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The Great Uniformization Theorem

Felix Klein (1849-1925) and Henri Poincaré (1854-1912)

Every conformal class of surface metrics has complete constant curvature
representative.
In particular, for any Riemannian genus g > 1 surface is conformally equivalent
to a quotient H2/G by a discrete subgroup G ⊂ PSL(2,R).

Explicit example: sphere with n = 3 punctures, G = Γ2 ⊂ PSL(2,Z) (corollary:
Picard’s theorem).
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Dimension 3: Thurston’s geometrization programme

William Thurston (1946-2012) and Grigori Perelman (1966-)

Every closed 3-manifold can be decomposed into pieces such that each admits
one of the following eight types of geometric structures of finite volume

E3, S3, S2 × R, H2 × R, Nil , Sol , ˜SL(2,R), H3.

Nil = {

 1 x y
0 1 z
0 0 1

} Sol = {

 ex 0 y
0 e−x z
0 0 1

}

and ˜SL(2,R) is the universal cover of SL(2,R).
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Bianchi versus Thurston

Bianchi 1898: Classification of 3D real Lie algebras: types I − IX . Among
them the unimodular Lie algebras are of types

▶ I : abelian R3

▶ II : nilpotent (Heisenberg) nil

▶ VI0: solvable 2D Poincare sol ∼= e(1, 1)

▶ VII0: solvable 2D Euclidean e(2)

▶ VIII : simple sl(2,R)
▶ IX : simple so(3).

Thurston 1970s: Classification of special geometries in 3D:

Euclidean E 3, spherical S3, hyperbolic H3, the product type S2 ×R and H2 ×R
and three geometries related to 3D Lie groups Nil , Sol , SL(2,R)

Special geometry here means local homegeneity (any two points have isometric
neighbourhoods), existence of compact models and some maximality condition.

What’s about integrability of the corresponding geodesic flows?

Alexander P. Veselov Geometrisation and integrability



Bianchi versus Thurston

Bianchi 1898: Classification of 3D real Lie algebras: types I − IX . Among
them the unimodular Lie algebras are of types

▶ I : abelian R3

▶ II : nilpotent (Heisenberg) nil

▶ VI0: solvable 2D Poincare sol ∼= e(1, 1)

▶ VII0: solvable 2D Euclidean e(2)

▶ VIII : simple sl(2,R)
▶ IX : simple so(3).

Thurston 1970s: Classification of special geometries in 3D:

Euclidean E 3, spherical S3, hyperbolic H3, the product type S2 ×R and H2 ×R
and three geometries related to 3D Lie groups Nil , Sol , SL(2,R)

Special geometry here means local homegeneity (any two points have isometric
neighbourhoods), existence of compact models and some maximality condition.

What’s about integrability of the corresponding geodesic flows?

Alexander P. Veselov Geometrisation and integrability



Liouville-Arnold integrability revisited

Arnold 1963: Hamiltonian system on symplectic manifold M2n is integrable in
Liouville sense if it has n independent integrals F1, . . . ,Fn in involution.

When the joint integral level

Mc = {x ∈ M2n : Fi (x) = ci , i = 1, . . . , n}

is non-critical and compact, then it must be a torus T n with quasi-periodic
dynamics and in its vicinity one can introduce ”action-angle” variables Ii , φi

with H = H(I ): İ = 0, φ̇ = ω(I ).

Questions: What happens if the level is

▶ critical

▶ non-compact

Tomei 1984, Gaifullin 2006: Natural compactification of the integral level in
the (extended) Toda system is aspherical manifold, which can be used as the
universal in Steenrod’s cycle realisation problem!
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with H = H(I ): İ = 0, φ̇ = ω(I ).

Questions: What happens if the level is

▶ critical

▶ non-compact

Tomei 1984, Gaifullin 2006: Natural compactification of the integral level in
the (extended) Toda system is aspherical manifold, which can be used as the
universal in Steenrod’s cycle realisation problem!

Alexander P. Veselov Geometrisation and integrability



Liouville-Arnold integrability revisited

Arnold 1963: Hamiltonian system on symplectic manifold M2n is integrable in
Liouville sense if it has n independent integrals F1, . . . ,Fn in involution.

When the joint integral level

Mc = {x ∈ M2n : Fi (x) = ci , i = 1, . . . , n}

is non-critical and compact, then it must be a torus T n with quasi-periodic
dynamics and in its vicinity one can introduce ”action-angle” variables Ii , φi

with H = H(I ): İ = 0, φ̇ = ω(I ).
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Sol-case: chaotic critical level

In Sol-case the principal examples are mapping tori M3
A of the hyperbolic maps

A : T 2 → T 2, A ∈ SL(2,Z) (first considered by Poincaré in 1892!):

Figure: Torus mapping of A

Bolsinov and Taimanov 2000: On Sol-manifolds M3
A the geodesic flow is

Liouville integrable in smooth category, but not in analytic one.

At the degenerate level the system is chaotic (Anosov map), so the system has
positive topological entropy!
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SL(2,R)-case

In SL(2,R)-case the principal examples are unit tangent bundles of hyperbolic
surfaces

M3
Γ = Γ\PSL(2,R) = SM2

Γ, M2
Γ = Γ\H2,

where Γ ⊂ PSL(2,R) is a cofinite Fuchsian group.

Bolsinov, Veselov and Ye 2021: The corresponding phase space T ∗M3
Γ

contains two open regions with integrable and chaotic behaviour.

In the integrable region we have Liouville integrability with analytic integrals,
while in the chaotic region the system is not Liouville integrable even in smooth
category and has positive topological entropy.
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SL(2,R)-geometry

Naturally reductive metrics: left SL(2,R)- and right SO(2)-invariant

⟨X ,Y ⟩ = α(symX , symY ) + β(skewX , skewY ), α > 0 > β,

(X ,Y ) := TrXY , skewX := (X − X⊤)/2 ∈ so(n), symX := (X + X⊤)/2.

Setting α = 2, we have the inner product with

|Ω|2 = 4(u2 + vw) + k(v − w)2, k = 1− β

α
> 1

on the Lie algebra

Ω =

(
u v
w −u

)
∈ sl(2,R).
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PSL(2,R) as unit tangent bundle of hyperbolic plane

PSL(2,R) can be identified with the unit tangent bundle SH2 of the hyperbolic
plane H2 = SL(2,R)/SO(2) :

g = ±
(

a b
c d

)
∈ PSL(2,R) −→ (z =

ai + b

ci + d
, ξ =

i

(ci + d)2
) ∈ SH2,

where H2 is realised as the upper half-plane z = x + iy , y > 0 with the
hyperbolic metric ds2 = dzdz̄/y 2.

In coordinates x , y , φ = arg ξ the metric has the form

ds2 =
dx2 + dy 2

y 2
+ (k − 1)(dφ+

dx

y
)2,

which is the generalised Sasaki metric on SH2, considered by Nagy 1977.
Sasaki metric corresponds to k = 2 and can be considered as the ”best one”.
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Euler-Poincare equations and geodesics on SL(2,R)

The general Euler-Poincare equations of the corresponding geodesic flow have

Ṁ = [M,Ω],

where Ω := g−1ġ ∈ g and M ∈ g∗ ∼= g is determined by (Ω,M) = ⟨Ω,Ω⟩.

In our case we have 2M = (α+ β)Ω + (α− β)Ω⊤, so the Euler-Poincare
equations have the form

Ṁ =
β − α

2αβ
[M,M⊤],

which can be easily integrated explicitly (e.g. Mielke 2002).

The geodesics on SL(2,R) with Ω(0) = Ω0 can be explicitly given by

g(t) = g(0)etX0etY0 ,

where

X =
1

α
M =

(
a b
c −a

)
, Y =

α− β

2β

(
0 b − c

c − b 0

)
.
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Ṁ =
β − α

2αβ
[M,M⊤],

which can be easily integrated explicitly (e.g. Mielke 2002).

The geodesics on SL(2,R) with Ω(0) = Ω0 can be explicitly given by

g(t) = g(0)etX0etY0 ,

where

X =
1

α
M =

(
a b
c −a

)
, Y =

α− β

2β

(
0 b − c

c − b 0

)
.

Alexander P. Veselov Geometrisation and integrability



Projection: magnetic geodesics on hyperbolic plane

Nagy 1977, BVY 2021: The projection of the geodesics on PSL(2,R) = SH2

to H2 are curves of constant geodesic curvature

κ =
b − c√

4a2 + (b + c)2
.

They are circles if κ2 > 1, or arcs of circles if κ2 ≤ 1 and can be described as
magnetic geodesics on H2 in constant magnetic field with density B = b − c :

Magnetic geodesics on M2
Γ = H2/Γ: Caratheodory 1932, Hedlund 1936,

Arnold 1961, Paternain 1997, Taimanov 2004.
Arnold 1961: the entropy is h =

√
1− κ2 if κ2 ≤ 1 (and 0 otherwise).
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Liouville integrability for Fuchsian quotients M3
Γ

Let Γ ⊂ PSL(2,R) be a Fuchsian group such that Γ\H2 = M2
Γ has finite area

and consider the quotient M3
Γ = Γ\PSL(2,R) = SM2

Γ.

We have two obvious integrals of geodesic flow on G = SL(2,R): the
Hamiltonian H = 1

2
(Ω,M) = α

4β
(β[4a2 + (b + c)2]− α(b − c)2) and the

Casimir function ∆ = detM = a2 + bc. As the third integral one can take any
Γ-invariant function of the right momentum m = gMg−1.

However, it is known that corresponding Γ-action is discrete if ∆ = δ < 0 and
has some dense orbits if ∆ = δ > 0 (Hedlund 1936, Dal’Bo 2011).

Corollary: The geodesic flow on T ∗M3
Γ has no smooth right-invariant integrals

F independent from ∆ in the part of the phase space T ∗M3
Γ with ∆ ≥ 0.

In the domain ∆ < 0 we can use any real analytic automorphic function as the
additional third analytic integral F .
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Geometry: Klein’s correspondence

Interpret R3 as the set of binary quadratic forms Q(x , y) = Ax2 + 2Bxy + Cy 2,
then the degeneracy condition D := B2 − AC = 0 defines a conic in the
corresponding projective plane.
The disc with D < 0 is the Cayley-Klein projective model of the hyperbolic
plane, while the points with D > 0 by polarity correspond to the lines in this
model.

Figure: sl(2,R)-symplectic leaves and Klein’s correspondence
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Special case: modular groups

Consider now the special case of modular group Γ = SL(2,Z) and its principal
congruence subgroup Γ2.

Figure: The fundamental domains of Γ and Γ2
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Modular 3-fold and knots

Let Γ = SL(2,Z) be the modular group and consider the modular 3-fold

M3 = SL(2,R)/SL(2,Z).

In that case in the domain ∆ < 0 we can write down the third additional
analytic integral explicitly in terms of the J-function.

There is a remarkable observation due to Quillen (1970s):

M3 = SL(2,R)/SL(2,Z) = S3\K,

where K is the trefoil knot:
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Quillen’s proof

Milnor, 1972: Note first that M3 = SL(2,R)/SL(2,Z) can be interpreted as
the moduli space of the elliptic curves C/L up to real scaling. The
corresponding ℘-function satisfies the Weierstrass equation

(℘′)2 = 4℘3 − g2℘− g3,

which defines an elliptic curve if and only if the discriminant

D = g 3
2 − 27g 2

3 ̸= 0.

The intersection of the unit sphere S3 ⊂ C2(g2, g3) with the set D = 0 is
(2, 3)-torus (= trefoil) knot.

Alternatively, the projection M3 → M2 = H2/PSL(2,Z) is the Seifert fibration
with two singular fibres corresponding to orbifold points of order 2 and 3 of
M2. The missing Hopf fibre over infinity is thus (2,3)-torus knot.
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Modular knots and Lorenz system

E. Artin, 1924: Periodic geodesics on modular surface M2 are labelled by
integer binary quadratic forms Q.
Their lifts to M3 = SM2 form certain knots called by Ghys modular.

Birman and Williams (1983), Ghys (2006): Modular knots are exactly those,
which appear as periodic orbits in the celebrated Lorenz system

ẋ = σ(−x + y)

ẏ = rx − y − xz

ż = −bz + xy

, σ = 10, b = 8/3, r = 28.

Figure: The Lorenz trajectories for r = 28, 10000 and r = ∞
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Integrable limit and cable knots

Consider the integral

C := κ2 =
(b − c)2

4a2 + (b + c)2
=

βH − αβ∆

βH − α2∆

of the geodesic flow on M3. We have seen that the system is integrable if
C > 1 and non-integrable otherwise.
When C = 0 we have the lifts of the geodesics on the modular surface M2

considered by Ghys.
It is natural to ask what happens when C > 1.

BVY 2021: The periodic geodesics on modular 3-fold M3
Γ with sufficiently

large values of C represent the trefoil cable knots in S3 \ K.
Any cable knot of trefoil can be realised in such a way.

Note that the Lorenz system for large r has at most 3 periodic orbits, each
representing a trivial knot (Moiseev, Neishtadt 1995).
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Integrable limit and cable knots
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Geometric classification of knots

Thurston (1978): Every knot is either torus, or a satellite, or hyperbolic knot.

Torus knot Kp,q specified by a pair of coprime integers p and q lies on the
surface of a solid torus in R3, winding p times around the axis of rotation of the
torus and q times around the central circle of the torus. Trefoil knot K = K2,3.

Satellite knots can be get in the following way: let K1 be a knot inside an
unknotted solid torus and knot the torus in the shape of another knot K2.
In the special case of K1 being a torus knot, we have cable knots of K2.

Figure: Trefoil knot K, its (2, 33) cable knot and celtic satellite knot

Complements to the torus knots admit SL(2,R)-structure, hyperbolic knots -
H3-structure, while the satellite knots do not admit any geometric structure.
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Congruence subgroup Γ2

Let Γ2 ⊂ SL(2,Z) consist of matrices congruent to the identity modulo 2:

M3
2 = Γ2\SL(2,R) ∼= S3\L,

where L is the Hopf 3-link

In the integrable domain with large C, when the ratio of frequencies is rational,
we have the invariant torus filled by the torus knots Kp,q.
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Some questions and relations

What can we say about knots in M3 = S3 \ K appearing at other levels of C?
Can any prime knot be realised this way?

Not all modular knots are hyperbolic (although many of them are), but their
links with the trefoil knot K are always hyperbolic: Foulon, Hasselblat 2013.

Volume Conjecture (Kashaev 1997, Murakami et al 2002): for hyperbolic
knots

Vol(S3\K) = 2π lim
N→∞

ln |JN(K)|
N

,

where JN(K) is the Jones polynomial of K evaluated at e2πi/N .

Some results about the corresponding volumes for modular knots: Brandts,
Pinsky, Silberman 2019.

Note also that iterated torus knots are precisely the knots with zero topological
entropy: Llibre and MacKay 1990.

They also have interesting relations with the theory of double affine Hecke
algebras: Berest and Samuelson, Cherednik and Danilenko 2016.
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Thurston’s wisdom
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