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Let us remember some celebrated integrable many-body Hamiltonians (of Calogero–
Moser–Sutherland–Ruijsenaars–Schneider type):

Htrig−Suth(q, p) ≡
1

2

∑
k

p2
k +

1

2

∑
j 6=k

x2

sin2(qj − qk)

Hspin−Suth(q, p, ξ) =
1

2

n∑
k=1

p2
k +

1

8

∑
j 6=k

|ξjk|2

sin2(qj − qk)
,

where ξ ∈ u(n)∗, with zero diagonal part. This gives the standard (spinless) Sutherland
model on a symplectic leaf, where ξjk = ix(δj,k − 1) with ‘coupling constant’ x > 0.

Htrig−RS =
n∑

k=1

(cosh pk)
∏
j 6=k

[
1 +

sinh2x

sin2(qj − qk)

]1

2

Hcompact−RS =
n∑

k=1

(cos pk)

√√√√∏
j 6=k

[
1−

sin2x

sin2(qj − qk)

]
All these models come by Hamiltonian reduction from a ‘classical double’ associated
with SU(n).
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Let G be a compact, connected (and simply connected) Lie group

whose Lie algebra G is simple. After exploring a lot of specific reduc-

tions in the past, recently I investigated the most general reductions

of three phase spaces built on G. The first is the cotangent bundle

M1 = T ∗G ' G× G, with G := Lie(G) ' G∗,

i.e., the phase space of a point particle moving on G. The second is

the ‘Heisenberg double’

M2 = G×P, P := eiG ⊂ GC,

which is a symplectic manifold built on multiplicative Poisson structures

on G and its Poisson–Lie dual. Example: G = SU(n), GC = SL(n,C),

P = {X ∈ SL(n,C) | X† = X, X has positive eigenvalues}. The third

unreduced phase space is the so-called quasi-Hamiltonian double

M3 = G×G.

Moduli space of flat G-connections on punctured torus is M3/G.
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The smooth real functions C∞(Mi) carry a Poisson bracket for i = 1,2

and a quasi-Poisson bracket for i = 3. The group acts on all three

phase spaces by ‘diagonal conjugations’, i.e., by the diffeomorphisms

Aiη : (x, y) 7→ (ηxη−1, ηyη−1), ∀x, y ∈Mi, η ∈ G.

In all three cases the G-invariant functions, C∞(Mi)
G, form closed

Poisson algebras. We identify C∞(Mi)
G with the smooth functions on

the quotient

Mred
i ≡Mi/G (in words: the set of G-orbits in Mi).

Thus the orbit space becomes a (singular) Poisson space. Our first goal

is to derive a convenient description of the reduced Poisson algebras

(C∞(Mi)
G, { , }Mi

).

That is, we wish to describe them in terms of variables as close to

coordinates on Mred
i as possible.

Remark: The main property of the so called quasi-Poisson bracket is that the Jacobi

identity is not always valid, but it holds for G-invariant functions.
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We have a pair of degenerate integrable Hamiltonian systems on Mi

(for each i = 1,2,3). To describe these, consider the rings of G-
invariant functions:

C∞(G)G, C∞(G)G, C∞(P)G.

Then let πi1 and πi2 denote the projections from Mi onto the first and
second factors of this direct product space. By using the projections,
we can pull-back the relevant two rings of invariants to Mi, and thus
obtain two Abelian Poisson algebras on Mi. In each case, the ‘pull-
back invariants’ form a ring of functional dimension r := rank(G), and
the ring of their joint constants of motion has functional dimension
dim(Mi)− r. (We have rank(su(n)) = (n− 1).)

This means that the pull-back invariants define a degenerate integrable
Hamiltonian (or quasi-Hamiltonian) system. Their generic Liouville
‘tori’ have dimension r < 1

2dim(Mi) = dim(G). We can also write the
phase space flows generated by the pull-back invariants explicitly, and
they are complete.

Our second goal is to characterize the reductions of the degenerate
integrable systems living on Mi for i = 1,2,3.
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Recall of degenerate integrability on symplectic and Poisson manifolds

Definition 1. Suppose that M is a symplectic manifold of dimension 2m with
associated Poisson bracket {−,−} and two distinguished subrings H and F of C∞(M)
satisfying the following conditions:

1. The ring H has functional dimension r and F has functional dimension s such
that r + s = dim(M) and r < m.

2. Both H and F form Poisson subalgebras of C∞(M), satisfying H ⊂ F and {F ,H} =
0 for all F ∈ F, H ∈ H.

3. The Hamiltonian vector fields of the elements of H are complete.

Then, (M, {−,−},H,F) is called a degenerate integrable system of rank r. The
rings H and F are referred to as the ring of Hamiltonians and constants of motion,
respectively. (If r = 1, then this is the same as ‘maximal superintegrability’ of a
single Hamiltonian.)

Definition 2. Consider a Poisson manifold (M, {−,−}) whose Poisson tensor has
maximal rank 2m ≤ dim(M) on a dense open subset. Then, (M, {−,−},H,F) is called
a degenerate integrable system of rank r if conditions (1), (2), (3) of Definition 1
hold, and the Hamiltonian vector fields of the elements of H span an r-dimensional
subspace of the tangent space over a dense open subset of M.
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Integrability is generically inherited under reduction
A mechanism behind reduced integrability

Consider two G-manifolds M and C and the natural projections p1 : M→M/G and
p2 : C→ C/G. Suppose that p1 and p2 are smooth submersions, and that Ψ :M→ C
is also a smooth, G-equivariant, surjective submersion. This induces a surjective
submersion

Ψred :M/G→ C/G for which p2 ◦Ψ = Ψred ◦ p1.

Let V be a vector field on M that is projectable onto a vector field, Vred, on M/G. In
this case, if Ψ is constant along the integral curves of V , then Ψred is constant
along the integral curves of Vred. Consequently, Ψ∗(C∞(C)) gives constants of
motion for V , and Ψ∗red(C∞(C/G)) gives constants of motion for Vred.

It turns out that this mechanism is applicable to all of our cases, after restriction to
a certain dense open subset.

M C

M/G C/G

Ψ

p2p1

Ψred

I extracted this method from Reshetikhin’s paper: Degenerate integrability of spin
Calogero–Moser systems and the duality with the spin Ruijsenaars systems. Lett.
Math. Phys. 63 (2003) 55-71.
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Plan of the rest of the talk

• The (well known) case of the cotangent bundle T ∗G

• Just flash: Reduced equations of motion in the other cases

• Spin RS type models from Heisenberg doubles

• Time permitting: Reduction of the quasi-Poisson double

• Conclusion

7



The example of the cotangent bundle

The canonical Poisson bracket on the cotangent bundle

M :=M1 = G× G = {(g, J) | g ∈ G, J ∈ G} has the form

{F ,H}(g, J) = 〈∇1F , d2H〉 − 〈∇1H, d2F〉+ 〈J, [d2F , d2H]〉,
where the G-valued derivatives are taken at (g, J). Here, 〈X,Y 〉 is the Cartan-Killing
inner product on G. The derivative d2F ∈ G w.r.t. the second variable J ∈ G is the
usual gradient, while the derivative ∇1F ∈ G w.r.t. first variable g ∈ G is defined by

d

dt

∣∣∣∣
t=0

F(etXgetY , J) =: 〈X,∇1F(g, J)〉+ 〈Y,∇′1F(g, J)〉, ∀X,Y ∈ G.

The equations of motion generated by H = π∗2ϕ with ϕ ∈ C∞(G)G read

ġ = (dϕ(J))g, J̇ = 0 =⇒ (g(t), J(t)) = (exp(tdϕ(J(0)))g(0), J(0)).

The constants of motions are arbitrary functions of J and g−1Jg. These constants
of motion engender the G-equivariant map Ψ :M3 (g, J) 7→ (J, g−1Jg) ∈ G × G,

C := Ψ(M) = {(J, J̃) ∈ G × G | χ(J) = χ(J̃), ∀χ ∈ C∞(G)G}.
This implies degenerate integrability on M, and entails that the previously outlined
mechanism behind reduced integrability is applicable after a suitable restriction.

Let G0 < G be a maximal Abelian subalgebra and G0 < G the corresponding Lie

subgroup, i.e., a maximal torus. In the SU(n) case we take the diagonal subalgebra

and subgroup: G0 = {diag(τ1, . . . , τn) ∈ SU(n) | |τi| = 1}. Then Greg
0 and Greg consist

of unitary matrices with n distinct eigenvalues.
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Reduced Poisson brackets and dynamics

We characterize the reduced system using a partial gauge fixing. Define

Mreg := {(g, J) ∈M | g ∈ Greg}, Mreg
0 := {(Q, J) ∈M | Q ∈ Greg

0 }.
Then Mreg/G ≡Mreg

0 /N and restriction of functions yields the isomorphism

C∞(Mreg)G ⇐⇒ C∞(Mreg
0 )N,

where N < G is the normalizer of G0 in G (N/G0 is the Weyl group). That is, N is
the ‘group of residual gauge transformations’.

By transferring the PB from C∞(Mreg)G to C∞(Mreg
0 )N, we get

{F,H}red(Q, J) = 〈∇1F, d2H〉 − 〈∇1H, d2F 〉+ 〈J, [d2F, d2H]R(Q)〉,
with [X,Y ]R ≡ [RX,Y ] + [X,RY ]. The ‘reduced evolution equations’ can be written
on Mreg

0 as

Q̇ = (dϕ(J))0Q, J̇ = [R(Q)dϕ(J), J].

The subscript zero refers to the orthogonal decomposition G = G0 +G⊥, and R(Q) ∈
End(G) is the basic trigonometric solution of the modified classical dynamical Yang–
Baxter equation. R(Q) vanishes on G0 and, writing Q = exp(iq) with q ∈ iGreg

0 , is given
on G⊥ by R(Q) = 1

2
coth( i

2
adq). For SU(n), (R(Q)X)jk = 1

2
(1−δjk)Xjk coth( i

2
(qj−qk)).

These evolution equations are unique up to residual gauge transformations.
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The (well known) spin Sutherland interpretation

Parametrize J ∈ G according to

J = −ip+
∑
α>0

(
ξα

e−iα(q) − 1
Eα −

ξ∗α
eiα(q) − 1

E−α

)
, p ∈ iG0,

and take ϕ(J) = −1
2〈J, J〉. Then we get

Hspin−Suth(q, p, ξ) = −
1

2
〈J, J〉 =

1

2
〈p, p〉+

1

4

∑
α>0

|ξα|2

sin2(α(q)/2)
,

which is a standard spin Sutherland Hamiltonian. Here, we use the Killing

form and the root space decomposition of the complexified Lie algebra GC, with the

set of positive roots {α} and corresponding root vectors Eα. The ‘collective spin

variable’ ξ =
∑

α>0(ξαEα − ξ∗αE−α) ∈ G⊥ matters up to conjugations by the maximal

torus G0, i.e., ξ belongs to the reduction of G∗ ' G with respect to the Hamiltonian

action of G0 on G∗, at zero moment map value. There is also a residual Weyl group

symmetry.

In the SU(n) case, Hspin−Suth(q, p, ξ) = 1
2

∑n
k=1 p

2
k + 1

8

∑
j 6=k

|ξjk|2
sin2((qj−qk)/2)

, and one gets

the standard (spinless) Sutherland model on a symplectic leaf, where ξjk = ix(δj,k−1)

with ‘coupling constant’ x > 0. It describes an integrable system of n ‘point particles’

moving on the unit circle.
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The other degenerate integrable system on M = T ∗G is generated by
the invariants

H = π∗1h, (H(g, J) = h(g)) for all h ∈ C∞(G)G.

They span an Abelian Poisson algebra of functional dimension r =
rank(G). The unreduced evolution equations and their flows read

ġ = 0, J̇ = −∇h(g), (g(t), J(t)) = (g(0), J(0)− t∇h(g(0)).

The constants of motion are arbitrary functions of the pair (g,Φ), with
the moment map Φ(g, J) = J− J̃. To characterize the reduced system,
we now consider an other dense open subset and alternative gauge slice

M̃reg := {(g, J) ∈M | J ∈ Greg}, M̃reg
0 := {(g, λ) ∈M | λ ∈ Greg

0 }.

We find the reduced Poisson bracket

{F,H}̃red(g, λ) =〈∇1F, d2H〉 − 〈∇1H, d2F 〉
+ 〈∇′1F, r(λ)∇′1H〉 − 〈∇1F, r(λ)∇1H〉

(containing a rational dynamical r-matrix) and the reduced evolution equations

λ̇ = −(∇h(g))0, ġ = [g, r(λ)∇h(g)].
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Concretely, r(λ) ∈ End(G) is the standard rational dynamical r-matrix:

r(λ)X = (adλ)−1(X⊥), ∀X = (X0 +X⊥) ∈ (G0 + G⊥).

For G = su(n), λ = diag(λ1, . . . , λn), and (r(λ)X)jk) = Xjk/(λj − λk).

For G = SU(n), on a special symplectic leaf, the reduced system gives

the so called Ruijsenaars dual of the trigonometric Sutherland model,

with main Hamiltonian

H̃rat−RS(λ, ϕ) =
n∑

k=1

(cosϕk)
∏
j 6=k

[
1−

x2

(λk − λj)2

]1
2

.

The two kinds of models exhibit ‘position–action’ duality: C∞(G)G

and C∞(G)G reduce to functions of action variables and functions of

position variables in the two kinds of models, respectively, but their

role is interchanged.

12



The form of the reduced equations of motion in the other cases

First, take H = π∗2φ ∈ C
∞(M2), φ ∈ C∞(P)G. Then the evolution of

the reduced variables (Q,L) ∈ Greg
0 ×P is governed by

Q̇ = (Dφ(L))0Q, L̇ = [R(Q)Dφ(L), L],

with derivative Dφ(L) ∈ G.

Second, for H = π∗1h ∈ C
∞(M2), h ∈ C∞(G)G, the reduced variables

(g, P ) ∈ G× exp(iGreg
0 ) satisfy

Ṗ = −2i(∇h(g))0P, ġ = 2i[g,R(P )∇h(g)].

Finally, for H = π∗2h ∈ C
∞(M3) with h ∈ C∞(G)G, the reduced variables

(Q, g) ∈ Greg
0 ×G obey

Q̇ = −(∇h(g))0Q, ġ = [g,R(Q)∇h(g)].

We also have the reduced Poisson brackets in all cases, and can
prove degenerate integrability after restriction to a suitable dense
open subset of the reduced phase space.
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In the SU(n) case, restriction to a special symplectic leaf in M2/G reproduces the
trigonometric Ruijsenaars–Schneider model and its action-angle dual. The main
Hamiltonians of these specially restricted reduced systems are

Htrigo−RS =
n∑

k=1

(cosh pk)
∏
j 6=k

[
1 +

sinh2x

sin2(qk − qj)

]1

2

,

which represent a deformation of the Sutherland Hamiltonian, and its dual pair

Ĥtrigo−RS =
n∑

k=1

(cos q̂k)
∏
j 6=k

[
1−

sinh2x

sinh2(p̂k − p̂j)

]1

2

.

Still for G = SU(n), a special symplectic leaf in M3/G carries the

compactified trigonometric Ruijsenaars–Schneider model, whose main

Hamiltonian reads (on a dense subset)

Hcompact−RS =
n∑

k=1

(cos pk)

√√√√√∏
j 6=k

[
1−

sin2x

sin2(qk − qj)

]
.
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Spin RS type models from the Heisenberg double M2 = G×P =:M

Let us realize G as a compact real form of a complex simple Lie algebra GC. Using
positive roots associated with the Cartan subalgebra GC0 , consider the triangular de-
compositions GC = GC< + GC0 + GC>. We also consider a corresponding connected and
simply connected Lie group GC. The realification GCR of GC decomposes as the vector
space direct sum

GCR = G + B with B := iG0 + GC>.
G and B are isotropic subalgebras with respect to the invariant, symmetric, non-
degenerate, real bilinear form 〈−,−〉I on GCR defined by the imaginary part of the
complex Killing form of GC. If G = su(n), then X ∈ B is upper-triangular with real
diagonal entries. For any Z = Z1 + iZ2 in GCR, with Z1, Z2 ∈ G, we let Z† := −Z1 + iZ2.

For a real f ∈ C∞(G) we define its B-valued left- and right-derivatives by

〈Df(g), X〉I + 〈D′f(g), Y 〉I :=
d

dt

∣∣∣∣
t=0

f(etXgetY ), ∀X,Y ∈ G.

For a real function φ ∈ C∞(P) we define its GCR-valued derivative Dφ by

〈X,Dφ(L)〉I :=
d

dt

∣∣∣∣
t=0

φ(etXLetX
†
) and 〈Y,Dφ(L)〉I :=

d

dt

∣∣∣∣
t=0

φ(etYLe−tY )

∀X ∈ B and Y ∈ G. The first relation determines (Dφ(L))G and the second one
(Dφ(L))B. Incidentally, all information about Dφ is contained in the G-component.
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The phase space M = G×P carries the following (symplectic) Poisson structure:

{F ,H}(g, L) = 〈D2F , (D2H)G〉I −
〈
gD′1Fg−1,D1H

〉
I + 〈D1F ,D2H〉I − 〈D1H,D2F〉I ,

where the derivatives of F ,H ∈ C∞(M) are evaluated at (g, L) ∈ M. The Hamiltonian
H = π∗2φ, with φ ∈ C∞(P)G, generates the evolution equation

ġ = (Dφ(L))g, L̇ = 0, solved by (g(t), L(t)) = (exp (tDφ(L(0))) g(0), L(0)) .

Therefore π∗2C
∞(P)G forms an Abelian Poisson algebra of rank r, and the map

Ψ : M 3 (g, L) 7→ (L, g−1Lg) ∈ P×P

is constant along its flows. The image of Ψ is the subset C of P×P defined by

C := {(L, L̃) ∈ P×P | χ(L) = χ(L̃), ∀χ ∈ C∞(P)G}.
H := π∗2

(
C∞(P)G

)
and F := Ψ∗ (C∞(P×P)) yield a degenerate integrable system.

Considering Mreg := {(g, L) ∈ M | Q ∈ Greg} and Mreg
0 := {(Q,L) ∈ M | Q ∈ Greg

0 }, we
have the isomorphism C∞(Mreg)G ⇐⇒ C∞(Mreg

0 )N. This leads to the reduced Poisson
bracket on C∞(Mreg

0 )N:

{F,H}red(Q,L) = 〈D1F,D2H〉I−〈D1H,D2F 〉I+〈R(Q)(D2H)G,D2F 〉I−〈R(Q)(D2F )G,D2F 〉I
The derivatives D1F ∈ B0 and D2F ∈ GCR are taken at (Q,L), and R(Q) ∈ End(G) is

the standard dynamical r-matrix.

One recovers the reduced evolution equations by using H = π∗2φ, with φ ∈ C∞(P)G.

For the system on M based on π∗1
(
C∞(G)G

)
and its reduction, as well as for the

reductions of the quasi-Hamiltonian double, see my paper arXiv:2208.03728.
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Canonically conjugate pairs and ‘spin’ variables. Let B0 and B+ be the subgroups
of B associated with the subalgebras in B = B0 + B>. Any b ∈ B is uniquely decom-
posed as b = epb+ with p ∈ B0, b+ ∈ B+ and any L ∈ P can be written as L = bb†

(where X† = −θ(X) for X ∈ GCR with the Cartan involution θ). Then, we introduce
new variables by means of the map

ζ : Mreg
0 → Greg

0 × B0 ×B+

ζ : (Q,L = epb+b
†
+e

p) 7→ (Q, p, λ) with λ := b−1
+ Q−1b+Q.

The map ζ is a diffeomorphism.

In terms of the new variables introduced via the map ζ, the reduced Poisson bracket
acquires the following ‘decoupled form’:

{F,H}red(Q, p, λ) = 〈DQF, dpH〉I − 〈DQH, dpF 〉I + 〈λD′λFλ−1, DλH〉I,
where the derivatives of F,H ∈ C∞(Greg

0 × B0 ×B+)N are taken at (Q, p, λ).

Using the identification (B+)∗ ' G⊥, the derivatives DλF,D
′
λF ∈ G⊥ are defined by

〈X+, DλF (Q, p, λ)〉I + 〈X ′+, D′λF (Q, p, λ)〉I =
d

dt

∣∣∣∣
t=0

F (Q, p, etX+λetX
′
+), ∀X+, X

′
+ ∈ B+.

The last term represents the reduction of the Poisson–Lie group B = G∗ with respect
to the maximal torus G0, at the zero value of the moment map for the G0-action on
(B, {−,−}B). This is very similar to the variables underlying the spin Sutherland
models coming from T ∗G.

17



Interpretation as spin RS model: Consider the new variable λ = b−1
+ Q−1b+Q using

λ = eσ, b+ = eβ, σ =
∑
α>0

σαEα, β =
∑
α>0

βαEα, Q = eiq.

We find βα in terms of σ and eiq: βα = σα
e−iα(q)−1

+
∑

k≥2

∑
ϕ1,...,ϕk

fϕ1,...,ϕk
(eiq)σϕ1 . . . σϕk

,

where α = ϕ1 + · · ·+ ϕk and fϕ1,...,ϕk
depends rationally on eiq.

Take any finite dimensional irreducible representation ρ : GC → SL(V ). Introduce an
inner product on V so that the dagger, K† = Θ(K−1), becomes the usual adjoint.
Then, the (normalized) character φρ(L) = trρ(L) := cρtrρ(L) gives an element of
C∞(P)G. (Here, cρ is a constant, so that trρ(XY ) := cρtr(ρ(X)ρ(Y )) = 〈X,Y 〉, ∀X,Y ∈ GC.)

Using the ‘decoupled variables’ (Q, p, σ), Hρ := trρ(epb+b
†
+e

p) can be expanded as

Hρ(eiq, p, σ) = trρ

(
e2p

(
1ρ +

1

4

∑
α>0

|σα|2EαE−α
sin2(α(q)/2)

+ o2(σ, σ∗)

))
.

By expanding e2p,

Hρ(eiq, p, σ) = cρdimρ + 2trρ(p
2) +

1

2

∑
α>0

1

|α|2
|σα|2

sin2(α(q)/2)
+ o2(σ, σ∗, p).

The leading term matches the spin Sutherland Hamiltonian Hspin−Suth. The reduced
Poisson brackets and the Lax matrix are also deformations of those appearing in the
spin Sutherland models. Indeed, in any representation, we have

L(eiq, p, σ) = 1 + 2p+
∑
α>0

(
σα

e−iα(q) − 1
Eα +

σ∗α
eiα(q) − 1

E−α

)
+ o(σ, σ∗, p),

which matches the standard, iG-valued, spin Sutherland Lax matrix.

18



Explicit formulas for GC = SL(n,C): Now parametrize b+ ∈ B by its

matrix elements. We have b = epb+, and can find b+ from the relation

Q−1b+Q = b+λ,

where Q = diag(Q1, . . . , Qn) ∈ Greg
0 , λ ∈ B+ is the constrained ‘spin’

variable and b+ is an upper triangular matrix with unit diagonal.

Introducing Ia,a+j := 1
Qa+jQ

−1
a −1

, we have (b+)a,a+1 = Ia,a+1λa,a+1,

and, for k = 2, . . . , n− a, the matrix element (b+)a,a+k equals

Ia,a+kλa,a+k +
∑

m=2,...,k
(i1,...,im)∈Nm
i1+···+im=k

m∏
α=1

Ia,a+i1+···+iαλa+i1+···+iα−1,a+i1+···+iα.

Then H = tr(bb†) gives

H(eiq, p, λ) =
n∑

a=1

e2pa +
1

4

n−1∑
a=1

e2pa
n−a∑
k=1

|λa,a+k|2

sin2((qa+k − qa)/2)
+ o2(λ, λ†).

Restricting λ to a minimal dressing orbit of SU(n) results in the stan-

dard (spinless) real, trigonometric Ruijsenaars–Schneider model.
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On the reduction of the quasi-Hamiltonian double M3 = G×G =:D

The starting point is the quasi-Poisson bracket

2{F ,H} = 〈∇′1H,∇2F〉 − 〈∇2H,∇′1F〉+ 〈∇1H,∇′2F〉 − 〈∇′2H,∇1F〉
+ 〈∇2H,∇1F〉 − 〈∇1H,∇2F〉+ 〈∇′1H,∇′2F〉 − 〈∇′2H,∇′1F〉
+ 〈∇1H,∇′1F〉 − 〈∇′1H,∇1F〉+ 〈∇′2H,∇2F〉 − 〈∇2H,∇′2F〉.

Consider arbitrary functions F ∈ C∞(D) and h ∈ C∞(G)G. Then we get

{F , π∗2h}(g1, g2) = −〈∇′1F(g1, g2),∇h(g2)〉.
Thus π∗2h induces the evolution equation ġ1 = −g1∇h(g2), ġ2 = 0, having the solution

(g1(t), g2(t)) = (g1(0) exp(−t∇h(g2(0))), g2(0)).

Therefore the ring π∗2C
∞(G)G forms an Abelian Poisson algebra, and g2 as well as

g1g2g
−1
1 are constants along all of the corresponding integral curves. Degenerate inte-

grability and reduced degenerate integrability can be shown similarly to the cotangent
bundle case, now using the equivariant map Ψ : D 3 (g1, g2) 7→ (g1g2g

−1
1 , g2) ∈ G×G,

C := Ψ(D) = {(g̃, g) ∈ G×G | χ(g) = χ(g̃), ∀χ ∈ C∞(G)G}.
For F ,H ∈ C∞(D)G, the quasi-Poisson bracket yields the Poisson algebra

2{F ,H} = 〈∇1H,∇2F +∇′2F〉 − 〈∇1F ,∇2H+∇′2H〉+ 〈∇2H,∇′2F〉 − 〈∇′2H,∇2F〉,
by virtue of the invariance property ∇1F −∇′1F +∇2F −∇′2F = 0.
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Introduce the submanifolds

Dreg := {(g1, g2) ∈ D | g1 ∈ Greg}, Dreg
0 := {(Q, g) ∈ D | Q ∈ Greg

0 }.

Restriction of functions gives rise to the isomorphism C∞(Dreg)G ⇐⇒ C∞(Dreg
0 )N. Any

F ∈ C∞(Dreg
0 ) has the G0-valued derivative ∇1F and G-valued derivatives ∇2F , ∇′2F .

If F,H ∈ C∞(Dreg
0 )N are the restrictions of F ,H ∈ C∞(Dreg)G, then the definition

{F,H}red(Q, g) := {F ,H}(Q, g), ∀(Q, g) ∈ Dreg
0 ,

leads to the formula

{F,H}red(Q, g) = 〈∇1H,∇2F 〉 − 〈∇1F,∇2H〉+ 〈∇′2F,R(Q)∇′2H〉 − 〈∇2F,R(Q)∇2H〉.
The Hamiltonian H(Q, g) = h(g), with h ∈ C∞(G)G, generates the reduced equations
of motion.
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Conclusion and open questions

1. All our reduced systems are integrable in the degenerate sense, at least on a dense
open subset of the smooth component, M∗/G, of the full reduced phase space M/G.
My proof of reduced integrability relies on the ‘restricted diagram’ shown below,
where C∗ ⊂ Creg contains the principal orbits of G in Creg ⊂ C, and M∗∗ ⊂ M∗ ⊂ M is
its preimage. Creg is a dense open subset of C := Ψ(M) and is a smooth manifold.
All the 4 maps in the diagram are smooth submersions and (quasi)Poisson maps.

M∗∗ C∗

M∗∗/G C∗/G

Ψ

p2p1

Ψred

This is a variant (refinement) of the method used by Reshetikhin in several papers.

2. How to modify the proof to extend the claims from M∗∗/G to M∗/G?

3. What about integrability on arbitrary symplectic leaves of M/G?

4. Quantization of the novel spin RS type models by quantum Hamiltonian reduction?
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