On Automorphisms of Complex b^{k}-Manifolds

Michael Francis ${ }^{1}$-joint with Tatyana Barron ${ }^{1}$
${ }^{1}$ Department of Mathematics
University of Western Ontario
XL Workshop on Geometric Methods in Physics - 2023

- b-calculus (Melrose) is a framework for dealing with singular partial differential operators that degenerate along a hypersurface Z in their domain manifold M. It has applications to index theory.
- Can consider " b versions" of classical geometries.
- b-symplectic geometry (aka "log-symplectic geometry") has been considered by various authors (Guillemin, Miranda, Pires, ...).
- Mendoza introduced b-complex geometry
- One can also consider $\mathbf{b}^{\mathbf{k}}$-calculus, $k \geq 2$, where k encodes the order of degeneracy along $Z \subseteq M$. This was pursued by Scott.
- We are interested in understanding automorphisms in b and b^{k}-complex geometry.

Definition

A \mathbf{b}-manifold is a smooth manifold M together with a closed hypersurface $Z \subseteq M$.

The b-tangent bundle is the vector bundle (Lie algebroid, in fact) ${ }^{b} T M$ over M whose smooth sections correspond to the smooth vector fields on M that are tangent to Z.

- Let $M=\mathbb{R}^{2}, Z=\mathbb{R} \times\{0\}$. Then ∂_{x} and $y \partial_{y}$ are a frame for ${ }^{b} T M$.
- Can also define b^{k} tangent bundles $b^{k} T M$ for $k \geq 2$ whose smooth sections are smooth vector fields on M which are "tangent to Z to k th order".
- Latter notion is not coordinate invariant. Additional infinitesimal data needs to be specified along Z to define $b^{k} T M$ (Scott).

Recall that complex structures can be defined without reference to holomorphic charts. The equivalence of the definition below to the one via holomorphic charts is given by the Newlander-Nirenberg theorem.

Definition

A complex manifold is an even-dimensional smooth manifold M equipped with a subbundle W of the complexified tangent bundle satisfying:
(i) $\mathbb{C} T M=W \oplus \bar{W}$,
(ii) W is involutive.
complex b-manifolds (introduced by Mendoza) and complex $\mathbf{b}^{\mathbf{k}}$-manifolds may be defined in exact analogy, simply by replacing the role of the tangent bundle by the b-tangent bundle (resp. b^{k}-tangent bundle).

- For simplicity, we work with $M=\mathbb{R}^{2}$ and $Z=\mathbb{R} \times\{0\}$ throughout.
- Any complex structure on \mathbb{R}^{2} is spanned by a single complex vector field

$$
L=X+i Y
$$

with X and Y pointwise linearly independent.

- The choice of defining L is unique up to smooth rescaling.
- Same story in b^{k} case, with the vector fields X, Y being pointwise-independent as sections of ${ }^{b^{k}} T M$.

Theorem (Newlander-Nirenberg in dimension 2)

If $L=X+i Y$, where X, Y are pointwise-independent, smooth vector fields on \mathbb{R}^{2}, then, locally near any point, there is a diffeomorphism θ such that

$$
\theta_{*}(L) \sim L_{0}:=\partial_{x}+i \partial_{y}
$$

- Here \sim indicates equality after a smooth rescaling.
- "no local invariants in complex geometry"
- integrability unecessary in dimension 2.

Mendoza has shown there are no "formal local invariants" in complex b-geometry, but the natural b and b^{k} analogs of the Newlander-Nirenberg theorem seem to still be lacking.
Although, we do have the following:

Theorem (B-F)

Consider \mathbb{R}^{2} with b-complex structure defined by $L=X+i Y$ where X, Y are smooth vector fields tangent to the x-axis that are pointwise-independent as sections of ${ }^{b}$ TM. Suppose there exists a smooth function h with $L h=0$ such that $d h(0,0) \neq 0$. Then, there exists a local coordinate change at $(0,0)$ such that

$$
\theta_{*}(L) \sim L_{1}:=\partial_{x}+i y \partial_{y} .
$$

Conclusion: there are no local invariants for complex b-manifolds that admit nontrivial "b-holomorphic" functions.

Definition

The standard complex $\mathbf{b}^{\mathbf{k}}$-structure of \mathbb{R}^{2} is spanned by

$$
L_{k}=\partial_{x}+i y^{k} \partial_{y} \quad k=0,1,2, \ldots
$$

An automorphism of $\left(\mathbb{R}^{2}, L_{k}\right)$ is a diffeomorphism θ of \mathbb{R}^{2} such that $\theta_{*}\left(L_{k}\right) \sim L_{k}$.

- Note $L_{0}=\partial_{x}+i \partial_{y}$, and $\operatorname{Aut}\left(\mathbb{R}^{2}, L_{0}\right)$ is the usual $\operatorname{Aut}(\mathbb{C})$ (biholomorphic maps).
- By applying an order-2 automorphism $(x, y) \mapsto(\pm x,-y)$, one may restrict attention to automorphisms of $\left(\mathbb{R}^{2}, L_{k}\right)$ that fix the open upper half space \mathbb{H}.

Definition

$\operatorname{Aut}_{+}\left(\mathbb{R}^{2}, L_{k}\right)=\left\{\theta \in \operatorname{Aut}\left(\mathbb{R}^{2}, L_{k}\right): \theta(\mathbb{H})=\mathbb{H}\right\}$.

Theorem (B-F)

Aut $_{+}\left(\mathbb{R}^{2}, L_{1}\right) \cong \mathbb{R} \times \mathbb{R}$. It is generated by:
Horizontal translations:
Vertical scalings:

$$
\begin{aligned}
& (x, y) \mapsto(x+t, y) \\
& (x, y) \mapsto\left(x, e^{t} y\right)
\end{aligned}
$$

Theorem (B-F)

For $k \geq 2$, Aut ${ }_{+}\left(\mathbb{R}^{2}, L_{k}\right) \cong \mathbb{R}_{+} \ltimes \mathbb{R}$, the "ax $+b$ group". It is generated by:

Horizontal translations: $\quad(x, y) \mapsto(x+t, y)$
Hyperbolic transformations: $\quad(x, y) \mapsto\left(e^{t} x, e^{-\frac{t}{k-1}} y\right)$
Remark: The action of $\mathrm{Aut}_{+}\left(\mathbb{R}^{2}, L_{k}\right)$ on the singular hypersurface $Z=\mathbb{R} \times\{0\}$ is faithful for $k \geq 2$, but not for $k=1$.

Basic observation: the diffeomorphism

$$
\theta: \mathbb{H} \rightarrow \mathbb{R}^{2} \quad \theta(x, y)=(x, \log y)
$$

satisfies

$$
\theta_{*}\left(\partial_{x}+i y \partial_{y}\right)=\partial_{x}+i \partial_{y}
$$

and defines an isomorphism of complex manifolds

$$
\theta:\left(\mathbb{H}, L_{1}\right) \rightarrow\left(\mathbb{R}^{2}, L_{0}\right)
$$

Similarly, for $k \geq 2$,

$$
\phi: \mathbb{H} \rightarrow \mathbb{H} \quad \phi(x, y)=\left(-x, \frac{1}{(k-1) y^{k-1}}\right)
$$

satisfies

$$
\phi_{*}\left(\partial_{x}+i y^{k} \partial_{y}\right)=\partial_{x}+i \partial_{y}
$$

and defines an isomorphism of complex manifolds

$$
\phi:\left(\mathbb{H}, L_{k}\right) \rightarrow\left(\mathbb{H}, L_{0}\right) .
$$

Know the automorphisms of $\left(\mathbb{R}^{2}, L_{0}\right)$. It's Affine (\mathbb{C})

$x \partial_{x}+y \partial_{y}$

$-y \partial_{x}+x \partial_{y}$

Pull back by $(x, y) \mapsto(x, \log y):\left(\mathbb{H}, L_{1}\right) \xlongequal{\cong}\left(\mathbb{R}^{2}, L_{0}\right)$

Know the automorphisms of $\left(\mathbb{H}, L_{0}\right)$. It's $\operatorname{PSL}(2, \mathbb{R})$.

$$
\left(x^{2}-y^{2}+1\right) \partial_{x}+2 x y \partial_{y}
$$

Pull back by $(x, y) \mapsto\left(-x, \frac{1}{(k-1) y^{k-1}}\right):\left(\mathbb{H}, L_{k}\right) \xrightarrow{\cong}\left(\mathbb{H}, L_{0}\right)$

Consider the strip $\Omega=\{(x, y):-\pi<x<0\}$

Lemma

$h(x, y)=y e^{-i x}$ defines an isomorphism $\left(\Omega \cap \mathbb{H}, L_{1}\right) \rightarrow\left(\mathbb{H}, L_{0}\right)$.
Using a similar "pullback and extend method", we find:

Theorem (B-F)

The vector field

$$
y \cos x \partial_{x}-y^{2} \sin x \partial_{y}
$$

defines a 1-parameter group in $\operatorname{Aut}_{+}\left(\Omega, L_{1}\right)$ that doesn't extend to $\mathrm{Aut}_{+}\left(\mathbb{R}^{2}, L_{1}\right)$.

It is interesting to consider b analogues of classical spaces of holomorphic functions such as:

- Segal-Bargmann space: a Hilbert space of entire functions satisfying $f(z)=\int_{\mathbb{C}}|f(z)|^{2} e^{-|z|^{2}} d z$
- (Weighted) Bergman space
- Hardy space

One can pose a variety of questions about infinite vs finite-dimensionality these functions spaces.

Example

The function $h(x, y)=y e^{-i x}$ on \mathbb{C} is an example of an entire "b-holomorphic function", i.e. $L_{1} h=0$ for $L_{1}=\partial_{x}+i y \partial_{y}$. Its restriction to $\left(\mathbb{H}, L_{1}\right) \cong\left(\mathbb{R}^{2}, L_{0}\right)$ belongs to the classical Segal-Bargmann space. Considering its powers, one concludes that "b-Segal-Bargmann space" is infinite-dimensional.

It is also interesting to consider b-analogs of classical Toeplitz operators.

Thanks for listening!

References:

- G. A. Mendoza: Complex b-manifolds, Contemp. Math. (2014).
- G. Scott: The geometry of b^{k} manifolds, J. Symplectic Geom. (2016).

