
Kostant-Souriau-Odzijewicz quantization of a mechanical

system whose classical phase space is a complex manifold1

Sorin Dragomir2

Abstract. The originally announced talk’s purpose was to re-
port on the calculation of the transition probability amplitudes
a00(ζ, z) from a state z ∈ Ωn to a state ζ ∈ Ωn [for a mechani-
cal system whose classical phase space is the Siegel domain Ωn ={
ζ ∈ Cn : Im

(
ζn
)
>
∣∣ζ ′∣∣2}] once the classical states z, ζ ∈ Ωn are

identified with the coherent states K (z), K (ζ) ∈ CP
(
H
)
, in the

presence of the coherent state map K : Ωn → CP
(
H
)

built by A.

Odzijewicz3 essentially in terms of the weighted Bergman kernel
of Ωn corresponding to an admissible weight function γ ∈ AW (Ω)
where H = L2H(Ωn , γ). The first two days (July 2nd-3rd, 2023)
of the workshop revealed an audience spread through several areas
of physics and mathematical physics, partially unaware of the com-
plex analysis specific to the theory of reproducing kernel Hilbert
spaces and their many applications, among older or newer. Con-
sequently this speaker chose to integrate the slides of his talk with
a blackboard exposition of some basic material (Bergman kernels,
Fefferman’s asymptotic expansion formula, etc.) on which the an-
nounced maters in the talk rely and which are strongly motiva-
tional for the talk. Only a few more advanced results found an
actual blackboard space, while the more elementary notions and
constructs were added to the present text after the lecture, in an
effort to reach a more readable form of the text that would be
made public online.

1. The Bergman kernel

Let Ω ⊂ Cn be a domain, and let f ∈ L2H(Ω) be a holomorphic
L2 function f : Ω → C. Let A ⊂ Ω be a compact subset, and let
ζ ∈ A. Let ε = (ε1 , · · · , εn) be a poliradius such that the closed
polidisc P (ζ, ε) ⊂ Ω. As f is holomorphic, one may certainly expand

1Lecture delivered at the XL Workshop on Geometric Methods in Physics,
Bialowieza, July 2 - July 8, 2023. A session in memory of Anatol Odzijewicz
(November 10, 1947 - April 18, 2022)

2Università degli Studi della Basilicata, Dipartimento di Matematica, Informat-
ica ed Economia, Potenza, Italy, e-mail sorin.dragomir@unibas.it

1



2

f in convergent power series

f(z) =
∞∑
|α|=0

aα
(
z − ζ

)α
on P (ζ, ε). If〈

f, g
〉
L2 =

∫
Ω

f(z) g(z) d µ(z), ‖f‖ =
〈
f, f

〉1/2

L2 ,

are respectively the L2 inner product and L2 norm on the Lebesgue
space L2(Ω) we conduct the estimates

‖f‖2 =

∫
Ω

∣∣f(z)
∣∣2 d µ(z) ≥

∫
P (ζ, ε)

∣∣f(z)
∣∣2 d µ(z) =

=

∫
P (ζ, ε)

∑
α, β

aα aβ
(
z − ζ

)α (
z − ζ

)β
d µ(z) =

[we may integrate term-by-term, as the convergence of the relevant
series is uniform on P (ζ, ε)]

=
∑
α, β

aα aβ

∫
P (ζ, ε)

(
z − ζ

)α (
z − ζ

)β
d µ(z) =

[by taking into account that the monomials(
z − ζ

)α
,
(
z − ζ

)β
, α 6= β ,

are orthogonal]

=
∑
α

∣∣aα∣∣2 ∫
P (ζ, ε)

∣∣z − ζ∣∣2α d µ(z) ≥
∣∣a(0, ··· , 0)

∣∣2 µ(P (ζ, ε)
)

or ∣∣f(ζ)
∣∣ ≤ µ

(
P (ζ, ε)

)1/2 ‖f‖
and an elementary compactness argument shows that the constant may
be chosen independent of ζ i.e. there is CA > 0 depending only on the
compact set A such that

(1)
∣∣f(ζ)

∣∣ ≤ CA ‖f‖

for every ζ ∈ A and every f ∈ L2H(Ω). The simple estimate (1) has
dramatic consequences, starting with the tautology that the evaluation
functional

δζ : L2H(Ω)→ C, δζ(f) = f(ζ),

is continuous, and ending with the deeper result that L2H(Ω) is a closed
subspace of L2(Ω), and hence a Hilbert space itself. Therefore, by the
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classical Riesz theorem, the continuous functional δζ ∈
[
L2H(Ω)

]∗
may

be represented i.e. there is a unique K( · , ζ) ∈ L2H(Ω) such that

f(ζ) =
〈
f, K( · , ζ)

〉
L2 , f ∈ L2H(Ω),

thus organizing L2H(Ω) as a reproducing kernel Hilbert space1 (RKHS)
in the sense of N. Aronszajn2. The function K : Ω × Ω → C is the
Bergman kernel3 of Ω. As it turns out K(z, ζ) is holomorphic in the
n variables z and anti-holomorphic in the last n variables ζ i.e. K ∈
HA(Ω). By the way HA(Ω) is a complex Fréchet space whose topology
as a locally convex space is determined by the family of semi-norms{

‖ · ‖A : A ⊂ Ω, A compact
}
,

‖F‖A = sup
(z,ζ)∈A×A

∣∣F (z, ζ)
∣∣, F ∈ HA(Ω).

[We shall have the occasion to use the space HA(Ω) later on in this
talk]. The notion of a reproducing kernel is however much older and
was perhaps first introduced by the famous Polish mathematician S.
Zaremba in connection with his work on boundary value problems for
harmonic and biharmonic functions4.

Weighted Bergman kernels are build in a quite similar manner, ex-
cept that integration is performed with respect to the weighted Lebesgue
measure γ(z) d µ(z). A weight is just a positive measurable function
γ : Ω → R, and the set of all weights will be denoted by W (Ω).
The subset AW (Ω) ⊂ W (Ω) of all admissible weights consists of all
γ ∈ W (Ω) such that

i) δζ : L2H(Ω, γ)→ C is continuous,

1N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc.,
68(1950), 337-404.

2Nachman Aronszajn (26 July 1907 – 5 February 1980) was a Polish American
mathematician, and an Ashkenazi Jew. A. got a degree in mathematics in 1930,
from the University of Warsaw, under the supervision of Stefan Mazurkiewicz, and
a Ph.D. in mathematics in 1935, from Paris University, with Maurice Fréchet as an
advisor. The mentioned work (cf. the previous footnote) appeared while A. was
on the Oklahoma A & M faculty. The civil views of A. were not amended by his
religious background, for A. moved to the University of Kansas in 1951 with his
colleague Ainsley Diamond after Diamond, a Quaker, was fired for refusing to sign
a newly instituted loyalty oath.

3Cf. S. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am
Rande, J. Reine Angew. Math., 169(1933), 1-42.

4S. Zaremba, L’equation biharmonique et une class remarquable de fonctions
fondamentales harmoniques, Bulletin International de l’Accademie des Sciences de
Cracovie, 39(1907), 147-196.
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ii) L2H(Ω, γ) is a closed subspace of L2(Ω, γ).

Therefore, if γ ∈ AW (Ω) then L2H(Ω, γ) is a RKHS, whose unique
reproducing kernel (the weighted Bergman kernel of Ω, of weight γ) is
denoted by Kγ(z, ζ).

The pioneering studies on weighted Bergman kernels belong to an-
other Polish mathematician i.e. to Z. Pasternak-Winiarski5. The re-
sults we wish to communicate rely strongly on those by Z. Pasternak-
Winiarski, and mention6 of those will certainly be made again later in
this talk.

2. Fefferman’s asymptotic expansion formula

Bergman kernels, whether weighted or not, are rather difficult to
compute, and indeed they were explicitly computed only for a handful
of domains Ω ⊂ Cn e.g. for the unit ball Ω = Bn

K(z, ζ) =
n!

πn
1(

1− z · ζ
)n+1 .

Or, to give an example we shall need shortly, if

γα(z) =
(

Im(z)−
∣∣z′∣∣2)α , α > −1, z ∈ Ωn ,

then γα ∈ AW (Ωn) and the corresponding weighted Bergman kernel
with weight γα is

Kγα(z, ζ) =
2n−1+αcn,α[

i
(
ζ1 − z1

)
− 2 〈z′ , ζ ′〉

]n+1+α ,

cn,α = π−n(α + 1) · · · (α + n).

The main ingredient in the calculation of the Bergman kernel for the
ball is producing a complete orthonormal system {φν}ν≥0 for the Hilbert

5Z. Pasternak-Winiarski, On weights which admit the reproducing kernel of
Bergman type, Internat. J. Math. & Math. Sci., (1)15(1992), 1-14; On the depen-
dence of the reproducing kernel on the weight of integration, Journal of Functional
Analysis, 94(1990), 110-134.

6The work by Z. Pasternak-Winiarski in Journal of Functional Analysis (cf. the
previous footnote) is foundational for the theory of weighted Bergman kernels.
Though some of the scientific creation of Z. Pasternak-Winiarski is not published
in equally illustrious (cf. the previous footnote) mathematical journals, it is the
firm belief of this speaker that insufficient credit is given to Z. Pasternak-Winiarski
within the mathematical literature devoted to complex analysis.
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space L2H(Bn) and explicitly summing7 the series
∞∑
ν=0

φν(z)φν(ζ) ,

which is known to converge (uniformly on any compact subset of Ω×Ω)
to K(z, ζ). The calculation of the weighted Bergman kernel Kγα(z, ζ)
is due to E. Barletta and S. Dragomir8 and relies on a technique in-
troduced into mathematical practice by M.M. Djrbashian and A.H.
Karapetyan9.

In general only asymptotic information close to the boundary may be
got about (weighted) Bergman kernels. Perhaps the first result in this
direction belongs to N. Kerzman10 and establishes the differentiability
up to the boundary of the Bergman kernel of a smoothly bounded
strictly pseudoconvex domain Ω ⊂ Cn i.e.

K ∈ C∞
(
Ω× Ω \∆

)
,

∆ = {(z, ζ) ∈ ∂Ω× ∂Ω : z = ζ
}
.

The proof relies on the solution to the ∂-Neumann problem, which
at the time Kerzman’s paper was written was known only for strictly
pseudoconvex domains. So we should take a small step backwards and,
faithful to our commitment in the Abstract to this talk, explain the
strict pseudoconvexity requirement (on the boundary ∂Ω) in complex
analysis of functions of several complex variables.

Let ϕ ∈ C∞(U) be a defining function for Ω, with U ⊂ Cn open, i.e.

i) Ω ⊂ U ,

ii) Ω =
{
z ∈ U : ϕ(z) < 0

}
, ∂Ω =

{
z ∈ U : ϕ(z) = 0

}
,

iii) ∇ϕ(z) 6= 0 for every z ∈ ∂Ω.

Let Lϕ be the Levi form of ∂Ω i.e.

Lϕ(Z, W ) = −i (dθ)(Z, W ), θ :=
i

2

(
∂ − ∂

)
ϕ,

7Cf. e.g. S.G. Krantz, Function theory of several complex variables, John Wiley
& Sons, New York, 1982.

8E. Barletta & S. Dragomir, On the Djrbashian kernel of a Siegel domain, Stud.
Math., 127(1998), 47-63.

9M.M. Djrbashian & A.H. Karapetyan, Integral representations for some classes
of functions holomorphic in a Siegel domain, J. Math. Anal. Appl., 179(1993),
91-109.

10N. Kerzman, The Bergman kernel function. Differentiability at the boundary,
Math. Ann., 195 (1972), 149-158.
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Z, W ∈ T1,0(∂Ω) = T ′
(
Cn
)
∩
[
T (∂Ω)⊗ C

]
,

where T ′
(
Cn
)
→ Cn is the holomorphic tangent bundle over Cn [the

span of {∂/∂zj : 1 ≤ j ≤ n}]. The domain Ω, or rather its boundary
∂Ω, is strictly pseudoconvex if Lϕ(z) is positive definite at every bound-
ary point z ∈ ∂Ω. The Levi form is due to Eugenio Elia Levi, perhaps
the best Italian mathematician ever.

Eugenio Elia Levi (1883-1917)

E.E. Levi was born on the 18th of October 1893 in Turin and died in

war, shot in the head, at a location near Cormons (Gorizia) on the 28th of

October 1917. His death was surely the greatest loss suffered11 by the Italian

mathematics - and not only - due to the 1914-1918 war. L. completed his

university studies at Scuola Normale Superiore of Pisa in 1904 and served

there as an assistant of Ulisse Dini. In 1909 L. became a professor of infini-

tesimal analysis at the University of Genova where he remained until he was

called for the military service and the successive all too early ending. As F.

Tricomi wrote, in spite of his premature death (when only 34) L. may be

considered (on the basis of the about thirty works he wrote) one of the major

Italian mathematicians of the twentieth century. Remarkable are L.’s works

on second order elliptic partial differential equations (1907-1908) and also

his works on the heat equation and on arguments of variational calculus.

L. also has contributions in differential geometry and group theory. L. was

a correspondent member of Accademia Nazionale dei Lincei (nominated in

1911).

A deep result on the asymptotic behavior of the Bergman kernel
K(z, ζ) of a smoothly bounded strictly pseudoconvex domain Ω ⊂ Cn

11The biographical notes on L. are based on material by G. Loria and
G. Fubini [Boll. Bibl. Storia Mat., (2)1(1918), 38-45] and by C.S. Roero,
http://www.torinoscienza.it/accademia/personaggi.
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is Fefferman’s asymptotic development i.e.

(2) K(z, z) = CΩ

∣∣∇ϕ(z)
∣∣2 · detLϕ(z) ·

∣∣ϕ(z)
∣∣−(n+1)

+ E(z, z),

(3)
∣∣E(z, z)

∣∣ ≤ C ′Ω
∣∣ϕ(z)

∣∣−(n+1)+ 1
2
∣∣ log

∣∣ϕ(z)
∣∣∣∣,

that we only write on the diagonal of Ω×Ω to avoid too much notation.

An inhomogeneous audience such as the present one, may wish to
know what does the asymptotic formula (2) do for you?

The first use of (2), combined with an analysis of the behavior near
the boundary ∂Ω of the geodesics of the Bergman metric of Ω, was
within the proof of the celebrated Fefferman theorem12 that biholo-
morphisms of smoothly bounded strictly pseudoconvex domains extend
smoothly at the boundary (to give a CR isomorphism there).

Charles Louis Fefferman (B. 1949)

C. Fefferman was born in Washington on the 18th of April 1949. F. was

a child prodigy who mastered calculus before the age of twelve and entered

the University of Maryland in 1966 successively graduating with the highest

distinction. F. was awarded his Ph.D. in 1969 for his thesis Inequalities for

strongly regular convolution operators under the supervision of Elias Stein,

at the Princeton University. F. contributed several innovations to analysis

in several complex variables by finding the appropriate generalizations of

classical one complex variable results. In 1976 F. was awarded the Alan T.

Waterman award. F.’s work on partial differential equations, Fourier anal-

ysis, in particular convergence, multipliers, divergence, singular integrals

and Hardy spaces brought him the Fields Medal in 1978. In 1984 F. was

12C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudocon-
vex domains, Invent. Math., 26(1974), 1-65; Monge-Ampére equations, the Bergman
kernel, and geometry of pseudoconvex domains, Ann. Math., 103(1976), 395-416.
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appointed Herbert Jones Professor at Princeton. F. made striking contri-

butions to the study of the Bergman kernel and in 1992 he was awarded the

Bergman Prize.

As another elementary yet far reaching consequence of (2)-(3) to-
gether with l’Hôpital rule,

ρ(z) = −K(z, z)−1/(n+1)

is a defining function for Ω, hence the differential 1-form θ on ∂Ω and
the (0, 2)-tensor field gB on Ω defined by

(4) θ =
i

2

(
∂ − ∂

)
ρ, gjk =

∂2 logK(z, z)

∂zj ∂zk
,

are respectively a contact form on ∂Ω and a Kählerian metric on Ω
(the Bergman metric13 of Ω). Then (4) yields an explicitly computable
relationship between the contact structure of the boundary of Ω and
the Kählerian geometry of its interior. Said relationship was exploited
by R. Graham and J.M. Lee14 in their study of the C∞ regularity up
to the boundary of the solution to the Dirichlet problem

∆Bu = 0 in Ω, u = f on ∂Ω,

with f ∈ C∞
(
∂Ω
)
. Here ∆B is the Bergman Laplacian i.e. the Laplace-

Beltrami operator of the Riemannian manifold (M, gB)

∆Bu = −
2n∑
a=1

{
Ea
(
Ea u

)
−
(
∇gB
Ea
Ea

)
u
}
.

The first step in the C∞ regularity up to the boundary problem is to
look for compatibility equations

(5) C (f) = 0 along ∂Ω ,

that the boundary datum f must satisfy15. Considering a point of the
boundary z0 ∈ ∂Ω, and a sequence of interior points {zν}ν≥1 ⊂ Ω such
that zν → z0 for ν →∞, and merely looking at

lim
ν→∞

(
∆B u

)
(zν)

13Remarkably, the Bergman metric springs solely from the complex structure of
Ω [and biholomorphisms of Ω are isometries of gB ].

14C.R. Graham & J.M. Lee, Smooth solutions of degenerate Laplacians on strictly
pseudoconvex domains, Duke Math. J., (3)57(1988), 697-720.

15The next, and more ambitious, step is of course to see whether the compati-
bility conditions C (f) = 0 that one discovered suffice for proving that the Dirichlet
problem for the Bergman Laplacian possesses a solution u ∈ C∞

(
Ω
)
.
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isn’t going to work because ∆B is built in terms of the Levi-Civita
connection ∇B, whose Christoffel coefficients do not stay bounded at
the boundary. A more subtle asymptotic analysis as ∂Ω is approached
is needed, and that can be achieved as follows.

Famous work by G.R. Graham and J.M. Lee16 builds a linear con-
nection ∇ (the Graham-Lee connection) on a onesided neighborhood
of the boundary U ⊂ Ω, that is foliated by level sets

Mε = {z ∈ Ω : ϕ(z) = −ε}, 0 ≤ ε ≤ ε0 ,

[with ε0 sufficiently small, so that each Mε inherits strict pseudocon-
vexity from M0 = ∂Ω] whose pointwise restriction to a leaf Mε is the
Tanaka-Webster connection of that leaf, familiar within S.M. Webster’s
pseudohermitian geometry on each Mε. The magnificent role played in
this story by Fefferman’s asymptotic expansion of the Bergman ker-
nel is that it allows expressing the Levi-Civita connection ∇B of the
Bergman metric gB in terms of the Graham-Lee connection ∇ and the
transverse curvature17

r = 2 ∂∂ϕ (ξ, ξ)

[of the foliation F of U by level sets of ϕ(z) = −K(z, z)−1/(n+1)]. Then
the restriction to Mε of the equation ∆Bu = 0 yields

(6) Cε(u ◦ jε) = 0 along Mε ,

jε : Mε ↪→ Ω, 0 < ε ≤ ε0 ,

and then an elementary asymptotic analysis as ε → 0 will eventually
lead to the compatibility equations (5) simply because the Graham-
Lee connection ∇ stays bounded at the boundary ∂Ω (the pointwise
restriction to Mε of ∇ is a pseudohermitian invariant of Mε, and each
Mε has the same pseudohermitian geometry as M0 = ∂Ω) and (by a
result of J.M. Lee and B. Melrose18) the transverse curvature of F is
smooth up to the boundary

r ∈ C∞
(
Ω ∩ U

)
.

It is interesting to remark that (6) is a polynomial in the ”indeter-
minate” 1/ϕ and that as ε → 0 only the coefficients of the terms of

16Cf. op. cit.
17Here ξ is the complex vector field on U of type (1, 0) determined by

i) ∂ϕ(ξ) = 1,

ii) ξ is orthogonal to T1,0(F) with respect to ∂∂ϕ
[
i.e. ∂∂ϕ(ξ, Z) = 0 for any

Z ∈ T1,0(F).
]

18J. Lee & R. Melrose, Boundary behavior of the complex Monge-Ampère equa-
tion, Acta Math. 148(1982),159-192.



10

order O
(
ϕ−N

)
will survive to give (5), where N is the degree of that

polynomial.

John M. Lee (B. 1950)

J.M. Lee was born on the 2nd of September 1950. L. studied at Princeton

University (1968-1972) and Tufts University (1977-1978) and was awarded

his Ph.D. in 1982 at Massachusetts Institute of Technology for his thesis

Higher asymptotics of the complex Monge-Ampère equation and the geom-

etry of CR manifolds under the supervision of Richard B. Melrose. L.

was appointed Professor of Mathematics at the University of Washington

in 1996. L. has excellent contributions (together with D. Jerison) in the

early applications of subelliptic theory to CR geometry (the solution to the

Yamabe problem for the Fefferman metric i.e. the so called CR Yamabe

problem. A remarkable contribution is brought by L. (together with C.R.

Graham) to the C∞ regularity up to the boundary in the Dirichlet problem

for Bergman type Laplacians on a strictly pseudoconvex domain Ω ⊂ Cn.

Here L. devised a strong differential geometric investigation tool namely

the Graham-Lee connection i.e. a linear connection on a sufficiently small

one-sided neighborhood U of ∂Ω inducing the Tanaka-Webster connection

on each level set contained in U of the defining function of Ω. It should

also be mentioned that L.’s description of the Fefferman metric in terms of

pseudohermitian invariants is a positive solution to a problem posed by C.

Fefferman in 1976.

Other applications of Fefferman’s asymptotic expansion of the Berg-
man kernel abound, yet the above will certainly suffice to the present
audience as an explanation for the popularity enjoyed by said expansion
within the complex analysis community, and for the need felt by that
community to generalize the expansion to the case of weighted Bergman
kernels Kγ(z, ζ).
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The first generalization of the sort is the Forelli-Rudin-Ligocka-Peloso
formula19. One may show that positive integer powers of the defining
function are admissible weights i.e.∣∣ϕ|m ∈ AW (Ω), m ∈ Z+ .

Let
Km(z, ζ) = K|ϕ|m(z, ζ)

be the weighted Bergman kernel of Ω, corresponding to the weight
γ(z) = |ϕ(z)|m. Then

(7) Km(ζ, z) = CΩ

∣∣∇ϕ(z)
∣∣2 ×

× detLϕ(z) · Γ(ζ , z)−(n+1+m) + E(ζ, z),

E ∈ C∞
(
Ω× Ω \∆

)
, ∆ = {(z, z) : z ∈ ∂Ω},

(8)
∣∣E(ζ, z)

∣∣ ≤ C ′Ω
∣∣Γ(ζ, z)

∣∣−(n+1+m)+1/2∣∣ log |Γ(ζ, z)|
∣∣.

F (ζ, z) = −
n∑
j=1

∂ϕ

∂zj
(z)
(
ζj − zj

)
+

−
n∑

j,k=1

∂2ϕ

∂zj ∂zk
(z)
(
ζj − zj

)(
ζk − zk

)
,

Γ(ζ, z) =
[
F (ζ , z)− ϕ(z)

]
χ
(
|ζ − z|

)
+

+
[
1− χ

(
|ζ − z|

)]
|ζ − z|2 ,

where χ is a C∞ cut-off function of the real variable t, such that χ(t) =
1 for |t| < ε0/2 and χ(t) = 0 for |t| ≥ 3ε0/4.

Formula (7) [together with the estimate (8)] was proved by M.M.
Peloso20. M.M. Peloso claims21 that Theorem (7)-(8) is implicit in the
work by E. Ligocka22 while E. Ligocka does employ an older idea by F.
Forelli & W. Rudin23. Aside from the correct credit, which certainly
goes to M.M. Peloso, the history of Theorem (7)-(8) demonstrates the
attention shown by the mathematical community (devoted to com-
plex analysis) to an argument born with the celebrated work by C.

19M.M. Peloso, Sobolev regularity of the weighted Bergman projections and es-
timates for minimal solutions to the ∂-equation, Complex Variables Theory Appl.,
27(1995), 339-363.

20Cf. op. cit.
21Cf. op. cit.
22E. Ligocka, On the Forelli-Rudin construction and weighted Bergman projec-

tions, Stud. Math., 94(1989), 257-272.
23F. Forelli & W. Rudin, Projections on spaces of holomorphic functions in balls,

Indiana Univ. Math. J., 24(1974), 593-602.
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Fefferman24 and emphasizes the recognition of the relevance of that
argument.

The natural problem arrises whether the Forelli-Rudin-Ligocka-Peloso
expansion can be recovered for weighted Bergman kernels Kγ(z, ζ) cor-
responding to ampler classes of admissible weights (other than positive
integer powers of the defining function)

γ ∈ AW (Ω) \
{∣∣ϕ∣∣m : m ∈ Z+

}
.

A result in this direction is due to E. Barletta and S. Dragomir25,
yet certainly the credit should go entirely to Z. Pasternak-Winiarski26

for his proof of the analyticity of the weighted Bergman kernel, as a
function of the weight

K : AW (Ω)→ HA(Ω), γ 7−→ Kγ .

Telling the story of the analyticity of the map γ → Kγ, and of its ap-
plication [towards a Fefferman-type asymptotic expansion of Kγ(z, ζ)]
as observed by E. Barletta and S. Dragomir, will get us really close to
the original purpose of this talk.

To make sense of said analyticity Z. Pasternak-Winiarski organized
W (Ω) as a Banach manifold modeled on L∞(Ω, R), the Banach space
of all real valued essentially bounded functions g : Ω → R, with the
norm

‖g‖∞ = ess supz∈Ω

∣∣g(z)
∣∣ =

= inf
{
K > 0 : |g(z)| ≤ K for a.e. z ∈ Ω

}
.

such that AW (Ω) is an open subset in W (Ω). A first observation, once
W (Ω) was assigned a topology, is that the curve

C : (−1, +∞)→ AW (Ω), C(α) =
∣∣ϕ∣∣α , α > −1,

is discontinuous and actually every point of C is isolated! Taking note
of the fact that a Fefferman-type expansion for K|ϕ|α(z, ζ) is actually
known only for weights that are points of C corresponding to non-
negative integer values of the parameter α ∈ Z+, one gets an idea of
the amount of the job still undone.

The main idea in the work by E. Barletta and S. Dragomir27 is to
expand Kγ in a neighborhood γ ∈ U

(
Ω,
∣∣ϕ∣∣m) of a point C(m) = |ϕ|m

24Cf. op. cit.
25E. Barletta & S. Dragomir, On boundary behavior of symplectomorphisms,

Kodai Math. J., 21(1998), 285-305.
26Cf. op. cit.
27Cf. op. cit.
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[at which the Fefferman-type asymptotic expansion is (by the Forelli-
Rudin-Ligocka-Peloso formula) is known], by profiting from the fact
that the map K : AW (Ω) → HA(Ω) is analytic28. Here, for every
m ∈ Z+

U
(
Ω ,
∣∣ϕ∣∣m) =

{
g
∣∣ϕ∣∣m : g ∈ U(Ω)

}
,

U(Ω) =
{
g ∈ L∞(Ω), ess infz∈Ω g(z) > 0

}
,

ess infz∈Ωg(z) = sup
{
L ∈ R : L ≤ g(z) for a.e. z ∈ Ω

}
,

and the analytic expansion of K (as got by Z. Pasternak-Winiarski29)
is

(9) K(g+h) γ = Kg γ +
∞∑
k=1

(−1)kK(k)
g, γ h

(k) ,

γ ∈ AW (Ω), g ∈ U(Ω), h ∈ Bg ,

Bg = Bi(g)/2(0) =
{
h ∈ L∞(Ω) : ‖h‖∞ <

i(g)

2

}
,

i(g) = ess infz∈Ω g(z).

Details about the construction of the k-linear maps

K(k)
g, γ : L∞(Ω)k → HA(Ω)

will be given as we shall get to our main applications.

3. Transition probability amplitudes

For every admissible weight γ ∈ AW (Ωn) let

Kγ : Ωn → CP
(
Hγ

)
, Hγ = L2H

(
Ωn , γ

)
,

28Let X and Y be respectively a normed space and a topological space. Let
U ⊂ X be an open set. A function F : U ⊂ X → Y is analytic on U if for any
x ∈ U there is a ball B ⊂ X of center ζ with x+ B ⊂ U , and there is a sequence
{am}m∈N of continuous multi-linear (m-linear) maps am : X m → Y such that

F (x+ h) = F (x) +

∞∑
m=1

am
(
h, · · · , h

)
for any h ∈ B and the series

∑
m≥1 am

(
h, · · · , h

)
converges uniformly in h ∈ B.

29Cf. op. cit.
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be the coherent state map built30 from the Hermitian line bundle(
E, Hγ

)
E = Ωn × C, Hγ(σ0 , σ0) = γ ,

and turning out31 to be

Kγ(z) =
[ Kγ

(
· , z
)

Kγ

(
z , z

)1/2

]
∈ CP

(
Hγ

)
, z ∈ Ωn .

Previous to A. Odijewicz’s approach to Kγ, coherent state map were
built in terms of holomorphic sections of the given Hermitian line bun-
dle E that are L2 with respect to the Liouville measure. A. Odzijew-
icz’s construction has the advantage to reduce the calculation of the
transition probability amplitude a00(ζ, z) from Kγ(z) to Kγ(ζ) to the
calculation of the reproducing kernel Kγ(z, ζ) i.e.

a00(ζ, z) =
Kγ

(
ζ, z

)
Kγ(z, z)1/2Kγ

(
ζ, ζ

)1/2
.

As observed by A. Odzijewicz himself this brings in other difficulties,
related to the need to recover a00(ζ, z) by averaging32 over w ∈ Ω in

a00(w, z) a00(ζ, w)

(the transition probability amplitude from z to ζ with simultaneous
transition though w). A. Odzijewicz choses to circumnavigate said dif-
ficulty by assuming that the measure on phase space [associated to the

30Cf. A. Odzijewicz, On reproducing kernels and quantization of states, Com-
mun. Math. Phys., 114(1988), 577-597. Here σ0 : Ωn → E is the global section
in E = Ωn × C given by σ0(z) = (z, 1), z ∈ Ωn. The original construction of the
coherent state map is more general and springs from an arbitrary Hermitian line
bundle, on which a holomorphic trivialization atlas has been fixed. When the base
manifold of the given holomorphic line bundle is a domain Ω ⊂ Cn, the bundle itself
is the trivial line bundle E = Ω×C, and the function γ = H(σ0 , σ0) [determining
the given Hermitian metric H on E] is an admissible weight [i.e. γ ∈ AW (Ω)] A.
Odzijewicz’s construction (cf. op. cit.) was recognized by Z. Pasternak-Winiarski
(cf. op. cit.) to lead to the map Kγ .

31Cf. Z. Pasternak-Winiarski, op. cit., and also E. Barletta & S. Dragomir & F.
Esposito, Weighted Bergman Kernels and Mathematical Physics, Axioms, 9(2020),
1-48, doi:10.3390.

32With respect to the Liouville measure

dµL = (−i)n Ω00

(
γ
)
dζ1 ∧ · · · ∧ dζn ∧ dζ1 ∧ · · · ∧ dζn ,

Ω00

(
γ
)

:= det
[
ωjk
]
, ω = curv

(
E, Hγ

)
.
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reproducing kernel of L2H(Ω, γ)] should coincide, up to a multiplica-
tive constant, with the Liouville measure. As successively observed33

A. Odzijewicz’s assumption is unnecessarily strong34, and can be re-
futed by looking at the Siegel domain Ω = Ωn (and the trivial vector
bundle over Ωn, equipped with the Hermitian metric determined by
the admissible weight γα). This is the reason the remaining part of
this talk is confined to the Siegel domain, and then a00(z, ζ) is readily
computable from our explicit knowledge of Kγα(z, ζ) i.e.

a00

(
ζ, z

)
=

[
2 ρ(z)

1
2 ρ(ζ)

1
2

i
(
z1 − ζ1

)
− 2〈ζ ′ , z′〉

]n+α+1

,

ρ(z) = Im(zn)−
∣∣z′∣∣2.

However if the mechanical system (whose classical phase space is Ωn)
interacts (at the quantum level) with an external field35 B : Ωn → R
then the coherent states change

Kα,B : Ωn → CP
(
L2H(Ωn , e

B γα)
)

and the problem of computability of the transition probability ampli-
tude from Kα,B(z) to Kα,B(ζ) goes back to the computability of the
weighted Bergman kernel

(10) KeB γα

(
z, ζ

)
corresponding to the (admissible) weight eB γα ∈ AW

(
Ωn

)
. And the

explicit calculation of the reproducing kernel (10) appears formidable!

As successful veterans of generalizing Fefferman’s asymptotic for-
mula for the weighted Bergman kernel Kγ(z, ζ) to ampler classes of
weights, by using the analyticity of the map γ ∈ AW (Ω) 7→ Kγ ∈
HA(Ω) and Z. Pasternak-Winiarski’s expansion of Kγ (on which the
proof of said analyticity relies) we attempt the calculation of KeB γα by

33Cf. E. Barletta & S. Dragomir & F. Esposito, Kostant-Souriau-Odzijewicz
quantization of a mechanical system whose classical phase space is a Siegel domain,
Internat. J. Reproducing Kernels, (1)1(2022), 1-19.

34The proportionality constant among the measure determined by the reproduc-
ing kernel of L2H(Ω, γ) and the Liouville measure needs not be independent of the
weight γ.

35That external fields may be mathematically described as deformations of the
holomorphic and Hermitian structures of the given line bundle E → Ωn is an idea
going back to R. Penrose [cf. R. Penrose & M.A.H. MacCallum, Twistor theory:
an approach to the quantization of fields and space-time, Phys. Rep., (4)6(1972),
241-316]. For simplicity, we keep the holomorphic structure fixed and only deform
the Hermitian metric Hγα 7→ eB Hγα .
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building once again on the results by Z. Pasternak-Winiarski, cf. op.
cit., i.e. for any g ∈ U(Ωn) and any h ∈ Bi(g)/2(0)

(11) K(g+h)γa = Kgγα +
∞∑
m=1

(−1)mK(m)
g, γα

(
h, · · · , h

)
,

(12) K(m)
g, γα

(
h1 , · · · , hm

)
(ζ, z) =

=

∫
Ωn

Kgγα

(
w1 , z

)
h1

(
w1

)
γα
(
w1

)
dµ(w1)·

·
∫

Ωn

Kgγα

(
w2 , w1

)
h2

(
w2

)
γα
(
w2

)
dµ(w2)·

...

·
∫

Ωn

Kgγα

(
wm−1 , wm−2

)
hm−1

(
wm−1

)
γα
(
wm−1

)
dµ(wm−1)·

·
∫

Ωn

Kgγα

(
wm , wm−1

)
hm
(
wm
)
Kgγα

(
ζ, wm

)
γα
(
wm
)
dµ(wm),

for any h1 , · · · , hm ∈ L∞(Ωn). Here

i(g) = ess infz∈Ωng(z)

and Br(0) is the ball of radius r > 0 and center 0 in L∞(Ωn). In
particular

K(1)
g, γα(h)(ζ, z) =

=

∫
Ωn

Kgγα

(
w, z)h

(
w
)
Kgγα

(
ζ, w

)
γα(w) dµ(w).

Precisely, we wish to exploit (11) for g ≡ 1 [implying i(g) = 1] and
1 + h = eB, for in that case the right hand side of (11) is expressed
in terms of the kernel Kγα(z, ζ) whose explicit expression is available.
However the calculation of the multiple integral in the right hand side
of (12) appears as an equally formidable task!

As suggested by A. Odzijewicz (cf. op. cit.) we only attempt said
calculation for weak external fields εB, 0 < ε << 1 i.e. we use (11) for
g ≡ 1 and

1 + h = eεB ,
∥∥eεB − 1

∥∥
∞ <

1

2
,

for ε sufficiently small36, and then compute the kernel and the transi-
tion probability amplitudes [from the coherent state Kα, εB(z) to the

36A small piece of mathematical analyis shows that a necessary and sufficient
condition for the existence of ε0 > 0 such that

∥∥eεB − 1
∥∥
∞ < 1

2 for any 0 < ε < ε0,

is that B ∈ L∞(Ωn).
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coherent state Kα, εB(ζ)] only to order O(ε2) i.e.

(13) a00(ζ, z) =
[ 2 ρ(z)1/2ρ(ζ)1/2

i(z1 − ζ1)− 2〈ζ ′ , z′〉

]n+1+α

+

+εG(ζ, z) + O(ε2)

where the O(ε) term is given by

(14) G(ζ, z) =
8

(cn,α)2
ρ(ζ)(n+1+α)/2 ρ(z)(n+1+α)/2 ×

×
∫

Ωn

{[
ρ(z)n+1+α

∣∣∣Kγa

(
w, z

)∣∣∣2+

+ρ(ζ)n+1+α
∣∣∣Kγα

(
w, ζ

)∣∣∣2]Kγα

(
ζ, z

)
+

−cn,α
2

Kγα

(
w, z

)
Kγα

(
ζ, w

)}
B(w) ρ(w)α dµ(w).


