CONTACT GEOMETRY AS A CHAPTER IN SYMPLECTIC GEOMETRY

Janusz Grabowski (Polish Academy of Sciences, Warsaw)

IN MEMORY OF MY FRIEND ANATOL ODZIJEWICZ

Contact structures

- $C \subset \mathsf{T}M$ a corank-1 distribution on M
- $\tau_C : \mathsf{T}M \to L_C = \mathsf{T}M/C$ the canonical projection.

Definition

A hyperplane field $C \subset \top M$ we call a contact structure if the 2-form on C,

$$\nu_C: C \times_M C \to L_C, \ \nu_C(X,Y) = \tau_C([X,Y]),$$

is nondegenerate. Any nonvanishing (local) 1-form η such that $C = \ker(\eta)$ we call a contact form generating C.

- $\dim(M) = 2n + 1$
- Characterization of contact forms: $\eta \wedge (d\eta)^n \neq 0$.
- $\ker(\eta) = \ker(f\eta)$ if $f \neq 0$ conformal equivalence

Darboux Theorem and Reeb vector field

- A contact manifold (M, C) we call trivial (or co-oriented) if there is fixed a global contact form η such that C = ker(η).
 (M, C) is trivializable (co-orientable) if there exists a global contact form η such that C = ker(η).
- Important: Not all contact manifolds are trivializable. Examples will follow.

On every trivial contact manifold (M, η) there is a unique vector field \mathcal{R} (the Reeb vector field) such that $\langle \eta, \mathcal{R} \rangle = 1$ and $i_{\mathcal{R}} d\eta = 0$.

Theorem (Contact Darboux Theorem) If η is a contact form, then locally $\eta = dz - p_i dq^i$. $d\eta = dp_i \wedge dq^i$ and $\mathcal{R} = \partial_z$. Similar η lives on $\mathbb{R}^* \times \mathsf{T}^*Q$.

Contact dynamics

In physics literature: thermodynamics (equilibrium and non-equilibrium), statistical mechanics, Hamiltonian and Lagrangian mechanics, study of systems with dissipation, etc., contact structures are generally co-oriented: (M, η) .

The contact dynamics $X_{\hat{H}}^c$ associated with a 'contact Hamiltonian' $\hat{H}: M \to \mathbb{R}$ (ad hoc definition):

$$i_{X_{\hat{H}}^c}\eta = -\hat{H}, \qquad i_{X_{\hat{H}}^c}\mathrm{d}\eta = \mathrm{d}\hat{H} - \mathcal{R}(\hat{H})\eta.$$

Strongly depends on the choice of η even on trivializable contact manifolds.

In Darboux coordinates,

$$X_{\hat{H}}^{c} = \frac{\partial \hat{H}}{\partial p_{i}} \partial_{q^{i}} - \left(\frac{\partial \hat{H}}{\partial q^{i}} + \frac{\partial \hat{H}}{\partial z} p_{i}\right) \partial_{p_{i}} + \left(p_{i} \frac{\partial \hat{H}}{\partial p_{i}} - \hat{H}\right) \partial_{z}.$$

Contactomorphisms

Definition

Contactomorphisms between contact manifolds (M_1, C_1) and (M_2, C_2) are diffeomorphisms $\varphi : M_1 \to M_2$ such that $\mathsf{T}\varphi(C_1) = C_2$.

Contactomorphisms map (local) contact forms determining the contact distributions into (local) contact forms in the same class of conformal equivalence,

 $\varphi^*(\eta_2) = f\eta_1, \ f \neq 0.$

Contact vector fields on a contact manifold (M, C) are vector fields on M whose (local) flows are (local) contactomorphisms:

$$\pounds_X(Y) = [Y, X] \in C \text{ if } Y \in C.$$

Double vector bundles

Theorem (Grabowski-Rotkiewicz)

Every vector bundle $\tau : E \to M$ is uniquely determined by the multiplication by reals on E, i.e., by homotheties $h_s : E \to E, \ h_s(v) = sv$

(equivalently, by the Euler vector field ∇_E). Note that $\tau = h_0$. A double vector bundle (DVB) is a manifold F with two VB structures whose homotheties commute, $h_t^1 \circ h_s^2 = h_s^2 \circ h_t^1$,

(whose Euler vector fields commute, $[\nabla_1, \nabla_2] = 0$).

Example

$$\begin{array}{cccc} \mathsf{T}E & \xrightarrow{\mathsf{T}\tau} \mathsf{T}M & \xrightarrow{\mathsf{T}}\\ \tau_E & & & \downarrow \tau & \pi\\ E & \xrightarrow{\tau} & M \end{array}$$

$$\begin{array}{ccc}
\mathsf{T}^*E & \xrightarrow{\mathsf{T}^*\tau} & E^* \\
\overset{\pi_E}{\downarrow} & & \downarrow^{\pi} \\
E & \xrightarrow{\tau} & M
\end{array}$$

Digressions on linearity

 $\begin{array}{ll} \mbox{Additional multiplications by reals (homotheties):} \\ ({\rm d}_{\sf T}h)_s = {\sf T}h_s, \quad ({\rm d}_{\sf T^*}h)_s = s({\sf T}h_{s^{-1}})^*. \end{array}$

DVB \rightsquigarrow linearity

- a vector field X on E is linear $\Leftrightarrow X : E \to \mathsf{T}E$ is a morphism of VB: $\tau : E \to M$ into $\mathsf{T}\tau : \mathsf{T}E \to \mathsf{T}M$;
- a 2-form ω on E is linear $\Leftrightarrow h_s^*(\omega) = s\omega$ $\Leftrightarrow \omega^{\flat} : \mathsf{T}E \to \mathsf{T}^*E$ is a morphism of DVB;
- A distribution C on E is linear $\Leftrightarrow \mathsf{T}h_s(C) \subset C$ $\Leftrightarrow C$ is a double vector subbundle of $\mathsf{T}E$

Cotangent bundles are the only linear symplectic manifolds.

 $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$ – the multiplicative group of invertible reals. There is an analogy between VB and \mathbb{R}^{\times} -principal bundles $\tau : P \to M$: the principal action $h_s : P \to P$ is defined only for $s \neq 0$ and linearity is replaced by homogeneity.

Vector and \mathbb{R}^{\times} -principal bundles

For a vector bundle $\tau : E \to M$ denote $E^{\times} = \{v \in E : v \neq 0\} = E \setminus 0_M.$

Note that E^{\times} is always an \mathbb{R}^{\times} -principal bundle with the action by homotheties h_s restricted to $s \neq 0$.

Line (rank 1) bundles $L \leftrightarrow$ Principal \mathbb{R}^{\times} -bundles $P = L^{\times}$

 $L = P \times_{\mathbb{R}^{\times}} \mathbb{R}$ – the associated line bundle.

Lifts of an \mathbb{R}^{\times} -principal action on P to $\mathsf{T}P$ and T^*P like for VB: $(\mathsf{d}_{\mathsf{T}}h)_s = \mathsf{T}h_s$, $(\mathsf{d}_{\mathsf{T}^*}h)_s = s(\mathsf{T}h_{s^{-1}})^*$, $s \neq 0$.

Note that $d_{T^*}h$ is not the standard lift of a group action to T^*P which is $(Th_{s^{-1}})^*$.

Double structures, \mathbb{R}^{\times} -principal + VB structures are clear: the \mathbb{R}^{\times} - and \mathbb{R} -actions commute, e.g., $\mathsf{T}P$, T^*P .

Symplectizations of contact forms

Let η be a nonvanishing 1-form on M. Then, η spans a line subbundle $[\eta]$ in the vector bundle T^*M . Hence, $[\eta]^{\times}$ is canonically an \mathbb{R}^{\times} -principal bundle with the \mathbb{R}^{\times} -action inherited from the multiplication by reals in T^*M . With ω_M we denote the canonical symplectic form on T^*M .

Proposition

A nonvanishing 1-form η on M is a contact form if and only if the \mathbb{R}^{\times} -principal bundle $[\eta]^{\times} \subset \mathsf{T}^*M$ is a symplectic submanifold of $(\mathsf{T}^*M, \omega_M)$.

 $\Phi_\eta:\mathbb{R}^\times\times M\ni (s,x)\mapsto s\eta(x)\in [\eta]^\times\subset\mathsf{T}^*M$

is an isomorphism of $\mathbb{R}^{\times}\text{-bundles}.$

 $\omega_{\eta} = \Phi_{\eta}^*(\omega_M)(s, x) = \mathrm{d}(s\eta)(s, x) = \mathrm{d}s \wedge \eta(x) + s \,\mathrm{d}\eta(x) \,.$

Hence, $|\eta|$ is a contact form if and only if ω_{η} is symplectic.

Symplectizations of contact manifolds

Note that $[\eta] = (\ker(\eta))^o$ depends only on the conformal class of η .

Corollary

A corank-1 distribution $C \subset \mathsf{T}M$ is a contact structure if and only if $P = (C^o)^{\times} = (L_C^*)^{\times}$ is a symplectic submanifold in T^*M , with the symplectic form $\omega_C = \omega_M|_P$. If η is a local contact form determining C on $U \subset M$, then $P|_U = \mathbb{R}^{\times} \times U$ and $\omega_C(s, x) = \mathrm{d}s \wedge \eta(x) + s \,\mathrm{d}\eta(x).$

Attention: The \mathbb{R}^{\times} -bundle $P = (C^{o})^{\times}$ is generally not trivializable.

Since ω_M is linear, the symplectic form ω_C on the \mathbb{R}^{\times} -principal bundle $P = (C^o)^{\times}$ is homogeneous: $h_s^*(\omega_C) = s\omega_C, s \neq 0.$

Symplectic \mathbb{R}^{\times} -bundles

This can be expressed also by: $\pounds_{\nabla}\omega_M = \omega_M$ on T^*M , and $\pounds_{\nabla_P}\omega_C = \omega_C$, where ∇_P is the restriction of the Euler vector field ∇ to P – the generator of the \mathbb{R}^{\times} -action h_s .

Definition

A symplectic \mathbb{R}^{\times} -bundle (P, τ, M, h, ω) is a principal \mathbb{R}^{\times} -bundle $\tau : P \to M$ with an \mathbb{R}^{\times} -action

 $h: \mathbb{R}^{\times} \times P \to P, \quad \mathbb{R}^{\times} \times P \ni (s, x) \mapsto h_s(x) \in P,$

equipped additionally with a symplectic form ω which is 1-homogeneous, $(h_s)^*(\omega) = s \cdot \omega$.

Isomorphisms of symplectic \mathbb{R}^{\times} -bundles are \mathbb{R}^{\times} -equivariant symplectomorphisms.

Euler vector field and Liouville 1-form

The following objects live on every symplectic $\mathbb{R}^{\times}\text{-bundle:}$

the Euler vector field, being the generator of the (ℝ₊, ·)-action,

$$\nabla_P(x) = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} (h_{e^t}(x)) = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=1} (h_t(x)),$$

• and a nonvanishing 1-form $\theta = i_{\nabla_P} \omega$, the Liouville form.

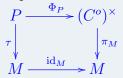
Theorem

If (P, τ, M, h, ω) is a symplectic \mathbb{R}^{\times} -bundle, then θ is semi-basic, and $\omega = d\theta$. For any local trivialization $P|_U \simeq \mathbb{R}^{\times} \times U$ of the principal bundle $\tau : P \to M$, we have $\nabla_P = s\partial_s$, and there is a contact form η on U such that $\omega(s, x) = ds \wedge \eta(x) + s \cdot d\eta(x);$ $\theta(s, x) = s \cdot \eta(x).$

Contact mfd = symplectic \mathbb{R}^{\times} -bundle

Theorem

Any symplectic \mathbb{R}^{\times} -bundle (P, τ, M, h, ω) induces canonically a contact structure $C = \mathsf{T}\tau(\ker(\theta))$ on M, together with an isomorphism



of symplectic \mathbb{R}^{\times} -bundles. Here, θ is the Liouville form on P and $\Phi_P(x) = \theta(x)$. In other words, there is a one-to-one correspondence between isomorphism classes of contact manifolds and isomorphism classes of symplectic \mathbb{R}^{\times} -bundles.

We call (P, τ, M, h, ω) a symplectic cover of (M, C).

Examples

Example (Projectivizations of cotangent bundles)

The \mathbb{R}^{\times} -bundle $P = (\mathsf{T}^*M)^{\times}$ with $\omega = \omega_M|_P$ is a symplectic \mathbb{R}^{\times} -bundle. It represents the canonical contact structure on the projectivization of T^*M ,

 $P/\mathbb{R}^{\times} \simeq \mathbb{P}(\mathsf{T}^*M) \,,$

which is non-trivializable if $\dim(M)$ is odd.

Example (Extended cotangent bundle)

A canonical symplectic cover of the canonical contact structure

$$\eta(z, \mathbf{p}, q) = \mathrm{d}z - \theta_Q(\mathbf{p}, q)$$

on $M = \mathbb{R}^* \times \mathsf{T}^*Q$ is $P = \mathsf{T}^*(\mathbb{R}^\times \times Q) = \mathbb{R}^\times \times M$ with $\omega = \omega_{\mathbb{R}^\times \times Q}$ and

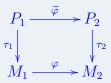
$$\tau(s, q^i, z, p_j) = (z, \mathbf{p}_j = p_j/s, q^i).$$

Contact – symplectic correspondence

Theorem

Let $(P_i, \tau_i, M_i, h^i, \omega_i)$ be a symplectic cover of a contact structure (M_i, C_i) , i = 1, 2. Every isomorphism $\tilde{\varphi} : P_1 \to P_2$ of symplectic \mathbb{R}^{\times} -bundles covers a unique contactomorphism $\varphi : M_1 \to M_2$ of the corresponding contact manifolds.

Conversely, any contactomorphism $\varphi: M_1 \to M_2$ is covered by a unique isomorphism



of symplectic \mathbb{R}^{\times} -bundles.

Contact – symplectic dictionary

 (P,τ,M,h,ω) - a symplectic cover of a contact mfd (M,C)

contact Hamiltonian $\leftrightarrow \rightarrow$ 1-homogeneous Hamiltonian on Por section $\sigma: M \rightarrow L_C = \mathsf{T}M/C, \ H = \iota_{\sigma}, \ \sigma = \sigma_H;$

For trivial $P = \mathbb{R}^{\times} \times M$: $H(s, x) = s \hat{H}(x) \rightarrow$ Physics;

contact vector field X^c on $M \longleftrightarrow X^c = \tau_*(X_H)$ \mathbb{R}^{\times} -invariant Hamiltonian vector field X_H on P;

contact-Jacobi bracket on $L_C \longleftrightarrow$ Poisson bracket of 1-homogeneous Hamiltonians, $[\{\sigma_H, \sigma_{H'}\}_C = \sigma_{\{H,H'\}_\omega}];$

Contact – symplectic dictionary

submanifold $N \subset M \longleftrightarrow \mathbb{R}^{\times}$ -subbundle $\widetilde{N} = \tau^{-1}(N)$

N - (co)isotropic $\longleftrightarrow \widetilde{N}$ - (co)isotropic;

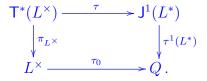
N - Legendrian $\longleftrightarrow \widetilde{N}$ - Lagrangian;

 $\begin{array}{l} \text{contact H-J equation on } M = \mathbb{R}^* \times \mathsf{T}^*Q:\\ \hat{H}: M \to \mathbb{R}, \, \sigma: Q \to \mathbb{R}^*,\\ S(s,q) = s\sigma(q) \text{ - function on } \mathbb{R}^\times \times Q,\\ H: \mathsf{T}^*(\mathbb{R}^\times \times Q) \to \mathbb{R}, \, H(s,q,z,p) = s\hat{H}(z,p/s,q),\\ \hline \\ \textbf{classical H-J eq.: } H \circ \mathrm{d}S = 0 \ \Leftrightarrow \ \hat{H} \circ \mathsf{j}^1(\sigma) = 0 \ . \end{array}$

Linear contact structures

For a line bundle $\tau_0 : L \to Q$, consider $P = \mathsf{T}^* L^{\times}$. It is canonically symplectic \mathbb{R}^{\times} -bundle with $\omega = \omega_{L^{\times}}$ and the lifted \mathbb{R}^{\times} -action $(\mathsf{d}_{\mathsf{T}^*}h)_s = s \cdot (\mathsf{T}h_{s^{-1}})^*$.

It represents the canonical contact structure on the bundle $\mathsf{T}^*L^{\times}/\mathbb{R}^{\times} = \mathsf{J}^1L^*$ of first jets of sections of the dual bundle L^* . This contact structure is trivializable iff L trivializable.



[G2013] J^1L are the only linear contact manifolds.

Group actions

 (P,τ,M,h,ω) - a symplectic cover of (M,C)

There is a one-to-one correspondence between actions

 $\rho: G \times M \to M, \quad \rho(g, y) = g^c(y),$

of a Lie group G on M by contact omorphisms and actions

$$\widetilde{\rho}: G \times P \to P, \quad \widetilde{\rho}(g, x) = \widetilde{g}(x)$$

of G on P by \mathbb{R}^{\times} -equivariant symplectomorphisms.

This induces a homomorphism $\xi \mapsto \xi^c$ of the Lie algebra \mathfrak{g} of G into the Lie algebra of contact vector fields on M.

 ξ^c is covered by $\hat{\xi}$ - an \mathbb{R}^{\times} -invariant Hamiltonian vector field $\hat{\xi}$ on P with 1-homogeneous Hamiltonian $H_{\xi} = i_{\hat{\xi}}\theta$ on P.

Contact moment maps

The canonical *contact moment map* is

$$J: P \to \mathfrak{g}^*, \quad \langle J(x), \xi \rangle = H_{\xi}(x) = (i_{\hat{\xi}} \theta)(x).$$

J is Ad-equivariant and \mathbb{R}^{\times} -equivariant, $J(h_s(x)) = s \cdot J(x)$.

We apply a modified Marsden-Weinstein-Meyer reduction for a weakly regular value μ of J (*G*-connected).

$$\begin{aligned} P_{[\mu]} &= J^{-1}([\mu]^{\times}) \simeq \mathbb{R}^{\times} \times J^{-1}(\mu); \\ G_{\mu} &= \{g \in G : \operatorname{Ad}_{g}^{*}(\mu) = \mu\} \text{ - the stabilizer subgroup}; \\ \mathfrak{g}_{\mu}^{0} &= \{v \in \ker(\mu) : \operatorname{ad}_{v}^{*}(\mu) = 0\} \text{ is a Lie ideal in } \mathfrak{g}_{\mu}; \end{aligned}$$

Contact Marsden-Weinstein reduction

 G^0_{μ} the corresponding Lie subgroup of G - acts on $P_{[\mu]}$; $M_{\mu} = \tau(P_{[\mu]}) = \tau(J^{-1}(\mu))$ - submanifold in M.

Theorem (Contact reduction)

Suppose that M_{μ} is transversal, i.e., $\top M_{\mu} \cap C$ is of corank 1 in $\top M_{\mu}$.

If, moreover, G^0_{μ} is a closed subgroup and acts freely and properly on $P_{[\mu]}$, then $P_{red} = P_{[\mu]}/G^0_{\mu}$ is a symplectic \mathbb{R}^{\times} -bundle.

It covers the manifold $M_{red} = M_{\mu}/G^0_{\mu}$ which is equipped with the contact structure $C_{red} = \mathsf{T}p(\mathsf{T}M_{\mu} \cap C)$, where $p: M_{\mu} \to M_{\mu}/G^0_{\mu}$ is the canonical surjective submersion.

When G_{μ}^{0} is closed?

Theorem

If G is compact and connected, then G^0_{μ} is closed in G_{μ} , thus in G, if and only if μ is integral, i.e., there exists $\hbar \in \mathbb{R}^{\times}$ such that

 $\varphi: G_{\mu} \to S^1, \quad \varphi(\exp(\xi)) = e^{2\pi\hbar i \langle \mu, \xi \rangle},$

is a well-defined unitary character on G_{μ} .

This, in turn, is equivalent to the fact that the canonical symplectic form (KKS) $\omega_{\mathcal{O}_{\mu}}$ on the coadjoint orbit \mathcal{O}_{μ} is integral, $[(2\pi\hbar)^{-1}\omega_{\mathcal{O}_{\mu}}] \in H^2(\mathcal{O}_{\mu};\mathbb{Z}).$

contact geometry \leftrightarrow geometric prequantization

Example

A standard symplectic reduction: G acts freely and properly on M. This action can be lifted to a Hamiltonian G-action on T^*M with a moment map $J: \mathsf{T}^*M \to \mathfrak{g}^*$. Then,

 $J^{-1}(0)/G \simeq \mathsf{T}^*(M/G).$

A contact analogue: Let $\tau_0 : L \to Q$ be a line bundle. Any G-action on L by vector bundle automorphisms can be canonically lifted to a contact G-action on $\mathsf{J}^1 L^*$. The Hamiltonian action of G on the symplectic cover T^*L^{\times} of $\mathsf{J}^1 L^*$ is the standard cotangent lift of the G-action on L^{\times} and $J : \mathsf{T}^*L^{\times} \to \mathfrak{g}^*$. Assuming the G-action on L is free and proper, we get the reduced symplectic \mathbb{R}^{\times} -bundle

 $J^{-1}(0)/G = \mathsf{T}^*(L^{\times}/G) = \mathsf{T}^*(L/G)^{\times},$

and the reduced contact manifold is

 $\mathsf{J}^1(L/G)^* = \mathsf{J}^1(L^*/G).$

References

- J. Grabowski, Graded contact manifolds and contact Courant algebroids, J. Geom. Phys. 68 (2013), 27–58.
- A. J. Bruce, K. Grabowska, J. Grabowski, Remarks on contact and Jacobi geometry, *SIGMA* **13** (2017), Paper No. 059, 22 pp.
- J. Grabowski, M. Rotkiewicz, Graded bundles and homogeneity structures, *J. Geom. Phys.* **62** (2011), 21–36.
- K. Grabowska, J. Grabowski, A novel approach to contact Hamiltonians and contact Hamilton-Jacobi Theory, J. Phys. A 55 (2022), 435204 (34pp).
- K. Grabowska, J. Grabowski, Contact geometric mechanics: the Tulczyjew triples, *arXiv:2209.03154*.
- K. Grabowska, J. Grabowski, Reductions: precontact versus presymplectic, Ann. Mat. Pura Appl. (2023).

THANK YOU FOR YOUR ATTENTION!