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Phase diagrams for
first-order ordinary

differential equations
(ODE)
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Figure: Possible phase diagrams for a twice integrated travelling-wave
reduction of the KdV equation ´Vu2{2 ` u3 ` ux

2{2 ` c1u ` c2 “ 0,
where V is the propagation velocity of the wave, while c1 and c2 are
integration constants. The self-intersecting loop (c1 “ c2 “ 0)
represents a soliton and 2 unbounded solutions (although the orange
line is connected, it consists of 3 different solutions).
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Information we get from phase diagrams

1 Type of the solution (solitary, periodic, bounded,
unbounded, etc.).

2 Minima and maxima of the dependent variable u and also
of its derivative ut .

3 Direction of growth of the independent variable, from
dt “ du{ut .

4 A check whether the range of the independent variable in a
given loop is finite or infinite.

5 When the range is infinite, we can identify the limits of the
solution at infinity.

6 We can see if there are several distinct solutions for the
same value of the parameters.

Some of this information may be obtained for Hamiltonian
systems from the quadric representing their kinetic part.
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Example: the Belinski-
Khalatnikov-Lifshitz

scenario
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The scenario is an answer to the question whether a
generic singularity exists in cosmology.
Generic not in the sense that it has to exist in most
situations, rather:
The singularity occurs for a subset of nonzero measure in
the space of initial conditions of the proper dimensionality
(with the proper number of arbitrary constants).

Vladimir Alekseevich Belinski Isaak Markovich Khalatnikov Evgeny Mikhailovich Lifshitz
(the only living one)

Piotr P. Goldstein A quadric of kinetic energy in the role of phase diagramsApplication to the BKL scenario



Belinski-Khalatnikov-Lifshitz (BKL) scenario

Describes the universe in a neighbourhood of the cosmic
singularity [V. A. Belinskii, I. M. Khalatnikov, and E. M. Lifshitz, 1970, Adv.

Phys., 19 (80), 525.]

Contrary to the previous models, it allows for anisotropy.

The anisotropy is measured by the ratios of length scales
a,b, c (“scale factors”) in three principal directions.

With direction-dependent rate of collapse, it is likely, and
thus assumed, that the anisotropy increases indefinitely as
we approach the singularity.

Question: how do the scale factors and principal
directions vary when we approach the singularity?
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From10 Einstein equations
Rαβ ´ 1

2R gαβ “ κTαβ

in a neighbourhood of the
cosmological singularity

to 3 BKL equations
(Rαβ = Ricci tensor, α, β “ 1,2,3,4, R = Ricci scalar,
gαβ = 4-dimensional metric tensor, κ “ G{p8πc4q,
G = gravitational constant Tαβ = stress-energy tensor)
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Shortly, on the derivation of the BKL equations
1 Neglecting the influence of matter on the metric, Tµν “ 0.
2 Synchronous frame of reference: at each point, time is the

proper time (co-moving observer) Ñ 3-dim Bianchi models.
3 Rescaling the time to t{

?
γ; γ is the spatial metric tensor.

4 Using the Bianchi identities to once integrate the equations
for the off-diagonal Ricci tensor.

5 Specifying the spatial directions of the frame axes.
6 Diagonalising the metric to diagpΓ1, Γ2, Γ3q, Γ1 ą Γ2 ą Γ3 ,

with principal axes rotating in this frame.
7 Going to the limit Γ2{Γ1 Ñ 0, Γ3{Γ2 Ñ 0.
8 Rescaling Γ1, Γ2, Γ3, by constants of order 1, to a, b, c.

The result consists of 3 equations for the evolution of a, b, c
with 1 constraint equation, while 3 equations for the Euler
angles in this frame show that the rotation stops.
Three spatial-temporal Einstein equations do not influence the
dynamics.
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A sketch of the derivation of the BKL equations
(7 slides omitted at the conference)

First choose the frame of reference which provides the
simplest description.

The synchronous frame: the time is the proper time of an
observer co-moving with the observed object. Then the
metric form

ds2 “ dt2 ´ γabptqdxadxb

(summation convention, the spatial metric tensor
γab “ ´gab, where a,b =1,2,3, depends on time only).

This reduces the Einstein equations to a problem of finding
the appropriate 3D metric; the corresponding Lie algebra
structure has been classified by Bianchi. The most
general, anisotropic, is Bianchi IX; the structure
constants may be ϵabc (ϵ is the Levi-Civita symbol).
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Simplifications

Rescaling dt2 by the spatial volume

dt “
?
γdt 1,

where γ is the determinant of the spatial (time-dependent)
metric tensor γab. In what follows we will omit the prime.

Close to the singularity, the stress-energy tensor is
negligible compared to the (singular) Ricci tensor
components.

Of ten Einstein equations, the 0
a components (a “ 1, 2, 3)

provide only relations between constants, they do not
describe the dynamics. What remains are six equations
for Rb

a , pa,b “ 1,2,3q, and one for R0
0 .
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The intermediate system of equations

The six Einstein equations for the spatial components (dot
= differentiation with respect to the rescaled time) read

Rb
a “

1
2γ

9kb
a ` Pb

a “ 0,

and the one for the temporal component has the form

R0
0 ´ Ra

a “
1

4γ

ˆ

kb
a ka

b ´
p 9γq2

γ2

˙

´ Pa
a “ 0,

where kb
a “ γbc 9γca and Pb

a are components of the 3D Ricci
tensor (summation over identical indices applies).
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Further specification of the frame

A possibility of integration of the off-diagonal equations
follows from the Bianchi identities, yielding

ϵabckb
a “ Cc “ const .,

where Cc is a vector integral of motion.

The choice of the synchronous frame is not unique. E.g.
we have freedom of its rotation.

We use constants of motion Cc to fix its orientation

Our choice: C1 “ C2 “ 0, C3 “: C
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The system in the special frame

The spatial metric tensor γ̂ may be diagonalised and it has
its principal axes in the 3D space.
Let the diagonalised matrix be

Γ̂ “ diagpΓ1, Γ2, Γ3q .

In general, the axes would rotate with respect to our
chosen frame.
The classical description for a rotating system is in terms
of the Euler angles.
The total rotation R̂ is a composition (group product):

R̂ “ R̂ψR̂θR̂φ

of 3 rotations: by angle φ about the z axis (precession
angle), by θ about the x axis (inclination or nutation angle)
and by ψ about the new z axis (pure rotation angle).
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Dynamics of rotation
The spatial equations for the off-diagonal components of
the Ricci tensor determine the rotation

sin θ sinψ 9φ` cos ψ 9θ “
Γ2Γ3 sin θ sin ψ

pΓ2 ´ Γ3q2

sin θ cos ψ 9φ´ sin ψ 9θ “
Γ3Γ1 sin θ cos ψ

pΓ3 ´ Γ1q2

cos θ 9φ` 9ψ “
Γ1Γ2 sin θ cos ψ

pΓ1 ´ Γ2q2 .

BKL conjecture: the initial anisotropy of the system should
indefinitely grow.
We number Γ’s by their order: Γ1 ą Γ2 ą Γ3. Then, close to
the singularity, we have Γ1 " Γ2 " Γ3 and may neglect
terms proportional to Γ3{Γ2, Γ2{Γ1, and Γ3{Γ1,
then the t-derivatives of the angles vanish in the
zero order ùñ rotation of the principal axes stops
close to the singularity: pθ, φ, ψq Ñ pθ0, φ0, ψ0q.
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Dynamics of the scale factors

The other 3 equations describe the dynamics of three Γ’s.
They correspond to the diagonal spatial Einstein equations
(omitted here because of their complexity ).

The last one is the Einstein equation for the temporal
(diagonal) component R0

0 (omitted for the same reason).

With these equations, go to the limit Γ3{Γ2 Ñ 0, Γ2{Γ1 Ñ 0,

Rescale the Γ’s to define the new variables a, b, and c

Γ1 “: a, Γ2C2 cos2 θ0 “: b, Γ3C4 sin2 θ0 cos2 θ0 sin2 φ0 “: c.
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The Belinski-Khalatnikov-
Lifshitz equations
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The equations

The three equations corresponding to the diagonal spatial
components become
d2 lna

dt2 “
b
a

´ a2 d2 lnb
dt2 “ a2 ´

b
a

`
c
b

d2 ln c
dt2 “ a2 ´

c
b

,

while the temporal component yields a constraint

d lna
dt

d lnb
dt

`
d lna

dt
d ln c

dt
`

d lnb
dt

d ln c
dt

“ a2 `
b
a

`
c
b

.

This is the BKL system.

Apparently overdetermined (4 equations, 3 unknowns), it is
in fact consistent. Namely, the 3rd equation may be
obtained by substitution of :a and :b from the first two to the
t-derivative of the constraint: it yields the 3rd equation
multiplied by p 9a{a ` 9b{bq (dot denotes time differentiation).
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Physics in the BKL system

It describes a collapse of the homogeneous but anisotropic
universe or (by time-reversal) its emerging in an explosion,
for the time close to the cosmological singularity.

The authors (BKL) conjecture that the approach to the
singularity is chaotic.
We will show that it may describe oscillations to the
singularity and back, which stems from the natural
assumptions imposed on the Einstein equations,
`

rather than a presumed form of the metric tensor,
like e.g. the well-known Kasner’s universe, in which
ds2 “´dt2`

ř3
j“1 t2pj pdx jq2, where

ř3
j“1 pj “1,

ř3
j“1 p2

j “1
˘

.

If a Ñ 0 when t Ñ 8 (close to the singularity), with t´1

being a small quantity of order ε , then in that region
a „ ε1{2, b „ ε3{2, c „ ε5{2 , which is consistent

with the assumption a " b " c (growing anisotropy).
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The canonical structure of the BKL system

BKL is a Lagrangian-Hamiltonian system in the variables
x1 “ lna, x2 “ lnb, x3 “ ln c.
[E. Czuchry and W. Piechocki Phys. Rev. D 87, 084021 (2013)].

The Hamiltonian is the l.h.s. of the constraint, which
corresponds to zero value of the Hamiltonian. The
Lagrangian reads
L “ 9x1 9x2 ` 9x2 9x3 ` 9x3 9x1 ´

`

´e2x1 ´ ex2́ x1 ´ ex3́ x2
˘

.
“kinetic energy” Ek “potential energy” Ep.

The Hamiltonian (not yet canonical), H “ Ek ` Ep “ 0

Since the constraint is imposed on an integral of motion,
it may replace one of the dynamic BKL equations.
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Symmetries of the BKL system

It is not symmetric under permutation of the spatial
directions, because we have defined a as the largest and
c the smallest scale factor, and assumed a " b " c
at its derivation.
The system is symmetric under the change of the arrow of
time t Õ ´t .

There are only two Lie symmetries:
The time shift t 1 “ t ´ t0. This symmetry is also obvious, as
the system is autonomous.
The scaling symmetry. If λ is the scaling parameter,
t 1 “ λt , a1 “ a{λ, b1 “ b{λ3, c1 “ c{λ5

is a symmetry.

There exists a self-similar solution with respect to the
scaling; it proves to be identical with our exact solution
(on the next slides).
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The cone of kinetic energy

The kinetic energy of
Ek “ x1x2 ` x2x3 ` x3x1
may be diagonalised by

x1 “ u1 ´ u2 ´ u3,

x2 “ u1 ` 2u3,

x3 “ u1 ` u2 ´ u3

leading to

Ek “ 3 9u2
1 ´ 9u2

2 ´ 3 9u2
3 ,

Ek ą 0 due to Ep ă 0 while
H “ Ep ` Ek “ 0
[P. Goldstein and W. Piechocki

Eur. Phys. J. C (2022) 82:216]

-5 0

0

u

u

Figure: The lower half (=shrinking volume) of the
cone 3 9u2

1 ´ 9u2
2 ´ 3 9u2

3 ą 0. The dynamics of the
system takes place inside the cone. The blue
line shows an exact solution (discussed further;
the arrow indicates its direction of evolution). For
t Ñ 8, the line tends to the apex of the cone.
The other end of the line extends to infinity
(which is beyond the scope of the BKL scenario).
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The exact solution
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Exact solution of the BKL equations

We found an exact solution of the BKL equations (no exact
solution had been known before)
[P. Goldstein and W. Piechocki (2022) Eur. Phys. J. C 82:216].

It reads aptq “ 3
t´t0

, bptq “ 30
pt´t0q3 , cptq “ 120

pt´t0q5 .

It is the only meromorphic solution of the system, while the
BKL system is non-Painlevé.

The exact solution consists of the zero-order terms in the
Laurent expansion of a, b and c respectively, while all
higher order terms prove to be zero from the recurrence
relations.

It is unstable to small perturbations: Although the
perturbations tend do zero as t Ñ 8, their ratios to
the respective perturbed quantities grow as t1{2.
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The exact solution in terms of the diagonal variables

For the variables

u1 “ 1
3 lnrpabcqs,

u2 “ 1
2 lnrpc{aqs,

u3 “ 1
6 lnrpb2{acqs,

we have

u1 “
1
3
ln

10800
pt ´ t0q9 ,

u2 “
1
2
ln

40
pt ´ t0q4 ,

u3 “
1
6
ln

5
2

“ const .

Figure: In the diagonal Lagrangian variables, the
exact u3 is constant, while u1 and u2 diverge
logarithmically to ´8. In these variables u1
represents the cubic root of the volume while
constancy of u3 means that b is proportional to
?

ac.
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Figure: Linear instability of the exact solution for
K1 “ K2 “ 0.01, K3 “ 0,φ1 “ φ2 “ 0. The graph presents the
parametric curve defined by the time dependence of α{a, β{b,
and γ{c, where α, β, γ are the perturbations of a, b, c respectively.
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Stochasticity in the neighbourhood of the exact
solution

The phase planes of pα, 9αq, pβ, 9βq, pγ, 9γq are ergodically
covered by the Lissajous curves of the oscillations with the
two incommensurable frequencies.

On the other hand, the 6D space cannot be densely
covered by two-frequency oscillations.

However the ergodicity of the projections means stochastic
behaviour over extended periods of time.
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Asymptotic properties of
solutions to the BKL

equations
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The cone of kinetic energy

The Lagrangian with diagonalised kinetic energy reads
“kinetic energy” Ek “potential energy” Ep.

L “ 3 9u2
1 ´ 9u2

2 ´ 3 9u2
3 ´

”

´e2pu1´u2´u3q ´ eu2´3u3 ´ eu2`3u3
ı

,

where u1 “ 1
3 lnpabcq, u2 “ 1

2 lnpc{aq, u3 “ 1
6 ln

`

b2{pacq
˘

,
whence u1 is the natural logarithm of (volume scale)1{3 .

This way, dynamics of the volume is naturally separated
from the deformation degrees of freedom.
The “kinetic part” of the Lagrangian (in orange) is an
indefinite quadratic form, whose zero surface in the space
of “velocities” p 9u1, 9u2, 9u3q is conical.

Since the “potential part” (in violet) is always negative,
while the “total energy” (Hamiltonian) is zero, then Ek ą 0
and the evolution takes place inside the cone.
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Asymptotics of non-exact solutions
Role of the cone of kinetic energy

A position in the cone
gives 9u1, 9u2, and 9u3. The
tangent to the trajectory
consists of :u1, :u2, :u3.
Inverting the Lagrange
equations, we may get
the positions u1, u2, u3.
Since u19 ln(volume),
the shrinking universe is
represented by the lower
half-cone 9u1 ă 0.
The 1st Lagrange equation
yields inequality
:u1 “ 2

9e2pu1´u2´u3q ą 0,
whence the time arrow is
directed up the cone.

Figure: The evolution of the exact and
an inexact solutions in the lower
half-cone (shrinking universe). The
arrow shows the direction of time; it is
always upward.
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Asymptotics of non-exact solutions (2)
Limits in the neighbourhood of the lateral surface

Attaining the boundary of the cone (defined by Ek “ 0)
requires infinite time: It is obvious for the exact solution
(where t Ñ 8 corresponds to the apex).
On approaching a point on the lateral surface, say 9u1 Ñ C, we have u19 ´ C t .

On the other hand, Ek Ñ 0, ùñ all three exponents in Ep tend to zero, ùñ

u1 Ñ ´8. Hence t Ñ 8.

The converse: If a limit t Ñ 8 exists, it is attained at the
boundary of the cone, Ek “ 0, only.
The limit requires lim

tÑ8
:ui “ 0, i “ 1, 2, 3, which infers vanishing of all three

exponentials in the Lagrangian. On the other hand, Ek ‰ 0 together with H “ 0

implies Ep ‰ 0, which requires at least one nonzero exponential.

However:
9u1 must have a limit as an increasing function bounded
from above. The other two, 9u2, 9u3, may have it or not.
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Asymptotics in the neighbourhood of the lateral
surface

While approaching the lateral surface of the cone Ek “ 0:

If the limits, at t Ñ 8, of 9u1, 9u2, 9u3 are ´g1, ´g2, ´g3
respectively, (g1 ą 0, g2 ´ 3g3 ą 0 and g2 ` 3g3 ą 0),
then u1, u2, u3 are asymptotically linear functions of time:
u1 „ ´g1t ` h1, u2 „ ´g2t ` h2, u3 „ ´g3t ` h3 .

Since the total Hamiltonian H “ 0 ùñ each component of
potential energy Ep “ ´e2pu1´u2´u3q ´ eu2´3u3 ´ eu2`3u3

tends to zero, whence the exponents tend to ´8.

Hence, the remainder of Ek exponentially falls with time.

Vanishing of Ek on the cone surface requires
3g2

1 ´ g2
2 ´ 3g2

3 “ 0.

The above conditions in terms of the scale factors a, b, c
mean that a „ expp2patq, b „ expp2pbtq, c „ expp2pc tq with

papb ` pbpc ` pcpa “ 0.
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Kasner-like solutions (1)

The condition a „ expp2patq, b „ expp2pbtq, c „ expp2pc tq,
with papb ` pbpc ` pcpa “ 0, makes these solutions similar
to the Kasner solutions of Einstein equations, where the
metric reads [M.P. Ryan Jr. 1972, Ann. Phys. 70, 301]

ds2 “ dt2 ´ t2p1dx2
1 ´ t2p2dx2

2 ´ t2p3dx2
3 ,

with p1 ` p2 ` p3 “ 1 and p2
1 ` p2

2 ` p2
3 “ 1 (1).

It is only the matter of time rescaling.

These constraints on the exponents pi , i “ 1,2,3,
infer exactly p1p2 ` p2p3 ` p3p1 “ 0.

Conversely, by rescaling the time and space scales
according to the Lie symmetry, we can get both eqs. (1) for
pa, pb, pc instead of p1, p2, p3 . Thus our solutions which
end on the lateral cone surface are Kasner-like solutions.
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Kasner-like solutions (2)

The relation between pa, pb, pc shows that at least
one and at most two of these exponents are negative.

Hence

The universe is collapsing to 0 in one or two
dimensions while stretching to 8 in the other two or
one.

This way, our exact solution is the only solution
describing the collapse to zero in all dimensions.

And this only fully collapsing solution is unstable!
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Stability of the Kasner-like solutions

The asymptotics t Ñ 8 may be obtained by time rescaling
t Ñ

?
εt (“normal” new time corresponds to high values of

the old one).

Then in the zero order in ε, we regain
u1 “ ´g1t ` h1, u2 “ ´g2t ` h2 u3 “ ´g3t ` h3.

The next order terms in ε fall exponentially with time, as
e´q1t , e´q2t , e´q3t , respectively, with exponents
q1 “ ´2pg1 ´ g2 ´ g3qt , q2 “ ´pg2 ´ 3g3qt , and
q3 “ ´pg2 ` 3g3qt , respectively. All of them are negative
ùñ the asymptotic solutions are stable.

When the trajectory reaches the lateral surface, an
exchange of the roles of a, b, c and the exponents
pa, pb, pc takes place (see the simulations below).
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A couple of simulations of the Kasner-like solutions (1)
The simulations require variables which are of similar order for
large time. These are u :“ a2, v :“ b{a and w :“ c{b.

Figure: Dynamics of uptq, vptq and wptq for typical initial data,
up0q “ 0.225, vp0q “ 0.25,wp0q “ 0.1, 9up0q “ ´9{4, 9vp0q “ ´5{2.
When all of u, v , w turn to zero, the “kinetic energy” also turns to
zero, according to the constraint.
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A couple of simulations (2)

Figure: Dynamics of uptq, vptq and wptq and their logarithmic time
derivatives for the same initial data. Occasionally all of u, v , w turn to
zero, as well as their time derivatives, but in no case do all logarithmic
derivatives 9u{u, 9v{v , 9w{w vanish. This means that the trajectory is
incident on the lateral surface of the cone. Note the exchange of the
roles of these variables, typical for Kasner’s solutions.
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Limit and no-limit solutions

9u1 must have a limit, say g1, as an increasing function
bounded from above. The other two, 9u2, 9u3, may have it
or not.

If they do not have a limit, then their dynamics for large t
takes place within an ellipsoidal horizontal cross section of
the cone, 9u2

2 ` 3 9u2
3 ă g2

1 .

Apart from reaching the surface of the cone, returns of the
trajectory of 9u3 are possible while u2 may bounce only
once from the wall of the potential.
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Solutions with no limit

Figure: The potential well when u1 has reached its limit g1. The
dependent variable u3ptq may vary periodically. Here the path (in
green) has been stretched in the u2 direction for clarity
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Which behaviour is generic?

The question of
genericness may be
addressed by means
of the Liouville
conservation of a
cell volume in the 6d
phase space.
We will show how
this affects the
3-dimensional
volume in the cone
of kinetic energy.

Figure: Dynamics of the phase volume within the
cone. The volume shrinks, but proportions in the
space of momenta are conserved.
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From 6-dimensional phase volume of initial conditions
to volume in the cone

We can make the reduction to a 5D space by replacing one
of the variables, say u3 by the Hamiltonian.
The distance in the H direction is invariant in time. Hence,
the 5D volume will also be invariant in these variables.
This change of variables has a well-defined Jacobian
J “ ´3eu2p0q sinh u3p0q.
This Jacobian is independent of momenta. It means that
the (initial or final) phase volume is proportional to the 3D
volume in the space of momenta. This in turn infers the
genericness of ending on the surface rather than on the
vertex of the cone. Hence, ending on the surface is the
typical (generic) situation.
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To be honest

Definitely, the lateral surface of the cone is of higher
dimension than its apex and thus the solutions which end
on the surface are typical, rather than our exact solution.

It seems, although it is a conjecture rather than a proven
fact, that the no-limit solutions are “more typical” than
those stable solutions which end on the cone surface. This
would explain the chaotic behaviour observed in most
simulations.
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Conclusions

Piotr P. Goldstein A quadric of kinetic energy in the role of phase diagramsApplication to the BKL scenario



Summary of results about description through
quadrics (1)

Trajectories of velocities or momenta in the cone of kinetic
energy may completely describe the system.

Although the apparent form of the equation does not
provide the trajectories (unlike phase diagrams of
one-variable ODE), it provides their asymptotic form.

It also may provide the direction of evolution and
information, whether the boundary values are attained in a
finite or infinite time.

For a given set of initial conditions, the proportion of 3D
volumes in the cone is the same as the proportion of
phase volumes.
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Summary of results about description through
quadrics (2)

These methods work well for Hamiltonian systems whose
kinetic part is a quadratic form with constant coefficients.

It may also work for some space-dependent kinetic parts, if
the deformation do not affect the topology.

In our case, the quadric was single and a cone. If no
constraints are imposed on the Hamiltonian, we have a
quadric for each value of H separately. If the kinetic energy
is positive definite, the quadrics are ellipsoids.
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Summary of results on the BKL scenario (1)

The BKL system of equations with the constraint H “ 0
has exactly one exact solution, up to a time shift.
The exact solution is the only one which leads to the
collapse in all directions and the only one ending in the
apex of the cone. As found previously, the asymptotics of
the scale factor undergo a power-like collapse.

The exact solution is unstable to small perturbations,
which develop into oscillations with two characteristic
incommensurable frequencies (previous result);
this leads to chaotic behaviour.

Reaching the surface of the cone (whether lateral or apex)
requires infinite time and vice versa: if exists a limit at
t Ñ 8, the system inevitably ends on the surface
(including the apex).
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Summary of results on the BKL scenario (2)

The generic solutions are those which end on the lateral
surface of the cone, rather than its apex).

Contrary to the exact solution, in the asymptotics of the
non-exact solutions, the spatial scale factors are
exponential functions of time.

These solutions describe the universe collapsing in one or
two directions while stretching in the other two or one, like
Kasner’s solutions.

Also, contrary to the exact solution, these solutions are
stable to small perturbations.

Still more frequent may be solutions without limits
(conjecture). This leads to chaos again.
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Thank you for your
attention!
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