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b-calculus b-complex geometry Global automorphisms Local Automorphisms Function spaces

b-calculus (Melrose) is a framework for dealing with
singular partial differential operators that degenerate
along a hypersurface Z in their domain manifold M . It
has applications to index theory.

Can consider “b versions” of classical geometries.

b-symplectic geometry (aka “log-symplectic
geometry”) has been considered by various authors
(Guillemin, Miranda, Pires, ...).

Mendoza introduced b-complex geometry

One can also consider bk-calculus, k ≥ 2, where k
encodes the order of degeneracy along Z ⊆ M . This was
pursued by Scott.

We are interested in understanding automorphisms in b
and bk-complex geometry.
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Definition

A b-manifold is a smooth manifold M together with a closed
hypersurface Z ⊆ M .

The b-tangent bundle is the vector bundle (Lie algebroid, in
fact) bTM over M whose smooth sections correspond to the
smooth vector fields on M that are tangent to Z .

Let M = R2, Z = R× {0}. Then ∂x and y∂y are a frame
for bTM .

Can also define bk tangent bundles bkTM for k ≥ 2
whose smooth sections are smooth vector fields on M
which are “tangent to Z to kth order”.

Latter notion is not coordinate invariant. Additional
infinitesimal data needs to be specified along Z to define
bkTM (Scott).
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Recall that complex structures can be defined without
reference to holomorphic charts. The equivalence of the
definition below to the one via holomorphic charts is given by
the Newlander-Nirenberg theorem.

Definition

A complex manifold is an even-dimensional smooth manifold
M equipped with a subbundle W of the complexified tangent
bundle satisfying:

(i) CTM = W ⊕W ,

(ii) W is involutive.

complex b-manifolds (introduced by Mendoza) and
complex bk-manifolds may be defined in exact analogy,
simply by replacing the role of the tangent bundle by the
b-tangent bundle (resp. bk-tangent bundle).
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For simplicity, we work with M = R2 and Z = R× {0}
throughout.

Any complex structure on R2 is spanned by a single
complex vector field

L = X + iY

with X and Y pointwise linearly independent.

The choice of defining L is unique up to smooth rescaling.

Same story in bk case, with the vector fields X ,Y being
pointwise-independent as sections of bkTM .
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Theorem (Newlander-Nirenberg in dimension 2)

If L = X + iY , where X ,Y are pointwise-independent, smooth
vector fields on R2, then, locally near any point, there is a
diffeomorphism θ such that

θ∗(L) ∼ L0 := ∂x + i∂y

Here ∼ indicates equality after a smooth rescaling.

“no local invariants in complex geometry”

integrability unecessary in dimension 2.
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Mendoza has shown there are no “formal local invariants” in
complex b-geometry, but the natural b and bk analogs of the
Newlander-Nirenberg theorem seem to still be lacking.
Although, we do have the following:

Theorem (B-F)

Consider R2 with b-complex structure defined by L = X + iY
where X ,Y are smooth vector fields tangent to the x-axis that
are pointwise-independent as sections of bTM. Suppose there
exists a smooth function h with Lh = 0 such that dh(0, 0) ̸= 0.
Then, there exists a local coordinate change at (0, 0) such that

θ∗(L) ∼ L1 := ∂x + iy∂y .

Conclusion: there are no local invariants for complex
b-manifolds that admit nontrivial “b-holomorphic” functions.
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Definition

The standard complex bk-structure of R2 is spanned by

Lk = ∂x + iy k∂y k = 0, 1, 2, . . .

An automorphism of (R2, Lk) is a diffeomorphism θ of R2

such that θ∗(Lk) ∼ Lk .

Note L0 = ∂x + i∂y , and Aut(R2, L0) is the usual Aut(C)
(biholomorphic maps).

By applying an order-2 automorphism (x , y) 7→ (±x ,−y),
one may restrict attention to automorphisms of (R2, Lk)
that fix the open upper half space H.

Definition

Aut+(R2, Lk) = {θ ∈ Aut(R2, Lk) : θ(H) = H}.
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Theorem (B-F)

Aut+(R2, L1) ∼= R× R. It is generated by:

Horizontal translations: (x , y) 7→ (x + t, y)

Vertical scalings: (x , y) 7→ (x , ety)

Theorem (B-F)

For k ≥ 2, Aut+(R2, Lk) ∼= R+ ⋉R, the “ax + b group”.
It is generated by:

Horizontal translations: (x , y) 7→ (x + t, y)

Hyperbolic transformations: (x , y) 7→ (etx , e−
t

k−1 y)

Remark: The action of Aut+(R2, Lk) on the singular
hypersurface Z = R× {0} is faithful for k ≥ 2, but not for
k = 1.
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Basic observation: the diffeomorphism

θ : H → R2 θ(x , y) = (x , log y)

satisfies
θ∗(∂x + iy∂y ) = ∂x + i∂y

and defines an isomorphism of complex manifolds

θ : (H, L1) → (R2, L0).

Similarly, for k ≥ 2,

ϕ : H → H ϕ(x , y) = (−x ,
1

(k − 1)y k−1
)

satisfies
ϕ∗(∂x + iy k∂y ) = ∂x + i∂y

and defines an isomorphism of complex manifolds

ϕ : (H, Lk) → (H, L0).
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Know the automorphisms of (R2, L0). It’s Affine(C)

∂x

x∂x + y∂y

∂x

−y∂x + x∂y



Pull back by (x , y) 7→ (x , log y) : (H, L1)
∼=→ (R2, L0)

∂x

x∂x + y log(y)∂y

∂y

− log(y)∂x + xy∂y



Know the automorphisms of (H, L0). It’s PSL(2,R).

∂x

(x2 − y 2 + 1)∂x + 2xy∂y

x∂x + y∂y



Pull back by (x , y) 7→ (−x , 1
(k−1)yk−1 ) : (H, Lk)

∼=→ (H, L0)

∂x

(x2 − 1
y2 + 1)∂x − 2xy∂y

x∂x − 1
k−1

y∂y



b-calculus b-complex geometry Global automorphisms Local Automorphisms Function spaces

Consider the strip Ω = {(x , y) : −π < x < 0}
Lemma

h(x , y) = ye−ix defines an isomorphism (Ω∩H, L1) → (H, L0).

Using a similar “pullback and extend method”, we find:

Theorem (B-F)

The vector field
y cos x∂x − y 2 sin x∂y

defines a 1-parameter group in Aut+(Ω, L1) that doesn’t
extend to Aut+(R2, L1).

14 / 15



b-calculus b-complex geometry Global automorphisms Local Automorphisms Function spaces

It is interesting to consider b analogues of classical spaces of
holomorphic functions such as:

Segal-Bargmann space: a Hilbert space of entire
functions satisfying f (z) =

∫
C |f (z)|

2e−|z|2 dz
(Weighted) Bergman space
Hardy space

One can pose a variety of questions about infinite vs
finite-dimensionality these functions spaces.

Example

The function h(x , y) = ye−ix on C is an example of an entire
“b-holomorphic function”, i.e. L1h = 0 for L1 = ∂x + iy∂y . Its
restriction to (H, L1) ∼= (R2, L0) belongs to the classical
Segal-Bargmann space. Considering its powers, one concludes
that “b-Segal-Bargmann space” is infinite-dimensional.

It is also interesting to consider b-analogs of classical Toeplitz
operators. 15 / 15



Thanks for listening!
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