On partial
Banach-Lie algebroid
structure:
some
motivations
Fernand
Pelletier
0. Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

On partial Banach-Lie algebroid structure: some motivations

Fernand Pelletier

LAMA, UMR 5127, CNRS Université de Savoie Mont Blanc
XXXIX Workshop on Geometric Methods in Physics June 192022

0 . Outline

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

1. Introduction .
2. Problems about generalization of the notion of Poisson manifolds.
3. Partial Banach-Lie algebroid.
4. Partial Poisson manifold in the Banach setting.
5. Prolongation of a Banach-Lie algebroid.
6. References

1. Introduction

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

In finite dimension it is well known that, for any Poisson manifold, its cotangent bundle can be provided with a natural structure of Lie algebroid. On the other hand the same is true for prolongation of a Lie algebroid.

1. Introduction

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

In finite dimension it is well known that, for any Poisson manifold, its cotangent bundle can be provided with a natural structure of Lie algebroid. On the other hand the same is true for prolongation of a Lie algebroid.
For an adaptation for such results in the Banach setting, we propose the notion partial Poisson structure on a Banach manifold M, which is defined by an anchor on a weak subbundle $T^{b} M$ of $T^{*} M$. In this context, we obtain only a "partial structure of Banach-Lie algebroid" on $T^{b} M$ and not a Banach-Lie algebroid, even if $T^{b} M=T^{*} M$.

1. Introduction

In finite dimension it is well known that, for any Poisson manifold, its cotangent bundle can be provided with a natural structure of Lie algebroid. On the other hand the same is true for prolongation of a Lie algebroid.
For an adaptation for such results in the Banach setting, we propose the notion partial Poisson structure on a Banach manifold M, which is defined by an anchor on a weak subbundle $T^{b} M$ of $T^{*} M$. In this context, we obtain only a "partial structure of Banach-Lie algebroid" on $T^{b} M$ and not a Banach-Lie algebroid, even if $T^{b} M=T^{*} M$. Although the prolongation of a Banach Lie algebroid is naturally provided with an anchor, when the typical fiber of the Lie algebroid is not finite dimensional, the Lie bracket gives rise only to a "partial Banach-Lie algebroid structure" on this prolongation.

2 : Problems about generalization of the notion of Poisson manifolds.

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

1. Weak symplectic. On a Banach manifold M, any symplectic form ω on M is such that the morphism $\omega^{b}: X \mapsto \omega(., X)$ is not surjective in general and so ω is weak symplectic form.

2 : Problems about generalization of the notion of Poisson manifolds.

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

1. Weak symplectic. On a Banach manifold M, any symplectic form ω on M is such that the morphism $\omega^{b}: X \mapsto \omega(., X)$ is not surjective in general and so ω is weak symplectic form.
2. Locality of a bracket. In the finite dimensional setting, we have bump functions and so for any x in M, any germ of function at x can be extended to a global one. If we consider a Banach manifold M which has bump functions the same is true.

2 : Problems about generalization of the notion of Poisson manifolds.

On partial Banach-Lie algebroid structure:

1. Weak symplectic. On a Banach manifold M, any symplectic form ω on M is such that the morphism $\omega^{b}: X \mapsto \omega(., X)$ is not surjective in general and so ω is weak symplectic form.
2. Locality of a bracket. In the finite dimensional setting, we have bump functions and so for any x in M, any germ of function at x can be extended to a global one. If we consider a Banach manifold M which has bump functions the same is true. But many interesting geometrical or physical examples of Banach manifolds do not satisfy such assumption. Thus a Poisson Lie bracket defined on global smooth functions can be not defined on local ones. So, it seems natural to assume that a Poisson bracket must be defined on smooth functions over open set in M.

2 :continuation

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier
0. Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifołds:
3. Dependence on jets of functions. In finite dimension, any Poisson bracket depends on 1-jet of functions. Unfortunately, in Banach setting, there exist Poisson Lie brackets which are localizable which satisfy Leibniz property and Jacobi identity on any $C^{\infty}(U)$ but depends on k-jets with $k>1$.

2 :continuation

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.
3. Dependence on jets of functions. In finite dimension, any Poisson bracket depends on 1-jet of functions. Unfortunately, in Banach setting, there exist Poisson Lie brackets which are localizable which satisfy Leibniz property and Jacobi identity on any $C^{\infty}(U)$ but depends on k-jets with $k>1$. In such a situation, we can not associate a Poisson bivector Λ as in finite dimension, nor a Poisson anchor P (cf. [2]).

2 :continuation

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.
3. Dependence on jets of functions. In finite dimension, any Poisson bracket depends on 1-jet of functions. Unfortunately, in Banach setting, there exist Poisson Lie brackets which are localizable which satisfy Leibniz property and Jacobi identity on any $C^{\infty}(U)$ but depends on k-jets with $k>1$. In such a situation, we can not associate a Poisson bivector Λ as in finite dimension, nor a Poisson anchor P (cf. [2]).
In fact, any skew symmetric bilinear derivation D on $C^{\infty}(U)$ gives rise to a bracket on $C^{\infty}(U)$ which satisfies the Leibniz property and depend on k-jets of functions.

2 :continuation

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.
3. Dependence on jets of functions. In finite dimension, any Poisson bracket depends on 1-jet of functions. Unfortunately, in Banach setting, there exist Poisson Lie brackets which are localizable which satisfy Leibniz property and Jacobi identity on any $C^{\infty}(U)$ but depends on k-jets with $k>1$. In such a situation, we can not associate a Poisson bivector Λ as in finite dimension, nor a Poisson anchor P (cf. [2]).
In fact, any skew symmetric bilinear derivation D on $C^{\infty}(U)$ gives rise to a bracket on $C^{\infty}(U)$ which satisfies the Leibniz property and depend on k-jets of functions. Since a "Schouten bracket" can be defined for such derivations, if the Schouten bracket of D is zero, the associated bracket is a Poisson bracket which depends on some k-jets with $k \geq 1$.

2 :continuation

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.
4. Module of local sections. In finite dimension, we can define an almost Lie Bracket $[., .]_{P}$ on the cotangent bundle, in term of Lie derivative. The Jacobi identity for a Lie Poisson bracket and the fact that the set of sections of $T^{*} M_{\mid U}$ is a finite dimensional module generated by $\left\{d f, f \in C^{\infty}(U)\right\}$ imply that the bracket $[., .]_{P}$ satisfies the Jacobi identity. Unfortunately this no longer true in Banach setting.

3 : Partial Banach-Lie algebroid

Given an anchored bundle $(\mathcal{A}, \pi, M, \rho)$ on M, the classical notion of a Banach-Lie algebroid structure $\left(\mathcal{A}, \pi, M, \rho,[., .]_{\mathcal{A}}\right)$ (cf. [1]) is equivalent to the datum of a sheaf of Lie algebras structure on the sheaf of modules

$$
\left\{\Gamma\left(\mathcal{A}_{U}\right), U \text { open in } M\right\}
$$

of sections of $\mathcal{A}_{\mid U}$ such that, the Lie bracket $[.,]_{U}$ on $\Gamma\left(\mathcal{A}_{U}\right)$ and ρ satisfy the following conditions, for any $\left(\mathfrak{a}, \mathfrak{a}^{\prime}\right) \in \Gamma\left(\mathcal{A}_{U}\right)^{2}$, any $f \in C^{\infty}(U)$ and any open set U in M :

3 : Partial Banach-Lie algebroid

Given an anchored bundle $(\mathcal{A}, \pi, M, \rho)$ on M, the classical notion of a Banach-Lie algebroid structure $\left(\mathcal{A}, \pi, M, \rho,[., .]_{\mathcal{A}}\right)$ (cf. [1]) is equivalent to the datum of a sheaf of Lie algebras structure on the sheaf of modules

$$
\left\{\Gamma\left(\mathcal{A}_{U}\right), U \text { open in } M\right\}
$$

of sections of $\mathcal{A}_{\mid U}$ such that, the Lie bracket $[.,]_{U}$ on $\Gamma\left(\mathcal{A}_{U}\right)$ and ρ satisfy the following conditions, for any $\left(\mathfrak{a}, \mathfrak{a}^{\prime}\right) \in \Gamma\left(\mathcal{A}_{U}\right)^{2}$, any $f \in C^{\infty}(U)$ and any open set U in M :
(i) $\left[\mathfrak{a}, \mathfrak{a}^{\prime}\right]_{U}$ only depends on the 1-jets of \mathfrak{a} and \mathfrak{a}^{\prime}

3 : Partial Banach-Lie algebroid

Given an anchored bundle $(\mathcal{A}, \pi, M, \rho)$ on M, the classical notion of a Banach-Lie algebroid structure $\left(\mathcal{A}, \pi, M, \rho,[., .]_{\mathcal{A}}\right)$ (cf. [1]) is equivalent to the datum of a sheaf of Lie algebras structure on the sheaf of modules

$$
\left\{\Gamma\left(\mathcal{A}_{U}\right), U \text { open in } M\right\}
$$

of sections of $\mathcal{A}_{\mid U}$ such that, the Lie bracket $[.,]_{U}$ on $\Gamma\left(\mathcal{A}_{U}\right)$ and ρ satisfy the following conditions, for any $\left(\mathfrak{a}, \mathfrak{a}^{\prime}\right) \in \Gamma\left(\mathcal{A}_{U}\right)^{2}$, any $f \in C^{\infty}(U)$ and any open set U in M :
(i) $\left[\mathfrak{a}, \mathfrak{a}^{\prime}\right]_{U}$ only depends on the 1-jets of \mathfrak{a} and \mathfrak{a}^{\prime}
(ii) $\left[\mathfrak{a}, f \mathfrak{a}^{\prime}\right]_{U}=d f(\rho(\mathfrak{a})) \mathfrak{a}^{\prime}+f\left[\mathfrak{a}, \mathfrak{a}^{\prime}\right]_{U}$ (Leibniz rule).

3 : Partial Banach-Lie algebroid

Given an anchored bundle $(\mathcal{A}, \pi, M, \rho)$ on M, the classical notion of a Banach-Lie algebroid structure $\left(\mathcal{A}, \pi, M, \rho,[., .]_{\mathcal{A}}\right)$ (cf. [1]) is equivalent to the datum of a sheaf of Lie algebras structure on the sheaf of modules

$$
\left\{\Gamma\left(\mathcal{A}_{U}\right), U \text { open in } M\right\}
$$

of sections of $\mathcal{A}_{\mid U}$ such that, the Lie bracket $[.,]_{U}$ on $\Gamma\left(\mathcal{A}_{U}\right)$ and ρ satisfy the following conditions, for any $\left(\mathfrak{a}, \mathfrak{a}^{\prime}\right) \in \Gamma\left(\mathcal{A}_{U}\right)^{2}$, any $f \in C^{\infty}(U)$ and any open set U in M :
(i) $\left[\mathfrak{a}, \mathfrak{a}^{\prime}\right]_{U}$ only depends on the 1-jets of \mathfrak{a} and \mathfrak{a}^{\prime}
(ii) $\left[\mathfrak{a}, f \mathfrak{a}^{\prime}\right]_{U}=d f(\rho(\mathfrak{a})) \mathfrak{a}^{\prime}+f\left[\mathfrak{a}, \mathfrak{a}^{\prime}\right]_{U}$ (Leibniz rule).
(iii) ρ induces a Lie algebra morphism from $\Gamma\left(\mathcal{A}_{U}\right)$ to $\mathfrak{X}(U)$ where $\{\mathfrak{X}(U), U$ open in $M\}$ is the sheaf of vector fields on M

3 : Continuation

On partial Banach-Lie algebroid
structure:
some motivations

Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

Thus the following definition seems natural :

Definition 1

Let $(\mathcal{A}, \pi, M, \rho)$ be a Banach anchored bundle. Given a sheaf \mathfrak{E}_{M} of subalgebras of the sheaf C_{M}^{∞} of smooth functions on M, let \mathfrak{P}_{M} be a sheaf of \mathfrak{E}_{M}-modules of sections of \mathcal{A}. Assume that \mathfrak{P}_{M} can be provided with a structure of Lie algebras sheaf which satisfies, for any open set U in M.

3 : Continuation

On partial Banach-Lie algebroid
structure:
some motivations

Fernand

Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

Thus the following definition seems natural :

Definition 1

Let $(\mathcal{A}, \pi, M, \rho)$ be a Banach anchored bundle. Given a sheaf \mathfrak{E}_{M} of subalgebras of the sheaf C_{M}^{∞} of smooth functions on M, let \mathfrak{P}_{M} be a sheaf of \mathfrak{E}_{M}-modules of sections of \mathcal{A}. Assume that \mathfrak{P}_{M} can be provided with a structure of Lie algebras sheaf which satisfies, for any open set U in M.
(CPLA 1) the Lie bracket $[.,]_{\mathfrak{P}(U)}$ on $\mathfrak{P}(U)$ only depends on the 1 -jets of sections of $\mathfrak{P}(U)$
(CPLA 2) for any $\left(\mathfrak{a}, \mathfrak{a}^{\prime}\right) \in(\mathfrak{P}(U))^{2}$ and any $f \in \mathfrak{E}(U)$, we have the Leibniz conditions
$\left[\mathfrak{a}, f \mathfrak{a}^{\prime}\right]_{\mathfrak{P}(U)}=d f(\rho(\mathfrak{a})) \mathfrak{a}^{\prime}+f\left[\mathfrak{a}, \mathfrak{a}^{\prime}\right]_{\mathfrak{P}(U)}$

3 : Continuation

On partial Banach-Lie algebroid
structure:
some motivations

Fernand

Pelletier

0 . Outline

Thus the following definition seems natural :

Definition 1

Let $(\mathcal{A}, \pi, M, \rho)$ be a Banach anchored bundle. Given a sheaf \mathfrak{E}_{M} of subalgebras of the sheaf C_{M}^{∞} of smooth functions on M, let \mathfrak{P}_{M} be a sheaf of \mathfrak{E}_{M}-modules of sections of \mathcal{A}. Assume that \mathfrak{P}_{M} can be provided with a structure of Lie algebras sheaf which satisfies, for any open set U in M.
(CPLA 1) the Lie bracket $[., .]_{\mathfrak{P}(U)}$ on $\mathfrak{P}(U)$ only depends on the 1 -jets of sections of $\mathfrak{P}(U)$
(CPLA 2) for any $\left(\mathfrak{a}, \mathfrak{a}^{\prime}\right) \in(\mathfrak{P}(U))^{2}$ and any $f \in \mathfrak{E}(U)$, we have the Leibniz conditions
$\left[\mathfrak{a}, f \mathfrak{a}^{\prime}\right]_{\mathfrak{P}(U)}=d f(\rho(\mathfrak{a})) \mathfrak{a}^{\prime}+f\left[\mathfrak{a}, \mathfrak{a}^{\prime}\right]_{\mathfrak{P}(U)}$
(CPLA 3) ρ induces a Lie algebra morphism from $\mathfrak{P}(U)$ to $\mathfrak{X}(U)$, for any open set U in M.

3 :continuation

In this context, the family $\left\{[., .]_{\mathfrak{P}(U)}, U\right.$ open set in $\left.M\right\}$ is called a sheaf brackets, is denoted $[., .]_{\mathcal{A}}$, and $\left(\mathcal{A}, \pi, M, \rho, \mathfrak{P}_{M},[., .]_{\mathcal{A}}\right)$ is called a partial Banach-Lie algebroid..

A partial Banach Lie algebroid $\left(\mathcal{A}, \pi, M, \rho, \mathfrak{P}_{M},[., .]_{\mathcal{A}}\right)$ is called strong partial Lie algebroid if for any $x \in M$, the stalk

$$
\mathfrak{P}_{x}=\underset{\longrightarrow}{\lim }\{\mathfrak{P}(U), \quad U \text { open neighbourhood of } x\}
$$

is equal to the fiber \mathcal{A}_{x} for any $x \in M$.

Note that for a strong partial Lie algebroid, the exterior differential of forms on \mathcal{A} is well defined (cf. [3]).

4 :Partial Banach Lie Poisson structure

On partial Banach-Lie algebroid structure: some motivations

Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

Let M be a Banach manifold modelled on a Banach space \mathbb{M}. We denote by : $p_{M}: T M \rightarrow M$ its tangent bundle and by $p_{M}^{*}: T^{*} M \rightarrow M$ its cotangent bundle

4 :Partial Banach Lie Poisson structure

On partial Banach-Lie algebroid
structure:
some motivations

Fernand

Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifofd's.

Let M be a Banach manifold modelled on a Banach space \mathbb{M}. We denote by : $p_{M}: T M \rightarrow M$ its tangent bundle and by $p_{M}^{*}: T^{*} M \rightarrow M$ its cotangent bundle

Definition 2

A vector subbundle $p^{b}: T^{b} M \rightarrow M$ of $p_{M}^{*}: T^{*} M \rightarrow M$ is called a weak subbundle of $p_{M}^{*}: T^{*} M \rightarrow M$ if $p^{b}: T^{b} M \rightarrow M$ is a Banach bundle and if the canonical injection $\iota: T^{b} M \rightarrow T^{*} M$ is a Banach vector bundle morphism.

4 :Continuation

On partial Banach-Lie algebroid
structure:
some motivations

Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifofd's.

For any open set U in M we introduce :

Definition 3

Let $\mathfrak{A}(U)$ be the set of smooth functions $f \in C^{\infty}(U)$ such that each iterated derivative $d^{k} f(x) \in L_{\text {sym }}^{k}\left(T_{x} M, \mathbb{R}\right)\left(k \in \mathbb{N}^{*}\right)$ satisfies : $\forall x \in U, \forall\left(u_{2}, \ldots, u_{k}\right) \in\left(T_{x} M\right)^{k-1}, d_{x}^{k} f\left(., u_{2}, \ldots, u_{k}\right) \in T_{x}^{b} M$.

4 :Continuation

On partial Banach-Lie algebroid
structure:
some motivations

Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifofd's.

For any open set U in M we introduce :

Definition 3

Let $\mathfrak{A}(U)$ be the set of smooth functions $f \in C^{\infty}(U)$ such that each iterated derivative $d^{k} f(x) \in L_{\text {sym }}^{k}\left(T_{x} M, \mathbb{R}\right)\left(k \in \mathbb{N}^{*}\right)$ satisfies : $\forall x \in U, \forall\left(u_{2}, \ldots, u_{k}\right) \in\left(T_{x} M\right)^{k-1}, d_{x}^{k} f\left(., u_{2}, \ldots, u_{k}\right) \in T_{x}^{b} M$.
$\mathfrak{A}(U)$ is sub-algebra of $C^{\infty}(U)$ (cf. [3])

4 :continuation

On partial Banach-Lie algebroid
structure:
some motivations

Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

Considering the canonical bilinear crossing $<,>$ between $T^{*} M$ and $T M$, we introduce :

Definition 4

A morphism $P: T^{b} M \rightarrow T M$ is called skew-symmetric if it satisfies the relation

$$
<\xi, P(\eta)>=-<\eta, P(\xi)>
$$

4 :continuation

On partial Banach-Lie algebroid
structure:
some motivations

Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifofd's.

Considering the canonical bilinear crossing $<,>$ between $T^{*} M$ and $T M$, we introduce :

Definition 4

A morphism $P: T^{b} M \rightarrow T M$ is called skew-symmetric if it satisfies the relation
$<\xi, P(\eta)>=-<\eta, P(\xi)>$ for ξ and η of $T_{x}^{b} M$.
We say that P is an almost Poisson anchor.

4 :continuation

On partial Banach-Lie algebroid
structure:
some motivations

Fernand

Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifofd's.

Considering the canonical bilinear crossing $<,>$ between $T^{*} M$ and $T M$, we introduce :

Definition 4

A morphism $P: T^{b} M \rightarrow T M$ is called skew-symmetric if it satisfies the relation
$<\xi, P(\eta)>=-<\eta, P(\xi)>$ for ξ and η of $T_{x}^{b} M$.
We say that P is an almost Poisson anchor.
Given such a morphism P, on $\mathfrak{A}(U)$ we define the bracket : $\{f, g\}_{P}=-<d f, P(d g)>\quad(P)$

4 :continuation

On partial Banach-Lie algebroid
structure:
some motivations

Fernand

Pelletier

0 . Outline
1.

Introduction
1.

Introduction

Considering the canonical bilinear crossing $<,>$ between $T^{*} M$ and $T M$, we introduce :

Definition 4

A morphism $P: T^{b} M \rightarrow T M$ is called skew-symmetric if it satisfies the relation
$<\xi, P(\eta)>=-<\eta, P(\xi)>$ for ξ and η of $T_{x}^{b} M$.
We say that P is an almost Poisson anchor.
Given such a morphism P, on $\mathfrak{A}(U)$ we define the bracket : $\{f, g\}_{P}=-<d f, P(d g)>\quad(P)$
From the definition 1 , the relation (P) defines a skew-symmetric bilinear map $\{., .\}_{P}: \mathfrak{A}(U) \times \mathfrak{A}(U) \rightarrow \mathfrak{A}(U)$ and satisfies the Leibniz property.

4 :continuation

On partial Banach-Lie algebroid structure: some motivations

Fernand Pelletier
0. Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

Definition 5

Let $p^{b}: T^{b} M \rightarrow M$ be a weak subbundle of $p_{M}^{*}: T^{*} M \rightarrow M$ and $P: T^{b} M \rightarrow T M$ an almost Poisson anchor.

4 :continuation

On partial Banach-Lie algebroid structure: some motivations

Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifofd's.

Definition 5

Let $p^{\mathrm{b}}: T^{\mathrm{b}} M \rightarrow M$ be a weak subbundle of $p_{M}^{*}: T^{*} M \rightarrow M$ and $P: T^{b} M \rightarrow T M$ an almost Poisson anchor. We say that
$\left(T^{b} M, p^{b}, M, P,\{., .\}_{P}\right)$ is a partial Poisson manifold if the bracket $\{., .\}_{P}$ satisfies the Jacobi identity. In this case, P is called a Poisson anchor.

4 :continuation

On partial Banach-Lie algebroid structure: some motivations

Fernand

Pelletier

0 . Outline

Definition 5

Let $p^{\mathrm{b}}: T^{\mathrm{b}} M \rightarrow M$ be a weak subbundle of $p_{M}^{*}: T^{*} M \rightarrow M$ and $P: T^{b} M \rightarrow T M$ an almost Poisson anchor. We say that
$\left(T^{b} M, p^{b}, M, P,\{., .\}_{P}\right)$ is a partial Poisson manifold if the bracket $\{., .\}_{P}$ satisfies the Jacobi identity.
In this case, P is called a Poisson anchor.
Note that for a weak symplectic form ω, when $\omega^{b}(T M)$ has a structure of weak subbundle of $T^{*} M$ or if ω is strong symplectic, the situation $T^{b} M=\omega^{b}(T M)$ and $P=\left(\omega^{b}\right)^{-1}$ are particular cases of Definition 5.
When $T^{b} M=T^{*} M$, the Definition 5 is precisely the definition of Banach-Lie Poisson manifold defined in [4].

4 :continuation

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion o. Poisson manifolds.

As classically, given a partial Poisson manifold ($T^{\text {b }} M, p^{b}, M, P,\{., .\}_{P}$), any function $f \in \mathfrak{A}(U)$ is called a Hamiltonian and the associated vector field $X_{f}=P(d f)$ is called a Hamiltonian vector field.

4 :continuation

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifofds.

As classically, given a partial Poisson manifold ($T^{b} M, p^{b}, M, P,\{., .\}_{P}$), any function $f \in \mathfrak{A}(U)$ is called a Hamiltonian and the associated vector field $X_{f}=P(d f)$ is called a Hamiltonian vector field. We then have
$\{f, g\}_{P}=X_{f}(g)$ and also $\left[X_{f}, X_{g}\right]=X_{\{f, g\}}$ which is equivalent to $\left.P(d\{f, g\})_{P}\right)=[P(d f), P(d g)] \quad(P P)$.

4 :continuation

On partial Banach-Lie algebroid structure:
some motivations

Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about gene-
ralization of the notion of
Poisson manifolds.
2. Problems about gene

Theorem 1

4 :continuation

On partial Banach-Lie algebroid structure: some motivations

Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

Theorem 1

Let $\left(T^{b} M, p^{b}, M, P,\{., .\}_{P}\right)$ be a partial Poisson manifold. We denote by \mathfrak{P}_{M} the sheaf of $\mathfrak{A}(U)$-modules generated by the set $\{d f, f \in \mathfrak{A}(U)\}$. Then we have the following properties :

4 :continuation

On partial Banach-Lie algebroid structure: some motivations

Fernand

Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifords.

Theorem 1

Let $\left(T^{b} M, p^{b}, M, P,\{., .\}_{P}\right)$ be a partial Poisson manifold. We denote by \mathfrak{P}_{M} the sheaf of $\mathfrak{A}(U)$-modules generated by the set $\{d f, f \in \mathfrak{A}(U)\}$. Then we have the following properties :

1. We can define a sheaf of "almost" Lie brackets $[., .]_{P}$ on the sheaf \mathfrak{P}_{M} by :
$[\alpha, \beta]_{P}=L_{P(\alpha)} \beta-L_{P(\beta)} \alpha-d<\alpha, P(\beta)>$
for any open set U in M and any sections α and β in $\mathfrak{P}(U)$ where L_{X} is the Lie derivative.

4 :continuation

On partial Banach-Lie algebroid structure: some motivations

Fernand

Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

Theorem 1

Let $\left(T^{b} M, p^{b}, M, P,\{., .\}_{P}\right)$ be a partial Poisson manifold. We denote by \mathfrak{P}_{M} the sheaf of $\mathfrak{A}(U)$-modules generated by the set $\{d f, f \in \mathfrak{A}(U)\}$. Then we have the following properties :

1. We can define a sheaf of "almost" Lie brackets $[., .]_{P}$ on the sheaf \mathfrak{P}_{M} by :
$[\alpha, \beta]_{P}=L_{P(\alpha)} \beta-L_{P(\beta)} \alpha-d<\alpha, P(\beta)>$
for any open set U in M and any sections α and β in $\mathfrak{P}(U)$ where L_{X} is the Lie derivative.
Moreover, we have $\forall(f, g) \in(\mathfrak{A}(U))^{2},[d f, d g]_{P}=P\left(d\{f, g\}_{P}\right)$

4 :continuation

On partial Banach-Lie algebroid structure: some motivations

Fernand

Pelletier
0. Outline

Theorem 1

Let $\left(T^{b} M, p^{b}, M, P,\{., .\}_{P}\right)$ be a partial Poisson manifold. We denote by \mathfrak{P}_{M} the sheaf of $\mathfrak{A}(U)$-modules generated by the set $\{d f, f \in \mathfrak{A}(U)\}$. Then we have the following properties :

1. We can define a sheaf of "almost" Lie brackets $[., .]_{P}$ on the sheaf \mathfrak{P}_{M} by :
$[\alpha, \beta]_{P}=L_{P(\alpha)} \beta-L_{P(\beta)} \alpha-d<\alpha, P(\beta)>$
for any open set U in M and any sections α and β in $\mathfrak{P}(U)$ where L_{X} is the Lie derivative.
Moreover, we have $\forall(f, g) \in(\mathfrak{A}(U))^{2},[d f, d g]_{P}=P\left(d\{f, g\}_{P}\right)$
2. $\left(\mathfrak{P}_{M},[., .]_{P}\right)$ is a sheaf of Poisson-Lie algebras. In particular, $\left(T^{b} M, p_{M}^{b}, M, P, \mathfrak{P}_{M},[.,]_{P}\right)$ is a strong partial Banach-Lie algebroid

4 :continuation

On partial Banach-Lie algebroid structure: some motivations

Fernand

Pelletier

Theorem 1

Let $\left(T^{b} M, p^{b}, M, P,\{., .\}_{P}\right)$ be a partial Poisson manifold. We denote by \mathfrak{P}_{M} the sheaf of $\mathfrak{A}(U)$-modules generated by the set $\{d f, f \in \mathfrak{A}(U)\}$. Then we have the following properties :

1. We can define a sheaf of "almost" Lie brackets $[., .]_{P}$ on the sheaf \mathfrak{P}_{M} by :
$[\alpha, \beta]_{P}=L_{P(\alpha)} \beta-L_{P(\beta)} \alpha-d<\alpha, P(\beta)>$
for any open set U in M and any sections α and β in $\mathfrak{P}(U)$ where L_{X} is the Lie derivative.
Moreover, we have $\forall(f, g) \in(\mathfrak{A}(U))^{2},[d f, d g]_{P}=P\left(d\{f, g\}_{P}\right)$
2. $\left(\mathfrak{P}_{M},[., .]_{P}\right)$ is a sheaf of Poisson-Lie algebras. In particular, $\left(T^{b} M, p_{M}^{b}, M, P, \mathfrak{P}_{M},[.,,]_{P}\right)$ is a strong partial Banach-Lie algebroid 3. If $T^{b} M=T^{*} M$ and P is an injective morphism, then $\left(T^{*} M, M, P,[.,]_{P}\right)$ is a Lie algebroid. This situation occurs in particular for strong symplectic structures.

5 : Prolongation of a Banach-Lie algebroid

On partial
Banach-Lie algebroid
structure:
1.

We consider a Banach Lie algebroid $\left(\mathcal{A}, \pi, M, \rho,[.,]_{\mathcal{A}}\right)$ with typical fiber \mathbb{A}. Let $\mathcal{A}_{x}:=\pi^{-1}(x)$ be the fiber over $x \in M$.

The prolongation $\mathbf{T} \mathcal{A}$ of the anchored Banach bundle $(\mathcal{A}, \pi, M, \rho)$ over \mathcal{A} is the set $\left\{(x, a, u, X) u \in \mathcal{A}_{x}, \quad X \in T_{(x, a)} \mathcal{A}: \rho(x, u)=T \pi(X)\right\}$.

5 : Prolongation of a Banach-Lie algebroid

On partial
Banach-Lie
algebroid
structure:
We consider a Banach Lie algebroid $\left(\mathcal{A}, \pi, M, \rho,[.,]_{\mathcal{A}}\right)$ with typical fiber \mathbb{A}. Let $\mathcal{A}_{x}:=\pi^{-1}(x)$ be the fiber over $x \in M$.

The prolongation $\mathbf{T} \mathcal{A}$ of the anchored Banach bundle $(\mathcal{A}, \pi, M, \rho)$ over \mathcal{A} is the set $\left\{(x, a, u, X) u \in \mathcal{A}_{x}, \quad X \in T_{(x, a)} \mathcal{A}: \rho(x, u)=T \pi(X)\right\}$. If we set $\mathbf{p}(x, a, u, X)=(x, a)$ we have a Banach vector bundle $\mathrm{p}: \mathbf{T} \mathcal{A} \rightarrow \mathcal{A}$ with typical fiber $\mathbb{A} \times \mathbb{A}$ which is also the pull-back of $\pi: \mathcal{A} \rightarrow M$ over $\rho: \mathcal{A} \rightarrow T M$. We have an anchor $\hat{\rho}: \mathbf{T} \mathcal{A} \rightarrow T \mathcal{A}$ given by $\hat{\rho}(x, a, u, X)=X \in T_{(x, a)} \mathcal{A}$.

5 : continuation

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifofd's.

Note that the restriction of $\hat{\rho}$ to $\operatorname{ker} \mathbf{p}$ is an isomorphism onto the vertical bundle of the tangent bundle $p_{\mathcal{A}}: T \mathcal{A} \rightarrow \mathcal{A}$. Therefore, we can identify these bundles which will be denoted $\mathbf{V} \mathcal{A}$ and so can be identified with $\mathcal{A} \times{ }_{M} \mathcal{A}$. By the way, each vertical vector field on \mathcal{A} can be considered as a section of $\mathbf{V} \mathcal{A}$.

5 : continuation

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier
0. Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

Note that the restriction of $\hat{\rho}$ to $\operatorname{ker} \mathbf{p}$ is an isomorphism onto the vertical bundle of the tangent bundle $p_{\mathcal{A}}: T \mathcal{A} \rightarrow \mathcal{A}$. Therefore, we can identify these bundles which will be denoted $\mathbf{V} \mathcal{A}$ and so can be identified with $\mathcal{A} \times_{M} \mathcal{A}$. By the way, each vertical vector field on \mathcal{A} can be considered as a section of $\mathrm{V} \mathcal{A}$.
Let $\widetilde{\mathcal{A}}$ be the pull-back of $\pi: \mathcal{A} \rightarrow M$ over π. Then we have the following commutative diagrams :

5 : continuation

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier
0. Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifoids.

Note that the restriction of $\hat{\rho}$ to $\operatorname{ker} \mathbf{p}$ is an isomorphism onto the vertical bundle of the tangent bundle $p_{\mathcal{A}}: T \mathcal{A} \rightarrow \mathcal{A}$. Therefore, we can identify these bundles which will be denoted $\mathbf{V} \mathcal{A}$ and so can be identified with $\mathcal{A} \times_{M} \mathcal{A}$. By the way, each vertical vector field on \mathcal{A} can be considered as a section of $\mathrm{V} \mathcal{A}$.
Let $\widetilde{\mathcal{A}}$ be the pull-back of $\pi: \mathcal{A} \rightarrow M$ over π. Then we have the following commutative diagrams :

Since for local section $\widetilde{\mathfrak{u}}$ of $\widetilde{\mathcal{A}}$ the value $\widetilde{\mathfrak{u}}(x, u)$ belongs to $\widetilde{\mathcal{A}}_{(x, a)}$ which is identified with \mathcal{A}_{x}, it follows that $\rho(\widetilde{\mathfrak{u}}(x, u))$ is well defined and belongs to $T_{x} \mathcal{A}$.

5 : continuation

On partial
Banach-Lie algebroid structure: some motivations

Fernand Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion o. Poisson manifolds.

Thus each local section \mathcal{X} of $\mathbf{T} \mathcal{A}$ can be identified with a pair $(\tilde{\mathfrak{u}}, X)$ where $\widetilde{\mathfrak{u}}$ is a section of $\widetilde{\mathcal{A}}$ and X a vector field on \mathcal{A} such that we have $\hat{\rho}(\widetilde{\mathfrak{u}}, X)=X$ where $T \pi(X)=\rho(\widetilde{\mathfrak{u})}$

5 : continuation

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

Thus each local section \mathcal{X} of $\mathbf{T} \mathcal{A}$ can be identified with a pair $(\tilde{\mathfrak{u}}, X)$ where $\widetilde{\mathfrak{u}}$ is a section of $\widetilde{\mathcal{A}}$ and X a vector field on \mathcal{A} such that we have $\hat{\rho}(\widetilde{\mathfrak{u}}, X)=X$ where $T \pi(X)=\rho(\widetilde{\mathfrak{u}})$
As VA is also isomorphic to $\mathcal{A} \times_{M} \mathcal{A}$, each any section \mathfrak{u} of \mathcal{A} is associated a canonical section of \mathfrak{u}^{v} of $\mathbf{V} \mathcal{A}$ given by $\mathfrak{u}^{v}(x, a)=(x, a, 0, \mathfrak{u}(x))$.

5 : continuation

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

Thus each local section \mathcal{X} of $\mathbf{T} \mathcal{A}$ can be identified with a pair $(\tilde{\mathfrak{u}}, X)$ where $\widetilde{\mathfrak{u}}$ is a section of $\widetilde{\mathcal{A}}$ and X a vector field on \mathcal{A} such that we have $\hat{\rho}(\tilde{\mathfrak{u}}, X)=X$ where $T \pi(X)=\rho(\widetilde{\mathfrak{u}})$
As $\mathrm{V} \mathcal{A}$ is also isomorphic to $\mathcal{A} \times_{M} \mathcal{A}$, each any section \mathfrak{u} of \mathcal{A} is associated a canonical section of \mathfrak{u}^{v} of $\mathbf{V} \mathcal{A}$ given by $\mathfrak{u}^{v}(x, a)=(x, a, 0, \mathfrak{u}(x))$.
In finite dimension, $\mathbf{T} \mathcal{A}$ can be provided with a canonical Lie bracket induced by the Lie bracket on \mathcal{A}. Unfortunately this result is no more true in infinite dimensional Banach setting. Note that since each vertical section of $\mathbf{T} \mathcal{A}$ is a vertical vector field, the usual Lie bracket of vector field gives rises to a Lie bracket for sections of $\mathbf{V} \mathcal{A}$ and we get a natural structure on Lie algebroid on $\mathbf{V A}$.

5 : continuation

Thus each local section \mathcal{X} of $\mathbf{T} \mathcal{A}$ can be identified with a pair $(\tilde{\mathfrak{u}}, X)$ where $\widetilde{\mathfrak{u}}$ is a section of $\widetilde{\mathcal{A}}$ and X a vector field on \mathcal{A} such that we have $\hat{\rho}(\tilde{\mathfrak{u}}, X)=X$ where $T \pi(X)=\rho(\widetilde{\mathfrak{u}})$
As $\mathrm{V} \mathcal{A}$ is also isomorphic to $\mathcal{A} \times_{M} \mathcal{A}$, each any section \mathfrak{u} of \mathcal{A} is associated a canonical section of \mathfrak{u}^{v} of $\mathbf{V} \mathcal{A}$ given by $\mathfrak{u}^{v}(x, a)=(x, a, 0, \mathfrak{u}(x))$.
In finite dimension, $\mathbf{T} \mathcal{A}$ can be provided with a canonical Lie bracket induced by the Lie bracket on \mathcal{A}. Unfortunately this result is no more true in infinite dimensional Banach setting. Note that since each vertical section of $\mathbf{T} \mathcal{A}$ is a vertical vector field, the usual Lie bracket of vector field gives rises to a Lie bracket for sections of $\mathbf{V} \mathcal{A}$ and we get a natural structure on Lie algebroid on $\mathbf{V} \mathcal{A}$.
We can extend the Lie bracket on $\mathbf{V A}$, only to some type of local or global sections, but not for all sections of $\mathbf{T} A$ and so $\mathbf{T} \mathcal{A}$ does not have a Lie algebroid structure.

5 : continuation

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

Precisely, a section of type $\mathcal{X}=(\mathfrak{u} \circ \hat{\pi}, X)$ where \mathfrak{u} is a section of \mathcal{A}, is called a projectable section. Since ρ induces a morphism of Lie algebra for modules of local sections, and since \mathcal{A} is a Lie algebroid this implies that, for projectable sections, we can define a Lie bracket by

$$
\left[(\mathfrak{u} \circ \hat{\pi}, X),\left(\mathfrak{u}^{\prime} \circ \hat{\pi}, X^{\prime}\right)\right]_{\mathbf{T} \mathcal{A}}:=\left(\left[\mathfrak{u}, \mathfrak{u}^{\prime}\right]_{\mathcal{A}} \circ \hat{\pi},\left[X, X^{\prime}\right]\right) \quad(\text { Brak })
$$

5 : continuation

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

Precisely, a section of type $\mathcal{X}=(\mathfrak{u} \circ \hat{\pi}, X)$ where \mathfrak{u} is a section of \mathcal{A}, is called a projectable section. Since ρ induces a morphism of Lie algebra for modules of local sections, and since \mathcal{A} is a Lie algebroid this implies that, for projectable sections, we can define a Lie bracket by
$\left[(\mathfrak{u} \circ \hat{\pi}, X),\left(\mathfrak{u}^{\prime} \circ \hat{\pi}, X^{\prime}\right)\right]_{\mathbf{T} \mathcal{A}}:=\left(\left[\mathfrak{u}, \mathfrak{u}^{\prime}\right]_{\mathcal{A}} \circ \hat{\pi},\left[X, X^{\prime}\right]\right) \quad($ Brak $)$
where $\left[X, X^{\prime}\right]$ is the Lie bracket of vector fields of $T \mathcal{A}$. Therefore $\left[(\mathfrak{u} \circ \hat{\pi}, X),\left(\mathfrak{u}^{\prime} \circ \hat{\pi}, X^{\prime}\right)\right]_{\mathbf{T} \mathcal{A}}$ a projectable section.

5 : continuation

On partial
Banach-Lie
algebroid
structure:
some
motivations
Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifoids.

Precisely, a section of type $\mathcal{X}=(\mathfrak{u} \circ \hat{\pi}, X)$ where \mathfrak{u} is a section of \mathcal{A}, is called a projectable section. Since ρ induces a morphism of Lie algebra for modules of local sections, and since \mathcal{A} is a Lie algebroid this implies that, for projectable sections, we can define a Lie bracket by
$\left[(\mathfrak{u} \circ \hat{\pi}, X),\left(\mathfrak{u}^{\prime} \circ \hat{\pi}, X^{\prime}\right)\right]_{\mathbf{T} \mathcal{A}}:=\left(\left[\mathfrak{u}, \mathfrak{u}^{\prime}\right]_{\mathcal{A}} \circ \hat{\pi},\left[X, X^{\prime}\right]\right) \quad(\operatorname{Brak})$
where $\left[X, X^{\prime}\right]$ is the Lie bracket of vector fields of $T \mathcal{A}$. Therefore $\left[(\mathfrak{u} \circ \hat{\pi}, X),\left(\mathfrak{u}^{\prime} \circ \hat{\pi}, X^{\prime}\right)\right]_{\mathbf{T} \mathcal{A}}$ a projectable section.
We denote by $\mathfrak{P}\left(\mathbf{T} \mathcal{A}_{U}\right)$ the $C^{\infty}\left(\mathcal{A}_{U}\right)$-module generated by the set of projectable sections defined on \mathcal{A}_{U}. Each module $\mathfrak{P}\left(\mathbf{T} \mathcal{A}_{U}\right)$ has the following properties :

5 : continuation

On partial Banach-Lie algebroid structure: some motivations

Fernand

Pelletier

Precisely, a section of type $\mathcal{X}=(\mathfrak{u} \circ \hat{\pi}, X)$ where \mathfrak{u} is a section of \mathcal{A}, is called a projectable section. Since ρ induces a morphism of Lie algebra for modules of local sections, and since \mathcal{A} is a Lie algebroid this implies that, for projectable sections, we can define a Lie bracket by
$\left[(\mathfrak{u} \circ \hat{\pi}, X),\left(\mathfrak{u}^{\prime} \circ \hat{\pi}, X^{\prime}\right)\right]_{\mathbf{T} \mathcal{A}}:=\left(\left[\mathfrak{u}, \mathfrak{u}^{\prime}\right]_{\mathcal{A}} \circ \hat{\pi},\left[X, X^{\prime}\right]\right) \quad($ Brak $)$
where $\left[X, X^{\prime}\right]$ is the Lie bracket of vector fields of $T \mathcal{A}$. Therefore $\left[(\mathfrak{u} \circ \hat{\pi}, X),\left(\mathfrak{u}^{\prime} \circ \hat{\pi}, X^{\prime}\right)\right]_{\mathbf{T} \cdot \mathcal{A}}$ a projectable section.
We denote by $\mathfrak{P}\left(\mathbf{T} \mathcal{A}_{U}\right)$ the $C^{\infty}\left(\mathcal{A}_{U}\right)$-module generated by the set of projectable sections defined on \mathcal{A}_{U}. Each module $\mathfrak{P}\left(\mathbf{T} \mathcal{A}_{U}\right)$ has the following properties :

Lemma

For any open subset U in M, there exists a well defined Lie bracket [., .] $\mathbf{T}_{\mathcal{A}}$ on $\mathfrak{P}\left(\mathbf{T} \mathcal{A}_{U}\right)$ which provides $\mathfrak{P}\left(\mathbf{T} \mathcal{A}_{U}\right)$ with a Lie algebra structure and whose restriction to projectable sections is given by the relation (Brak).

Fernand Pelletier

5 : continuation

On partial Banach-Lie algebroid
structure:
some motivations

Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifofd's.

Finally we have :

Theorem 2

The set of modules $\left\{\mathfrak{P}\left(\mathbf{T} \mathcal{A}_{U}\right)\right.$: U open set in $\left.M\right\}$ defines a sheaf of $C^{\infty}\left(\mathcal{A}_{U}\right)$-module modules denoted $\mathfrak{P}_{\mathcal{A}}$ on \mathcal{A} which gives rise to a strong partial Banach-Lie algebroid on the anchored bundle $\left(\mathbf{T} \mathcal{A}, \mathbf{p}, \mathcal{A}, \hat{\rho},[., .]_{\mathbf{T} \mathcal{A}}\right)$.

5 : continuation

On partial Banach-Lie algebroid structure: some motivations

Fernand
Pelletier

0 . Outline
1.

Introduction
1.

Introduction
1.

Introduction
2. Problems about generalization of the notion of Poisson manifolds.

Finally we have :

Theorem 2

The set of modules $\left\{\mathfrak{P}\left(\mathbf{T} \mathcal{A}_{U}\right)\right.$: U open set in $\left.M\right\}$ defines a sheaf of $C^{\infty}\left(\mathcal{A}_{U}\right)$-module modules denoted $\mathfrak{P}_{\mathcal{A}}$ on \mathcal{A} which gives rise to a strong partial Banach-Lie algebroid on the anchored bundle $\left(\mathbf{T} \mathcal{A}, \mathbf{p}, \mathcal{A}, \hat{\rho},[., .]_{\mathbf{T} \mathcal{A}}\right)$. Moreover, the restriction of the bracket $[., .]_{\mathbf{T} \mathcal{A}}$ to the module of vertical sections induces a Banach-Lie algebroid structure on the anchored subbundle ($\left.\mathbf{V} \mathcal{A}, \mathbf{p}_{\mid \mathbf{V A}}, \mathcal{A}, \hat{\rho},[., .]_{\mathbf{T} \mathcal{A}}\right)$ which is independent of the choice of the bracket $[., .]_{\mathcal{A}}$ on \mathcal{A}.

5 : continuation

On partial Banach-Lie algebroid structure: some motivations

Fernand

Pelletier

Finally we have :

Theorem 2

The set of modules $\left\{\mathfrak{P}\left(\mathbf{T} \mathcal{A}_{U}\right): U\right.$ open set in $\left.M\right\}$ defines a sheaf of $C^{\infty}\left(\mathcal{A}_{U}\right)$-module modules denoted $\mathfrak{P}_{\mathcal{A}}$ on \mathcal{A} which gives rise to a strong partial Banach-Lie algebroid on the anchored bundle $\left(\mathbf{T} \mathcal{A}, \mathbf{p}, \mathcal{A}, \hat{\rho},[.,]_{\mathbf{T} \mathcal{A}}\right)$. Moreover, the restriction of the bracket $[., .]_{\mathbf{T} \mathcal{A}}$ to the module of vertical sections induces a Banach-Lie algebroid structure on the anchored subbundle ($\left.\mathbf{V} \mathcal{A}, \mathbf{p}_{\mid \mathbf{V A}}, \mathcal{A}, \hat{\rho},[., .]_{\mathbf{T} \mathcal{A}}\right)$ which is independent of the choice of the bracket $[.,]_{\mathcal{A}}$ on \mathcal{A}.
If the Banach bundle $\pi: \mathcal{A} \rightarrow M$ has a finite dimensional fiber then
$\left.(\mathbf{T} \mathcal{A}, \mathbf{p}, \mathcal{A}, \hat{\rho}),[., .]_{\mathbf{T} \mathcal{A}}\right)$ is a Banach-Lie algebroid.

6. References.

On partial Banach-Lie algebroid structure: some motivations

Fernand Pelletier

0 . Outline 1. Introduction 1. Introduction

國 D. Beltiță, T. Goliński, G. Jakimowicz, F. Pelletier, Banach-Lie groupoids and generalized inversion. J. Funct. Anal. 276 (2019), no. 5, 1528-1574.
D. Beltiță, T. Goliński, A. B. Tumpach, Queer Poisson brackets. J. Geom. Phys. 132 (2018), 358-362.
P. Cabau, F. Pelletier, Direct and Projective Limits of Banach Structures. With the assistance and partial collaboration of Daniel Beltiță (2021). Submitted for edition
(R. Odzijewicz, T.S. Ratiu, Banach Lie-Poisson spaces and reduction. Comm. Math. Phys. 243 (2003), no. 1, 1-54.

On partial Banach-Lie algebroid structure: some motivations

Fernand
Pelletier

0 . Outline

Thank you for your attention!

1
Introduction

```
1.
Introduction
1.
Introduction
2. Problems
about gene-
ralization of
the notion of
Poisson
manifolds.
2. Problems
about gene
```

