ω = ωM

∣∣
P
is a

symplectic R×-bundle. It represents the canonical contact
structure on the projectivization of T∗M ,

P/R× ≃ P(T∗M) ,

which is non-trivializable if dim(M) is odd.

Example (Extended cotangent bundle)

A canonical symplectic cover of the canonical contact
structure

η(z,p, q) = dz − θQ(p, q)

on M = R∗ × T∗Q is P = T∗(R× ×Q) = R× ×M with
ω = ωR××Q and

τ(s, qi, z, pj) = (z,pj = pj/s, q
i).
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Contact – symplectic correspondence

Theorem

Let (Pi, τi,Mi, h
i, ωi) be a symplectic cover of a contact

structure (Mi, Ci), i = 1, 2. Every isomorphism φ̃ : P1 → P2

of symplectic R×-bundles covers a unique contactomorphism
φ : M1 →M2 of the corresponding contact manifolds.

Conversely, any contactomorphism φ : M1 →M2 is covered
by a unique isomorphism

P1
φ̃ //

τ1
��

P2

τ2
��

M1
φ //M2

of symplectic R×-bundles.

Janusz Grabowski Contact geometry 15 / 25



Contact – symplectic dictionary

(P, τ,M, h, ω) - a symplectic cover of a contact mfd (M,C)

contact Hamiltonian←→ 1-homogeneous Hamiltonian on P
or section σ : M → LC = TM/C, H = ισ, σ = σH ;

For trivial P = R× ×M : H(s, x) = s Ĥ(x) → Physics;

contact vector field Xc on M ←→ Xc = τ∗(XH)

R×-invariant Hamiltonian vector field XH on P ;

contact-Jacobi bracket on LC ←→ Poisson bracket of
1-homogeneous Hamiltonians, {σH , σH′}C = σ{H,H′}ω ;
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Contact – symplectic dictionary

submanifold N ⊂M ←→ R×-subbundle Ñ = τ−1(N)

N - (co)isotropic ←→ Ñ - (co)isotropic;

N - Legendrian ←→ Ñ - Lagrangian;

contact H-J equation on M = R∗ × T∗Q :

Ĥ : M → R, σ : Q→ R∗,
S(s, q) = sσ(q) - function on R× ×Q,

H : T∗(R× ×Q)→ R, H(s, q, z, p) = sĤ(z, p/s, q),

classical H-J eq.: H ◦ dS = 0 ⇔ Ĥ ◦ j1(σ) = 0 .
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Linear contact structures

For a line bundle τ0 : L→ Q, consider P = T∗L×. It is
canonically symplectic R×-bundle with ω = ωL× and the
lifted R×-action

(dT∗h)s = s · (Ths−1)∗.

It represents the canonical contact structure on the bundle
T∗L×/R× = J1L∗ of first jets of sections of the dual bundle
L∗. This contact structure is trivializable iff L trivializable.

T∗(L×) τ //

πL×

��

J1(L∗)

τ1(L∗)

��
L× τ0 // Q .

[G2013] J1L are the only linear contact manifolds .

Janusz Grabowski Contact geometry 18 / 25



Group actions

(P, τ,M, h, ω) - a symplectic cover of (M,C)

There is a one-to-one correspondence between actions

ρ : G×M →M, ρ(g, y) = gc(y),

of a Lie group G on M by contactomorphisms and actions

ρ̃ : G× P → P, ρ̃(g, x) = g̃(x)

of G on P by R×-equivariant symplectomorphisms.

This induces a homomorphism ξ 7→ ξc of the Lie algebra g
of G into the Lie algebra of contact vector fields on M .

ξc is covered by ξ̂ - an R×-invariant Hamiltonian vector field
ξ̂ on P with 1-homogeneous Hamiltonian Hξ = iξ̂θ on P .
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Contact moment maps

The canonical contact moment map is

J : P → g∗ ,
〈
J(x), ξ

〉
= Hξ(x) = (iξ̂ θ)(x).

J is Ad-equivariant and R×-equivariant, J(hs(x)) = s · J(x).

We apply a modified Marsden-Weinstein-Meyer reduction
for a weakly regular value µ of J (G-connected).

P[µ] = J−1([µ]×) ≃ R× × J−1(µ);

Gµ = {g ∈ G : Ad∗
g(µ) = µ} - the stabilizer subgroup;

g0µ = {v ∈ ker(µ) : ad∗
v(µ) = 0} is a Lie ideal in gµ;
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Contact Marsden-Weinstein reduction

G0
µ the corresponding Lie subgroup of G - acts on P[µ];

Mµ = τ(P[µ]) = τ(J−1(µ)) - submanifold in M .

Theorem (Contact reduction)

Suppose that Mµ is transversal, i.e., TMµ ∩ C is of corank
1 in TMµ.

If, moreover, G0
µ is a closed subgroup and acts freely and

properly on P[µ], then Pred = P[µ]/G
0
µ is a symplectic

R×-bundle.
It covers the manifold Mred = Mµ/G

0
µ which is equipped

with the contact structure Cred = Tp(TMµ ∩ C), where
p : Mµ →Mµ/G

0
µ is the canonical surjective submersion.
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When G0
µ is closed?

Theorem

If G is compact and connected, then G0
µ is closed in Gµ,

thus in G, if and only if µ is integral, i.e., there exists
ℏ ∈ R× such that

φ : Gµ → S1, φ(exp(ξ)) = e2πℏ i⟨µ,ξ⟩,

is a well-defined unitary character on Gµ.

This, in turn, is equivalent to the fact that the canonical
symplectic form (KKS) ωOµ on the coadjoint orbit Oµ is
integral, [(2πℏ)−1ωOµ ] ∈ H2(Oµ;Z).

contact geometry ↔ geometric prequantization
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Example
A standard symplectic reduction: G acts freely and
properly on M . This action can be lifted to a Hamiltonian
G-action on T∗M with a moment map J : T∗M → g∗.
Then,

J−1(0)/G ≃ T∗(M/G).

A contact analogue: Let τ0 : L→ Q be a line bundle. Any
G-action on L by vector bundle automorphisms can be
canonically lifted to a contact G-action on J1L∗. The
Hamiltonian action of G on the symplectic cover T∗L× of
J1L∗ is the standard cotangent lift of the G-action on L×

and J : T∗L× → g∗. Assuming the G-action on L is free
and proper, we get the reduced symplectic R×-bundle

J−1(0)/G = T∗(L×/G) = T∗(L/G)×,

and the reduced contact manifold is

J1(L/G)∗ = J1(L∗/G).
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