Donagi-Witten construction and a graded covering of a supermanifold

Elizaveta Vishnyakova

Universidade Federal de Minas Gerais

XXXIX WORKSHOP ON GEOMETRIC METHODS IN PHYSICS, Poland, June 19 – June 25, 2022 Supported by Capes-Humboldt Foundation

向下 イヨト イヨト

Coverings in geometry

$$p:\mathbb{R} o S^1$$
, where $p(t)=e^{it}$.

ヘロア 人間 アメヨア 人間 アー Donagi-Witten construction and a graded covering of a supern

Properties of a universal covering

- For any smooth connected manifold X there exists a universal covering p : Y → X, which is unique up to isomorphism.
- Let X' be connected, simply connected. Any smooth map $f: X' \to X$, factors through Y:

・ 同 ト ・ ヨ ト ・ ヨ ト …

Cover(ing)s in algebra.

In abstract algebra, the definition of a **cover** highly depends on the context.

伺 ト イヨト イヨト

Cover(ing)s in algebra.

In abstract algebra, the definition of a **cover** highly depends on the context.

All modules are over a ring R.

Definition. (A cover of a module) If F is a family of modules, then an F-cover of a module M is a module C together with a surjective homomorphism

$$p: C \to M$$

with the following properties:

- C is in the family F;
- Any (surjective) homomorphism $f : N \rightarrow M$, where $N \in F$, factors through C;
- Any endomorphism of *C* commuting with the map *p* is an automorphism. (This implies that *C* is unique up to isomorphism.)

Example 1. (Torsion-free cover.) Over an integral domain, every module M has a torsion-free cover $C \rightarrow M$.

 $C \in F = \{ \text{torsion-free modules} \} \subset \{ \text{all modules} \}.$

Example 2. (Flat cover.) Flat cover conjecture (Enochs 1981).

For a general ring, every module M has a flat cover C.

The conjecture resolved positively simultaneously by Bican, El Bashir and Enochs (2001).

Donagi–Witten construction.

In the paper "Super Atiyah classes and obstructions to splitting of supermoduli space", 2014, **Donagi and Witten** suggested a construction of a first obstruction class for splitting of a supermanifold via differential operators.

(日本)(日本)(日本)

Donagi–Witten construction.

In the paper "Super Atiyah classes and obstructions to splitting of supermoduli space", 2014, **Donagi and Witten** suggested a construction of a first obstruction class for splitting of a supermanifold via differential operators.

In fact this is a functor from the category of supermanifolds to the category of double vector bundles.

(日) (コン・コン・コン

Donagi–Witten construction.

In the paper "Super Atiyah classes and obstructions to splitting of supermoduli space", 2014, **Donagi and Witten** suggested a construction of a first obstruction class for splitting of a supermanifold via differential operators.

In fact this is a functor from the category of supermanifolds to the category of double vector bundles.

Related functors were constructed independently in

- (1) Jotz Lean, M. N-manifolds of degree 2 and metric double vector bundles, arXiv:1504.00880.
- (2) *del Carpio-Marek. F.* Geometric structure on degree 2 manifolds. PhD-thesis, IMPA, Rio de Janeiro, 2015.

- (3) A. Bruce, J. Grabowski and M. Rotkiewicz, Polarisation of Graded Bundles. SIGMA 12 (2016), 106, 30 pages.
- (4) E. Vishnyakova. Graded manifolds of type Δ and n-fold vector bundles, Letters in Mathematical Physics 109 (2), 2019, 243-293.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- (3) A. Bruce, J. Grabowski and M. Rotkiewicz, Polarisation of Graded Bundles. SIGMA 12 (2016), 106, 30 pages.
- (4) E. Vishnyakova. Graded manifolds of type Δ and n-fold vector bundles, Letters in Mathematical Physics 109 (2), 2019, 243-293.

Denote the Donagi-Witten functor by \mathbf{F}_2 . Using ideas of papers (3)-(4) we can generalize the Donagi-Witten construction and obtain the following functors \mathbf{F}_n for any n:

{supermanifolds} $\xrightarrow{F_n}$ {graded manifolds of degree n}

- (3) A. Bruce, J. Grabowski and M. Rotkiewicz, Polarisation of Graded Bundles. SIGMA 12 (2016), 106, 30 pages.
- (4) E. Vishnyakova. Graded manifolds of type Δ and n-fold vector bundles, Letters in Mathematical Physics 109 (2), 2019, 243-293.

Denote the Donagi-Witten functor by \mathbf{F}_2 . Using ideas of papers (3)-(4) we can generalize the Donagi-Witten construction and obtain the following functors \mathbf{F}_n for any n:

{supermanifolds} $\xrightarrow{F_n}$ {graded manifolds of degree n}

Our contribution: We realized that a limit functor F_{∞} is a $\mathbb{Z}^{\geq 0}$ -graded covering of a supermanifold \mathcal{M} .

Our contribution:

We defined a $\mathbb{Z}^{\geq 0}$ -graded cover(ing) for any supermanifold, which has properties of geometrical and algebraic cover(ing):

• Let \mathcal{M}' be a graded manifold. Any morphism $f : \mathcal{M}' \to \mathcal{M}$, where \mathcal{M} is a supermanifold, factors through $F_{\infty}(\mathcal{M})$:

- It is unique up to isomorphism.
- In some sense the cover map is a "local diffeomorphism".

イロト イポト イヨト イヨト

Example of a covering, Lie superalgebra $\mathfrak{gl}_{m|n}(\mathbb{K})$.

$$\mathfrak{gl}_{m|n}(\mathbb{K}) = \left\{ \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \right\},$$

 $\mathbf{F}_{\infty}(\mathfrak{gl}_{m|n}(\mathbb{K}))$ contains all matrices in the following form

$$\left(\begin{array}{ccccccccc}
A_1 & 0 & 0 & 0 & \cdots \\
C_1 & D_1 & 0 & 0 & \cdots \\
A_2 & B_1 & A_1 & 0 & \cdots \\
C_2 & D_2 & C_1 & D_1 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \end{array}\right)$$

Here A_i and D_j are copies of A and D, respectively. The same for B_s and C_t .

イロト 不得 トイラト イラト・ラ

Such or related algebras were studied under the name "loop algebras" or "covering superalgebra" for instance in

- Nicoletta Cantarini, Z-graded Lie superalgebras of infinite depth and finite growth, Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 1 (3):545-568 (2002).
- Bruce Allison, Stephen Berman, John Faulkner, and Arturo Pianzola, Realization of graded-simple algebras as loop algebras, Forum Math. 20 (2008), no. 3, 395–432.
- Alberto Elduque, Graded-simple algebras and cocycle twisted loop algebras. Proc. Amer. Math. Soc. 147 (2019), 2821-2833.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Example. ($\mathbb{Z}^{\geq 0}$ -graded covering of $\mathbb{R}^{0|1}$.)

By definition, $\mathbb{R}^{0|1} = (pt, \bigwedge(\xi)).$

In this case $\mathbf{F}_{\infty}(\mathbb{R}^{0|1}) := (pt, \bigwedge(\eta_1, \eta_3, \ldots))$ is a $\mathbb{Z}^{\geq 0}$ -graded covering of $\mathbb{R}^{0|1}$ with the covering morphism

$$\rho = (\rho_0, \rho^*) : \mathbf{F}_{\infty}(\mathbb{R}^{0|1}) \to \mathbb{R}^{0|1},$$

where

$$p^*(F) = F(pt) + \frac{\partial F}{\partial \xi} \eta_1 + \frac{\partial F}{\partial \xi} \eta_3 + \cdots, \quad F \in \bigwedge(\xi)$$

This formula implies that

$$p^*(const) = const, \quad p^*(\xi) = \eta_1 + \eta_3 + \cdots.$$

 $\mathsf{F}_\infty(\mathbb{R}^{0|1})$ is a $\mathbb{Z}^{\geq 0}$ -graded manifold with $deg(\eta_{2k+1})=2k+1.$

Universal properties of $F_{\infty}(\mathbb{R}^{0|1})$.

If M' is a Z^{≥0}-graded manifold and f : M' → R^{0|1} is a morphism of supermanifolds (i.e. f is Z^{≥0}₂-graded), then f factors through F_∞(R^{0|1}) and the lift of f is unique:

$$\eta_1 + \eta_3 + \cdots$$

$$\exists ! F^*$$

$$f^*(\xi) = G_1 + G_3 + \cdots \longleftarrow f^*$$

$$\xi$$

- "local diffeomorphism" $\xi \mapsto \eta_i$, where $i = 1, 3, \ldots$
- $\mathbf{F}_{\infty}(\mathbb{R}^{0|1})$ is unique up to isomorphism.

マボン マラン マラン 二日

Definition (E.V.)

A $\mathbb{Z}^{\geq 0}$ -covering of a supermanifold \mathcal{M} is a $\mathbb{Z}^{\geq 0}$ -graded manifold \mathcal{P} of infinite degree with $\mathcal{P}_0 = \mathcal{M}_0$ together with a morphism

$$p: \mathcal{P} \to \mathcal{M}$$

such that we can choose atlases $\{\mathcal{U}_i\}$ and $\{\mathcal{V}_i\}$ on \mathcal{M} and \mathcal{P} , respectively, with the same base space $(\mathcal{U}_i)_0 = (\mathcal{V}_i)_0$, with even and odd coordinates (x_a, ξ_b) in \mathcal{U}_i and with graded coordinates (y_a^s, η_b^t) , where s is an even integer and t is an odd integer, in \mathcal{V}_i such that

$$pr_s \circ p^*(x_a) = y_a^s, \quad pr_t \circ p^*(\xi_b) = \eta_b^t,$$

where $pr_k : \mathcal{O}_{\mathcal{P}} \to (\mathcal{O}_{\mathcal{P}})_k$ is the natural projection.

- 本部 とうき とうとう き

Definition (E.V.)

A $\mathbb{Z}^{\geq 0}$ -covering of a supermanifold \mathcal{M} is a $\mathbb{Z}^{\geq 0}$ -graded manifold \mathcal{P} of infinite degree with $\mathcal{P}_0 = \mathcal{M}_0$ together with a morphism

$$p: \mathcal{P} \to \mathcal{M}$$

such that we can choose atlases $\{\mathcal{U}_i\}$ and $\{\mathcal{V}_i\}$ on \mathcal{M} and \mathcal{P} , respectively, with the same base space $(\mathcal{U}_i)_0 = (\mathcal{V}_i)_0$, with even and odd coordinates (x_a, ξ_b) in \mathcal{U}_i and with graded coordinates (y_a^s, η_b^t) , where s is an even integer and t is an odd integer, in \mathcal{V}_i such that

$$pr_s \circ p^*(x_a) = y_a^s, \quad pr_t \circ p^*(\xi_b) = \eta_b^t,$$

where $pr_k : \mathcal{O}_{\mathcal{P}} \to (\mathcal{O}_{\mathcal{P}})_k$ is the natural projection.

Theorem (E.V.)

For any supermanifold \mathcal{M} the graded manifold $\mathbf{F}_{\infty}(\mathcal{M})$ is a $\mathbb{Z}^{\geq 0}$ -covering of \mathcal{M} .