The 1 - D Dirac equation in the phase space quantum mechanics

Jaromir Tosiek
(in collaboration with Luca Campobasso)
Institute of Physics, Lodz University of Technology, Poland
XXXIX WGMP, Białystok 2022

Prof. Bogdan Mielnik

Source https://wgmp.uwb.edu.pl/mielnik/img_6013.jpg

Motivation

- The phase space approach to systems with both: classical degrees of freedom and purely quantum ones (e.g. spin) In the Hilbert space version of quantum mechanics they are modelled on $L^{2}\left(\mathbb{R}^{n}\right) \otimes \mathbb{C}^{(s+1)}$
- Representation of relativistic quantum mechanics on a phase space
- Continuity equation in terms of Wigner function
M. Przanowski, J. Tosiek, F. J. Turrubiates, The Weyl - Wigner - Moyal

Formalism on a Discrete Phase Space. I. A Wigner Function for a
Nonrelativistic Particle with Spin, Fortschr. Phys. 67, 1900080 (2019).

1 - D Dirac equation

A general shape of the free Hamilton operator for a Dirac particle in one dimension is

$$
\begin{equation*}
\hat{H}=\alpha(c \hat{p})+\beta m c^{2} \hat{\mathbf{1}} \tag{1}
\end{equation*}
$$

where α and β are some square matrices. Because of the requirement

$$
\hat{H}^{2}=c^{2} \hat{p}^{2}+m^{2} c^{4} \hat{\mathbf{1}}
$$

we can see that there must be

$$
\alpha^{2}=\mathbf{1}, \alpha \cdot \beta+\beta \cdot \alpha=\mathbf{0}, \beta^{2}=\mathbf{1}
$$

1 - D Dirac equation

On the contrary to the $3-\mathrm{D}$ case this system of conditions can be fulfilled by 2×2 square matrices e.g.

$$
\alpha=\sigma_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \text { and } \beta=\sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

The time - dependent Dirac equation is of the form

$$
i \hbar \frac{\partial}{\partial t}|\Psi(t)\rangle=\hat{H}|\Psi(t)\rangle
$$

Vector $|\Psi(t)\rangle$ is a two - component object $|\Psi(t)\rangle=\left[\begin{array}{l}\left|\Psi_{1}(t)\right\rangle \\ \left|\Psi_{0}(t)\right\rangle\end{array}\right]$ from the tensor product of Hilbert spaces $\mathcal{H} \otimes \mathbb{C}^{2}$, where the space \mathcal{H} is isomorphic to $L^{2}(\mathbb{R})$.

Eigenvalues of energy in the 1 - D Dirac equation

Possible eigenvalues of the Hamilton operator (1) belong to the sum of intervals

$$
E \in\left(-\infty,-m c^{2}\right) \cup\left(m c^{2},+\infty\right)
$$

and satisfy the dispersion relation:

$$
E^{2}=(c p)^{2}+\left(m c^{2}\right)^{2}, \quad E_{ \pm}= \pm \sqrt{(c p)^{2}+\left(m c^{2}\right)^{2}}
$$

where $p \in \mathbb{R}$.

Eigenvectors of the Hamilton operator in the 1 - D Dirac

equation

Eigenfunctions of the Hamilton operator (1) are of the form

$$
\psi_{p \pm}(x)=\frac{1}{\sqrt{2 \pi \hbar}}\binom{\frac{c p}{E_{ \pm}-m c^{2}}}{1}\left(\frac{(c p)^{2}}{\left(E_{ \pm}-m c^{2}\right)^{2}}+1\right)^{-\frac{1}{2}} e^{i p x / \hbar}
$$

and fulfill orthonormality conditions

$$
\begin{gathered}
\int_{\mathbb{R}} \psi_{p^{\prime}+}^{\dagger}(x) \psi_{p+}(x) d x=\delta\left(p-p^{\prime}\right) \\
\int_{\mathbb{R}} \psi_{p^{\prime}-}^{\dagger}(x) \psi_{p-}(x) d x=\delta\left(p-p^{\prime}\right) \\
\int_{\mathbb{R}} \psi_{p^{\prime}+}^{\dagger}(x) \psi_{p-}(x) d x=0 .
\end{gathered}
$$

Solutions are parametrised by exclusively the momentum p and the sign of energy.

Phase space for classical degrees of freedom

Hilbert space $L^{2}\left(\mathbb{R}^{1}\right)$ can be equipped with a basis generated by eigenstates of the position operator \hat{q}

$$
\left\langle q \mid q^{\prime}\right\rangle=\delta\left(q^{\prime}-q\right), \quad q, q^{\prime} \in \mathbb{R}
$$

Another basis can be spanned by eigenvectors of the momentum operator \hat{p}

$$
\begin{gathered}
|p\rangle=\int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi \hbar}} \exp \left(\frac{i p q}{\hbar}\right)|q\rangle d q \\
\left\langle p \mid p^{\prime}\right\rangle=\delta\left(p^{\prime}-p\right), \quad p, p^{\prime} \in \mathbb{R}
\end{gathered}
$$

Phase space for classical degrees of freedom

Operators of position and of momentum

$$
\hat{q}=\int_{\mathbb{R}} q|q\rangle d q\langle q|
$$

and

$$
\hat{p}=\int_{\mathbb{R}} p|p\rangle d p\langle p|
$$

with the commutation relation

$$
[\hat{q}, \hat{p}]=i \hbar \hat{\mathbf{1}} .
$$

Phase space for classical degrees of freedom

Applying them we introduce two families of unitary operators:

$$
\exp (i \lambda \hat{p}) \text { and } \exp (i \mu \hat{q}), \quad \lambda, \mu \in \mathbb{R}
$$

satisfying the commutation rule

$$
\begin{gathered}
\exp \left(-\frac{i \hbar \lambda \mu}{2}\right) \exp (i \lambda \hat{p}) \exp (i \mu \hat{q}) \\
=\exp \left(\frac{i \hbar \lambda \mu}{2}\right) \exp (i \mu \hat{q}) \exp (i \lambda \hat{p})=: \hat{\mathcal{U}}(\lambda, \mu) \\
=\exp \{i(\lambda \hat{p}+\mu \hat{q})\} \quad \text { displacement operator }
\end{gathered}
$$

Phase space for classical degrees of freedom

One can establish a correspondence between operators in
$\mathcal{H} \cong L^{2}\left(\mathbb{R}^{1}\right)$ and functions on \mathbb{R}^{2}
$f(p, q)=\frac{\hbar}{2 \pi} \int_{\mathbb{R} \times \mathbb{R}} d \lambda d \mu \mathcal{P}^{-1}\left(\frac{\hbar \lambda \mu}{2}\right) \exp \{i(\lambda p+\mu q)\} \operatorname{Tr}\left\{\widehat{f} \widehat{\mathcal{U}}^{\dagger}(\lambda, \mu)\right\}$.
By $\mathcal{P}\left(\frac{\hbar \lambda \mu}{2}\right)$ we mean a function related to the operator ordering.
This formula shows that the phase space used for representation of classical degrees of freedom is $\mathbb{R}^{2 n}$.

Phase space for internal discrete degrees of freedom

Consider an $(s+1)$ - dimensional Hilbert space $\mathcal{H}^{(s+1)} \cong \mathbb{C}^{(s+1)}$ equipped with an orthonormal basis

$$
\{|0\rangle,|1\rangle, \ldots,|s\rangle\}, \quad\left\langle n \mid n^{\prime}\right\rangle=\delta_{n n^{\prime}}, \quad n, n^{\prime}=0,1, \ldots, s
$$

We introduce another orthonormal basis

$$
\begin{gathered}
\left|\phi_{m}\right\rangle:=\frac{1}{\sqrt{s+1}} \sum_{n=0}^{s} \exp \left(i n \phi_{m}\right)|n\rangle, \\
\left\langle\phi_{m} \mid \phi_{m^{\prime}}\right\rangle=\delta_{m m^{\prime}}, \quad m, m^{\prime}=0,1, \ldots, s
\end{gathered}
$$

with

$$
\phi_{m}=\phi_{0}+\frac{2 \pi}{s+1} m, \quad m=0,1, \ldots, s .
$$

We put the phase $\phi_{0}=0$.

Phase space for internal discrete degrees of freedom

Define then two hermitian operators

$$
\hat{n}:=\sum_{n=0}^{s} n|n\rangle\langle n|
$$

and

$$
\hat{\phi}:=\sum_{m=0}^{s} \phi_{m}\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right|
$$

which enable us to construct the following unitary operators
(Schwinger operators)

$$
\hat{V}:=\exp \left(i \frac{2 \pi}{s+1} \hat{n}\right)
$$

and

$$
\hat{U}:=\exp (i \hat{\phi}) .
$$

Phase space for internal discrete degrees of freedom

These operators fulfill the commutation relation
$\exp \left(-i \frac{\pi k l}{s+1}\right) \hat{U}^{k} \hat{V}^{\prime}=\exp \left(i \frac{\pi k l}{s+1}\right) \hat{V}^{\prime} \hat{U}^{k}=: \hat{\mathcal{D}}(k, /), \quad k, l \in \mathbb{Z}$.
Hence one can construct a formula

$$
\begin{gathered}
f\left(\phi_{m}, n\right)=\frac{1}{s+1} \sum_{k, l=0}^{s} \mathcal{K}^{-1}(k, l) \exp \left\{i\left(k \phi_{m}+\frac{2 \pi}{s+1} \ln \right)\right\} \\
\times \operatorname{Tr}\left\{\hat{f} \hat{\mathcal{D}}^{\dagger}(k, l)\right\}
\end{gathered}
$$

assigning a function $f\left(\phi_{m}, n\right)$ on a discrete phase space (a grid) $\left\{\left(\phi_{m}, n\right)\right\}_{m, n=0}^{s}$ denoted by $\Gamma^{(s+1)}$ to the operator \hat{f}.

Phase space for systems with continuous and internal

 degrees of freedomPutting together formalism for continuous and discrete degrees of freedom we can see that

$$
\begin{gathered}
\mathbb{R} \times \mathbb{R} \times \Gamma^{(s+1)} \ni f\left(p, q, \phi_{m}, n\right) \stackrel{(\mathcal{P}, \mathcal{K})}{\longleftrightarrow} \widehat{f} \in L^{2}(\mathbb{R}) \otimes \mathcal{H}^{(s+1)} \\
f\left(p, q, \phi_{m}, n\right)=\left(\frac{\hbar}{2 \pi}\right) \frac{1}{s+1} \sum_{k, l=0}^{s} \int_{\mathbb{R} \times \mathbb{R}} d \lambda d \mu \\
\left(\mathcal{P}\left(\frac{\hbar \lambda \mu}{2}\right) \mathcal{K}\left(\frac{\pi k l}{s+1}\right)\right)^{-1} \\
\exp \{i(\lambda p+\mu q)\} \exp \left\{i \frac{2 \pi}{s+1}(k m+I n)\right\} \operatorname{Tr}\left\{\widehat{f}^{\mathcal{U}} \widehat{\mathcal{U}}^{\dagger}(\lambda, \mu) \widehat{\mathcal{D}}^{\dagger}(k, l)\right\}
\end{gathered}
$$

Representation of states

If $\hat{\rho}$ is a density operator of the quantum system then the average value of an observable \widehat{f}

$$
\langle\widehat{f}\rangle=\operatorname{Tr}\{\widehat{f} \widehat{\rho}\}
$$

Hence, we define the Wigner function of the state $\widehat{\rho}$ for the kernels
(\mathcal{P}, \mathcal{K}) as

$$
W[\mathcal{P}, \mathcal{K}]\left(p, q, \phi_{m}, n\right):=\frac{1}{(2 \pi \hbar)(s+1)} \operatorname{Tr}\left\{\widehat{\rho} \widehat{\Omega}[\mathcal{P}, \mathcal{K}]\left(p, q, \phi_{m}, n\right)\right\}
$$

Consequently,

$$
\langle\widehat{f}\rangle=\sum_{m, n=0}^{s} \int_{\mathbb{R} \times \mathbb{R}} d p d q f\left(p, q, \phi_{m}, n\right) W[\mathcal{P}, \mathcal{K}]\left(p, q, \phi_{m}, n\right)
$$

Representation of states

Properties of Wigner function $W[\mathcal{P}, \mathcal{K}]\left(p, q, \phi_{m}, n\right)$

- It is a real function

$$
W^{*}[\mathcal{P}, \mathcal{K}]=W[\mathcal{P}, \mathcal{K}]
$$

- Its trace is equal to one

$$
\sum_{m, n=0}^{s} \int_{\mathbb{R} \times \mathbb{R}} d p d q W[\mathcal{P}, \mathcal{K}]\left(p, q, \phi_{m}, n\right)=\operatorname{Tr}\{\widehat{\rho}\}=1
$$

- It gives the marginal distribution

$$
\sum_{m, n=0}^{s} \int_{\mathbb{R}} d p W[\mathcal{P}, \mathcal{K}]\left(p, q, \phi_{m}, n\right)=\operatorname{Tr}\{\hat{\rho}|q\rangle\langle q|\}
$$

Phase space model of the 1 - D Dirac equation

In this case $s=1$.
Two states referring to the internal degree of freedom are

$$
\sigma_{z}|0\rangle=-1|0\rangle \quad, \quad \sigma_{z}|1\rangle=1|1\rangle
$$

Therefore the operators

$$
\hat{n}=|1\rangle\langle 1| \quad, \quad \hat{\phi}=\pi\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|
$$

are (up to a factor) projection operators on the directions $|1\rangle$ and $\left|\phi_{1}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$ respectively.
The Schwinger operators are

$$
\begin{gathered}
\widehat{V}=|0\rangle\langle 0|-|1\rangle\langle 1| \text { and } \\
\widehat{R}=\left|\phi_{0}\right\rangle\left\langle\phi_{0}\right|-\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|=|0\rangle\langle 1|+|1\rangle\langle 0| .
\end{gathered}
$$

Phase space model of the 1 - D Dirac equation

The family of unitary operators $\widehat{D}(k, I)$ consists of four elements

$$
\begin{aligned}
& \widehat{D}(0,0)=\hat{\mathbf{1}}=|0\rangle\langle 0|+|1\rangle\langle 1|, \quad \widehat{D}(1,0)=\widehat{R}=|0\rangle\langle 1|+|1\rangle\langle 0| \\
& \widehat{D}(0,1)=\widehat{V}=|0\rangle\langle 0|-|1\rangle\langle 1|, \quad \widehat{D}(1,1)=-i \widehat{R} \widehat{V}=i|0\rangle\langle 1|-i|1\rangle\langle 0| .
\end{aligned}
$$

Our choice of kernels

$$
\begin{gathered}
\mathcal{P}\left(\frac{\hbar \lambda \mu}{2}\right)=1 \text { the Weyl ordering } \\
\mathcal{K}\left(\frac{\pi k l}{s+1}\right)=(-1)^{k l} .
\end{gathered}
$$

One cannot put $\mathcal{K}\left(\frac{\pi k l}{2}\right)=1$.

Phase space model of the 1 - D Dirac equation

The Hamilton function on the quantum phase space $\mathbb{R} \times \Gamma^{2}$ equals

$$
\begin{align*}
& H\left(p, x, \phi_{0}, 0\right)=c p-m c^{2}, \quad H\left(p, x, \phi_{1}, 0\right)=-c p-m c^{2} \tag{2}\\
& H\left(p, x, \phi_{0}, 1\right)=c p+m c^{2}, \quad H\left(p, x, \phi_{1}, 1\right)=-c p+m c^{2} .
\end{align*}
$$

Components of the Wigner function of a free particle with the momentum \tilde{p} are

$$
\left\{\begin{array}{l}
W_{ \pm}\left(p, x, \phi_{0}, 0\right)=\frac{1}{4 \pi \hbar} \delta(p-\tilde{p}) \frac{\left(E_{ \pm}-m c^{2}\right)\left(c \tilde{p}+E_{ \pm}-m c^{2}\right)}{(c \tilde{p})^{2}+\left(E_{ \pm}-m c^{2}\right)^{2}} \\
W_{ \pm}\left(p, x, \phi_{1}, 0\right)=\frac{1}{4 \pi \hbar} \delta(p-\tilde{p}) \frac{\left(E_{ \pm}-m c^{2}\right)\left(E_{ \pm}-m c^{2}-c \tilde{p}\right)}{(c \tilde{p})^{2}+\left(E_{ \pm}-m c^{2}\right)^{2}} \\
W_{ \pm}\left(p, x, \phi_{0}, 1\right)=\frac{1}{4 \pi \hbar} \delta(p-\tilde{p}) \frac{c \tilde{p}\left(c \tilde{p}+E_{ \pm}-m c^{2}\right)}{(c \tilde{p})^{2}+\left(E_{ \pm}-m c^{2}\right)^{2}} \\
W_{ \pm}\left(p, x, \phi_{1}, 1\right)=\frac{1}{4 \pi \hbar} \delta(p-\tilde{p}) \frac{c \tilde{p}\left(c \tilde{p}-E_{ \pm}+m c^{2}\right)}{(c \tilde{p})^{2}+\left(E_{ \pm}-m c^{2}\right)^{2}} .
\end{array}\right.
$$

Star product for $s=1$

$$
\begin{gathered}
(f * g)\left(p, q, \phi_{m}, n, t\right)=\frac{1}{(\pi \hbar)^{2}} \sum_{m^{\prime}, n^{\prime}, m^{\prime \prime}, n^{\prime \prime}=0}^{1} \int_{\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}} d p^{\prime} d q^{\prime} d p^{\prime \prime} d q^{\prime \prime} \\
\times f\left(p^{\prime}, q^{\prime}, \phi_{m^{\prime}}, n^{\prime}, t\right) g\left(p^{\prime \prime}, q^{\prime \prime}, \phi_{m^{\prime \prime}}, n^{\prime \prime}, t\right) \\
\exp \left\{\frac{2 i}{\hbar}\left[\left(q-q^{\prime}\right) \cdot\left(p-p^{\prime \prime}\right)-\left(q-q^{\prime \prime}\right) \cdot\left(p-p^{\prime}\right)\right]\right\} \\
\left\{\left(1+(-1)^{m^{\prime}+m^{\prime \prime}}\right)\left(1+(-1)^{n^{\prime}+n^{\prime \prime}}\right)+(-1)^{m}\left((-1)^{m^{\prime}}+(-1)^{m^{\prime \prime}}\right)\right. \\
\quad+(-1)^{m+n}\left((-1)^{m^{\prime}+n^{\prime}}+(-1)^{m^{\prime \prime}+n^{\prime \prime}}\right) \\
+(-1)^{n}\left((-1)^{n^{\prime}}+(-1)^{n^{\prime \prime}}\right)+i\left[(-1)^{m}(-1)^{n^{\prime}+n^{\prime \prime}}\left((-1)^{m^{\prime}}-(-1)^{m^{\prime \prime}}\right)\right. \\
\quad+(-1)^{m+n}\left((-1)^{m^{\prime \prime}+n^{\prime}}-(-1)^{m^{\prime}+n^{\prime \prime}}\right) \\
\left.\left.\quad+(-1)^{n}(-1)^{m^{\prime}+m^{\prime \prime}}\left((-1)^{n^{\prime \prime}}-(-1)^{n^{\prime}}\right)\right]\right\} .
\end{gathered}
$$

Star product - differential formula

$$
\begin{gathered}
(f * g)\left(p, q, \phi_{m}, n\right)= \\
\frac{1}{16} \sum_{m^{\prime}, n^{\prime}, m^{\prime \prime}, n^{\prime \prime}=0}^{1} f\left(p, q, \phi_{m^{\prime}}, n^{\prime}\right) \exp \left\{\frac{i \hbar}{2} \overleftrightarrow{\mathcal{P}}\right\} g\left(p, q, \phi_{m}^{\prime \prime}, n^{\prime \prime}\right) \\
\left\{\left(1+(-1)^{m^{\prime}+m^{\prime \prime}}\right)\left(1+(-1)^{n^{\prime}+n^{\prime \prime}}\right)+(-1)^{m}\left((-1)^{m^{\prime}}+(-1)^{m^{\prime \prime}}\right)+\right. \\
(-1)^{m+n}\left((-1)^{m^{\prime}+n^{\prime}}+(-1)^{m^{\prime \prime}+n^{\prime \prime}}\right)+(-1)^{n}\left((-1)^{n^{\prime}}+(-1)^{n^{\prime \prime}}\right)+ \\
i\left[(-1)^{m}(-1)^{n^{\prime}+n^{\prime \prime}}\left((-1)^{m^{\prime}}-(-1)^{m^{\prime \prime}}\right)+(-1)^{m+n}\left((-1)^{m^{\prime \prime}+n^{\prime}}-\right.\right. \\
\left.\left.\left.(-1)^{m^{\prime}+n^{\prime \prime}}\right)+(-1)^{n}(-1)^{m^{\prime}+m^{\prime \prime}}\left((-1)^{n^{\prime \prime}}-(-1)^{n^{\prime}}\right)\right]\right\} .
\end{gathered}
$$

The Liouville - von Neumann - Wigner equation

The evolution equation for the Wigner function
$W[\mathcal{P}, \mathcal{K}]\left(p, q, \phi_{m}, n ; t\right)$ reads

$$
\frac{\partial W[\mathcal{P}, \mathcal{K}]}{\partial t}+\frac{1}{i \hbar}(W[\mathcal{P}, \mathcal{K}] * H-H * W[\mathcal{P}, \mathcal{K}])=0
$$

The Moyal bracket is defined as

$$
\{W[\mathcal{P}, \mathcal{K}], H\}_{M}:=\frac{1}{i \hbar}(W[\mathcal{P}, \mathcal{K}] * H-H * W[\mathcal{P}, \mathcal{K}])
$$

Time evolution of spatial density of probability

The change of spatial density of probability $\rho\left(\vec{r}_{0}, t\right)$ with time combined with the Liouville - von Neumann - Wigner equation leads to the relation

$$
\begin{gathered}
\frac{\partial}{\partial t} \sum_{m, n=0}^{s} \int_{\mathbb{R}^{3}} d \vec{p} W[\mathcal{P}, \mathcal{K}]\left(\vec{p}, \vec{r}, \phi_{m}, n, t\right) \\
+\sum_{m, n=0}^{s} \int_{\mathbb{R}^{3}} d \vec{p}\left\{W[\mathcal{P}, \mathcal{K}]\left(\vec{p}, \vec{r}, \phi_{m}, n, t\right), H\left(\vec{p}, \vec{r}, \phi_{m}, n, t\right)\right\}_{M}=0 .
\end{gathered}
$$

The continuity equation takes the form

$$
\frac{\partial \rho\left(\vec{r}_{0}, t\right)}{\partial t}+\operatorname{div} \vec{j}(\vec{r}, t)=0
$$

Current density in the 1 - D Dirac equation

The expression

$$
\sum_{m, n=0}^{s} \int_{\mathbb{R}^{3}} d \vec{p}\left\{W[\mathcal{P}, \mathcal{K}]\left(\vec{p}, \vec{r}, \phi_{m}, n, t\right), H\left(\vec{p}, \vec{r}, \phi_{m}, n, t\right)\right\}_{M}
$$

represents the element $\operatorname{div} \vec{j}(\vec{r}, t)$.
The current density for the 1 - D Dirac equation is of the form

$$
\begin{gathered}
\vec{j}(x, t)=\int_{\mathbb{R}} d p c\left(W\left(p, x, \phi_{0}, 0, t\right)\right. \\
\left.+W\left(p, x, \phi_{0}, 1, t\right)-W\left(p, x, \phi_{1}, 0, t\right)-W\left(p, x, \phi_{1}, 1, t\right)\right)
\end{gathered}
$$

