## Reflection Positivity on the Sphere

Gestur Ólafsson, LSU<br>Joint project with K-H. Neeb, Erlangen, Germany<br>XXXIX Workshop on Geometric Methods in Physics<br>Bialystok, Polland<br>June 19 to June 25, 2022

## Structure of the talk

In this presentation I will give a brief overview of reflection positivity in geometry and representation theory. This is a part of a joint project with K-H. Neeb, including work with J. Frahm, V. Morinelli and B. Ørsted.

In more details:

- Short history of reflection positivity.
- Reflection positive Hilbert spaces.
- Reflection positive representations.
- Cartan duality
- Dissecting manifolds.
- The basic example: The sphere.


## A brief history of reflection positivity

- Reflection Positivity originated as one of the Osterwalder-Schrader axioms of constructive quantum field theory (1973/75).
- Very simplified version of two of the Wightman, or Gårding-Wightman axioms, around 1964:
- Hilbert space: States are elements of an Hilbert space $\mathcal{H}$ carrying an unitary positive-energy representation $\pi$ of the Poincaré group $(n=4)$ : $\mathrm{P}_{n}=\mathrm{O}_{1, n-1}(\mathbb{R})^{\uparrow} \ltimes \mathbb{R}^{n}$.
- Representation Theory: $\mathrm{P}_{n}$ acts on $\mathbb{R}^{n}$ by $(A, x) \cdot v=A x+v$. Hence it acts on function by

$$
\lambda_{(A, x)} f(v)=f\left(A^{-1}(v-x)\right) .
$$

## Constructive QFT

- Motivated by the fact that

> Eucledian geometry/quantum mechanics is simpler than
> Lorentzian geometry/quantum field theory

Osterwalder-Schrader in 1973/1975 formulated equivalent axioms two of which are:


## Two of Osterwalder-Schrader Axioms

■ Euclidean covariance:
$\mathrm{P}_{n+1}=\mathrm{O}_{1 . n}^{\uparrow} \ltimes \mathbb{R}^{1, n}$-covariance is replaced by
$\mathrm{E}_{n+1}=\mathrm{SO}_{n+1} \ltimes \mathbb{R}^{n+1}$-covariance.
The representation theory of $\mathrm{E}_{n}$ is much simpler.

■ Reflection positivity: The tool to transform the euclidean fields to the relativistic fields via time reflection, analytic continuation in the time variable and then restrict to purely imaginary time, Wick rotation moving to imaginary time.

## Change of metrics: The Geometry

- On the space time manifold we have a time reflection

$$
\tau\left(\left(x_{0}, x\right)\right)=\left(-x_{0}, x\right)
$$

Then multiply time by $i$ transfer the Euclidean metric form

$$
\left\langle\left(x_{0}, x\right),\left(y_{0}, y\right)\right\rangle_{E}=x_{0} y_{0}+x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

into the Lorentzian form:

$$
\left\langle\left(x_{0}, x\right),\left(y_{0}, y\right)\right\rangle_{\mathrm{L}}=-x_{0} y_{0}+\langle x, y\rangle=[x, y] .
$$

## Action on functions, distributions and transformations

- The time reflection acts on

■ Functions: $\varphi \mapsto \varphi \circ \tau=\varphi^{\tau}$
■ Distributions (conjugate linear maps $\eta: C_{c}^{\infty}(M) \rightarrow \mathbb{C}$ )

$$
\eta^{\tau}(\varphi)=\eta\left(\varphi^{\tau}\right)
$$

■ Isometries: $f^{\tau}(x)=f(\tau(x))$.
■ In the flat case this leads to a duality of symmetry groups (c-duality, talk by Neeb) $\mathrm{E}_{n+1} \leftrightarrow \mathrm{P}_{n+1}$. both groups acting by $(a, v)(x)=a x+v$.

Question: What about representations of the isometry groups?

## Basic Concepts I: Reflection Positive Hilbert Spaces

- Based on the assumption that states are elements of an Hilbert space one define:


## Definition

A reflection positive Hilbert space is a triple $\left(\mathcal{E}, \mathcal{E}_{+}, \theta\right)$ s.t.

- (Reflection) $\mathcal{E}$ a Hilbert space and $\theta: \mathcal{E} \rightarrow \mathcal{E}$ is unitary linear involution: $\theta^{2}=$ id
- (Positivity) $\mathcal{E}_{+}$a subspace s.t. the Hermitian form

$$
\langle v, w\rangle_{\theta}=\langle\theta v, w\rangle
$$

is non-negative on $\mathcal{E}_{+},\langle\theta v, v\rangle \geq 0$ for all $v \in \mathcal{E}_{+}$.

## Basic Concepts II: the O-S map/functor

$\square \mathcal{N}:=\left\{u \in \mathcal{E}_{+} \mid\|u\|_{\theta}=0\right\}=\left\{u \in \mathcal{E}_{+} \mid\left(\forall w \in \mathcal{E}_{+}\right)\langle u, w\rangle_{\theta}=0\right\}$.

- $\hat{\mathcal{E}}=$ the completion of $\mathcal{E}_{+} / \mathcal{N}$ in the norm $\|\cdot\|_{\theta}$, a Hilbert space.
- $q: \mathcal{E}_{+} \rightarrow \hat{\mathcal{E}}$ or $v \mapsto \hat{v}$, the quotient map $v \mapsto v+\mathcal{N}$
- $T: \mathcal{D} \rightarrow \mathcal{E}_{+}, \mathcal{D} \subseteq \mathcal{E}_{+}$a (possibly unbounded) linear operator with $T(\mathcal{D} \cap \mathcal{N}) \subset \mathcal{N}$, then

$$
\hat{T}: \hat{\mathcal{E}} \rightarrow \hat{\mathcal{E}} \quad \hat{T} \hat{v}:=\widehat{(T v)}
$$

denotes the corresponding operator defined on $\hat{\mathcal{D}}$.

- Work by several peopleJ. Dimock, J. Fröhlich, Osterwalder, Seiler, Glimm, Jaffe, Jorgensen, Ritter, Klein, Landau, Nelson, Schrader, ...


## c-duality I

## Theorem

If $X$ is a connected Riemannian manifold with involution $\tau_{X}$ with isolated fixed points then $G=\operatorname{Iso}(X)_{e}$ is a finite dimensional Lie group with involution $\tau_{G}(g)=\tau_{X} g \tau_{X}$.

- $\tau_{G}$ defines an involution on $\mathfrak{g}=$ Lie $G$ and we have

- From now on we simply write $\tau$. We will also choose $H \subset G$ closed such that

$$
G_{e}^{\tau} \subset H \subset G \quad \text { (symmetric subgroup). }
$$

- We let $\mathfrak{g}^{c}=\mathfrak{h} \oplus i \mathfrak{q}$ (Lie algebra) and $G^{c}$ the simply connected Lie group with Lie algebra $\mathfrak{g}^{c}$ and note that $\tau$ defines an involution on $G^{c}$.


## Unitary Representations

- Starting with a
- Reflection positive Hilbert space $\left(\mathcal{E}, \mathcal{E}_{+}, \theta\right)$
- A triple $(G, \pi, \tau)$ where $\pi$ is a unitary representation of $G$ on $\mathcal{E}$ and $\tau: G \rightarrow G$ is an involution


## Definition

The representation $\pi$ is reflection positive if $\pi(H) \mathcal{E}_{+} \subset \mathcal{E}_{+}$and we have the compatibility condition

$$
\begin{equation*}
\theta \pi(g) \theta=\pi(\tau(g)) \tag{1}
\end{equation*}
$$

## Transfer of unitarity

- Assuming that the derived representation $\pi^{\infty}$ defines a densely defined operator on $\mathcal{E}_{+}$then (1) implies that the derived representation on $\hat{\mathcal{E}}$ satisfies

$$
\widehat{\pi}^{\infty}(X) \text { is } \begin{cases}\text { skew symmetric } & \widehat{\pi}^{\infty}(X)^{*}=-\widehat{\pi}^{\infty}(X), X \in \mathfrak{h} \\ \text { symmetric } & \widehat{\pi}^{\infty}(X)^{*}=\widehat{\pi}^{\infty}(X), X \in \mathfrak{q}\end{cases}
$$

- Thus $\pi^{c}(X+i Y)=\pi^{\infty}(X)+i \pi^{\infty}(Y), \quad X \in \mathfrak{h}, Y \in \mathfrak{q}$, defines a representation of $\mathfrak{g}^{c}$ in the space of slew symmetric operators on $\widehat{\mathcal{E}}$.

Question: When does this define a unitary representation $\widehat{\pi}$ of $G^{c}$ ?

Partial answers: Lüscher-Mack 1975, R. Schrader 1986, Jorgensen-Ó. 1998/2000, Merigon-Neeb-Ó 2015

## Dissecting manifolds

## Definition

The pair ( $\mathrm{X}, \tau$ ), where X is a manifold and $\tau: \mathrm{X} \rightarrow \mathrm{X}$ an involution, is dissecting if $X \backslash X^{\tau}$ is not connected.

The idea behind the definition is that (see more in a moment) we can think of $\tau$ as time reflection leading to a decomposition of the manifold into:

$$
X=X_{+} \dot{U} X_{0} \cup \dot{U} X_{-}, \quad X_{0}=X^{\tau}, \quad \tau\left(X_{+}\right)=X_{-} .
$$

and

$$
T_{x} \mathrm{X}=\underbrace{T_{+1}^{T_{x}^{-}(\mathrm{X})}}_{\substack{-1 \text { eigenspace, time } \\ \text { one-dimensional }}} \underbrace{T_{x}^{+}(\mathrm{X})}_{\text {eigenspace, space }}
$$

## Fun facts, several authors

## Theorem

Let X be a connected smooth manifold.
(i) If $g$ is a complete Riemannian metric on X and $\tau$ is a dissecting isometry, then $\tau$ is an involution.
(ii) If $\tau \in \operatorname{Diff}(M)$ is an involution, then there exists a $\tau$-invariant complete Riemannian metric on X .
(iii) If $\tau \in \operatorname{Diff}(\mathrm{X})$ is a dissecting involution, then $\mathrm{X} \backslash \mathrm{X}^{\tau}$ has two connected components $\mathrm{X}_{ \pm}$with $\tau\left(\mathrm{X}_{ \pm}\right)=\mathrm{X}_{\mp}$ and each component of $X_{0}=X^{\tau}$ is of codimension one.
(iv) If $\tau \in \operatorname{Diff}(\mathrm{X})$ is a reflection and X is simply-connected, then $\tau$ is dissecting and its fixed point set $\mathrm{X}^{\tau}$ is a connected orientable hypersurface.

## Classification, $X$ symmetric space $\simeq G / H$. Neeb-Ó, 2019

## Theorem

Up to coverings, every connected irreducible symmetric space with a dissecting involutive automorphism is a connected component of a quadric

$$
Q:=\left\{x \in \mathbb{R}^{p+q} \mid \beta_{p, q}(x, x)=1\right\}
$$

where

$$
\beta_{p, q}(x, y)=\sum_{j=1}^{p} x_{j} y_{j}-\sum_{j=p+1}^{p+q} x_{j} y_{j}
$$

Here $G=\mathrm{SO}_{p, q}(\mathbb{R})_{0}$ and $H_{0} \cong \mathrm{SO}_{p-1, q}(\mathbb{R})_{0}$ or $H_{0} \cong \mathrm{SO}_{p, q-1}$. Up to conjugation, the dissecting involution is given by

$$
\sigma\left(x_{1}, x\right)=\left(-x_{1}, x\right) \text { or } \sigma\left(x, x_{n}\right)=\left(x,-x_{n}\right)
$$

## Jaffe-Ritter-Anderson/Dimock construction I

- Let $(\mathrm{X}, \tau)$ be a dissecting Riemannian manifold. $\Delta$ the Laplacian.
- For $m>0$ let

$$
C=\left(m^{2}-\Delta\right)^{-1}
$$

bounded on $L^{2}(X)$ and positive.

- (Sobolev) inner product

$$
\langle\varphi, \psi\rangle_{m}=\langle C \varphi, \psi\rangle_{L^{2}}
$$

- Completion: The Sobolev space $H_{-1}(X)$.
- $C$ commutes with all isometries on $X$, in particular

$$
(C \varphi) \circ \tau=C(\varphi \circ \tau)
$$

leading to a unitary rep. of $G=\operatorname{Iso}(X)$.

## Jaffe-Ritter-Anderson/Dimock

## Theorem

Assume that $(\mathrm{X}, \tau)$ is dissecting.
a) Let $\mathcal{E}=H_{-1}(X)$ be the completion of $L^{2}(X)$ w.r.t. $\|\cdot\|_{m}$ and let $\mathcal{E}_{+}$ be the closed subspace generated by $L^{2}\left(\mathrm{X}_{+}\right)$. Define $\theta: \mathcal{E} \rightarrow \mathcal{E}$ by $\theta \varphi=\varphi \circ \tau$. Then $\left(\mathcal{E}, \mathcal{E}_{+}, \theta\right)$ is reflection positive.
b) Let $G=$ Iso $(X)$ and define $\tau: G \rightarrow G$ by $\tau(g)=\tau g \tau$. Define a unitary representation of $G$ on $\mathcal{E}$ by $\pi_{m}(g) \varphi=\varphi \circ \mathrm{g}^{-1}$. Then $\pi_{m}$ is reflection positive.
c)[Dimock, Zero time realization] The space $\hat{\mathcal{E}}$ is isomorphic to the space of elements in $H_{-1}(X)$ supported on $\mathrm{X}_{0}=\mathrm{X}^{\tau}$.

## The sphere $\mathrm{S}^{n}$

- The only compact, dissecting symmetric space is

$$
\mathrm{S}^{n}=\mathrm{SO}_{n+1} / \mathrm{SO}_{n}=\mathrm{O}_{n+1} / \mathrm{O}_{n}
$$

with

$$
\begin{aligned}
\tau\left(x_{0}, x\right) & =\left(-x_{0}, x\right) \\
\tau(g) & =\mathrm{I}_{1, n} g \mathrm{I}_{1, n} \\
\mathrm{~S}_{0}^{n} & =\mathrm{S}^{n \tau}=\left\{(0, x) \mid x \in \mathrm{~S}^{n-1}\right\} \\
\mathrm{S}_{ \pm}^{n} & =\left\{\left(x_{0}, \mathrm{x}\right) \mid \pm x_{0}>0\right\}
\end{aligned}
$$



## The distribution $\Psi$

- Positive definite distribution defined by

$$
\Phi(\varphi \otimes \psi)=\langle\bar{\varphi}, \psi\rangle_{m}=\int_{\mathrm{S}^{n} \times \mathrm{S}^{n}} C \bar{\varphi}(x) \bar{\psi}(y) d \sigma(x) d \sigma(y)
$$

where $\sigma$ is the unique rotational invariant probability measure on $\mathrm{S}^{n}$.

- Satisfies the equation

$$
\left(m^{2}-\Delta\right)_{x} \Phi=\left(m^{2}-\Delta\right) \Phi=\delta(x, y)
$$

- $\Rightarrow$ On $S^{n} \times S^{n} \backslash S^{n}$ given by a $G$-invariant analytic positive definite function $\phi_{m}(x, y)=\phi_{y}(x)$.
- Twisting by $\tau$ in the first variable we obtain the twisted inner product on $\mathcal{E}_{+}$resulting in the function $\psi(x, y)=\phi(\tau x, y)$. Let $\psi(x):=\psi\left(x,-e_{0}\right)$.


## The function $\psi$

## Theorem (Neeb-Ó, 2020)

We have:

- The function $\psi$ is analytic on $\mathrm{S}^{n} \backslash\left\{-e_{0}\right\}$. and satisfies the differential equation

$$
\begin{equation*}
\Delta \psi=m^{2} \psi \quad \text { on } \mathrm{S}^{n} \backslash\left\{-e_{0}\right\} \tag{2}
\end{equation*}
$$

and is invariant under rotation around the $e_{0}$-axis, i.e. $\psi(g x)=\psi(x)$ for all $g \in O_{n}$.

- $\psi\left(\cos t e_{0}+\sin t u\right)=\gamma_{2} F_{1}\left(\rho+\lambda, \rho-\lambda, \frac{n}{2} ; \sin ^{2}(t / 2)\right)$ with a known constant $\gamma, \rho=(n-1) / 2, \lambda=\sqrt{\rho^{2}-m^{2}}$.


## The crown

- We can take $\mathrm{O}_{1, n}^{\uparrow}$ as $G^{c}$ and try to understand the representation $\widehat{\pi}$. For that one define (see also Bros and co-authors):

$$
\equiv=G^{c} \mathrm{~S}_{+}^{n} \subset \mathrm{~S}_{\mathbb{C}}^{n}=\mathrm{SO}_{n+1}(\mathbb{C}) / \mathrm{SO}_{n}(\mathbb{C})
$$

- As we are working inside $S_{\mathbb{C}}^{n}$ and $O_{n+1, \mathbb{C}}$ one has to trace where to put the is. For that let $V=\mathbb{R} e_{0}+i \sum_{j=1}^{n} \mathbb{R} e_{j}$ and note that $\left\langle\left(v_{0}, v\right),\left(v_{0}, v\right)\right\rangle_{E}=v_{0}^{2}-\|v\|^{2}=\langle v, v\rangle_{L}$.


## Important description of $\equiv$

## Theorem (N-Ó, 2019)

We have the following description of $\overline{\text { E }}$

- Let $C_{+} \subset V$ be the open light cone

$$
C_{+}=\left\{\left(v_{0}, v\right) \in V \mid v_{0}>0\langle v, v\rangle>0\right\}
$$

$$
\text { and } T_{C_{+}}=V+i C_{+}, \text {Then } \equiv=\mathrm{S}_{+\mathbb{C}}^{n} \cap T_{C_{+}}
$$

■ $=\left\{v \in V_{\mathbb{C}} \mid[z, z]_{v} \notin(-\infty,-1]\right\}$.
■ 三 is a complex manifold isomorphic to the Lie ball $\mathrm{SO}_{2, n} / \mathrm{S}\left(\mathrm{O}_{2} \times \mathrm{O}_{n}\right)$ (see the work of Stanton-Krötz).

- The kernel $\Psi$ has a holomorphic extension to a holomorphic positive definite kernel on $\overline{\text { E }}$ given by

$$
\psi(z, w)=\gamma_{2} F_{1}\left(\rho+\lambda, \rho-\lambda, n / 2 ; \frac{1-[z, \bar{w}]}{2}\right)
$$

## Important geometric facts about ミ, I

Consider the double fibration:


Both $p_{V}$ and $p_{i V}$ are $G^{c}$-equivariant maps. Hence the projection of a $G^{c}$-invariant subset is again $G^{c}$-invariant in $V$, resp., iV.

## Theorem

The boundary of $\equiv$ in $\mathrm{S}_{\mathbb{C}}^{n}$ consists of two $G^{c}$-orbits:

- The deSitter space

$$
\mathrm{dS} \mathrm{~S}^{n}:=i\left\{v \in V[v, v]_{v}=-1\right\}=\mathrm{S}_{\mathbb{C}}^{n} \cap i V=\mathrm{SO}_{1, n} / \mathrm{SO}_{1, n-1} .
$$

- The light like vectors

$$
\mathbb{L}_{+}^{n}:=\left\{v=\left(v_{0}, i v\right) \in V[v, v]_{V}=0, v_{0}>0\right\}=G^{c} \cdot \xi^{0} \simeq G^{c} / P .
$$

## More geometric facts and limits

## Theorem

Let $\mathrm{H}^{n}=\left\{[v, v]_{v}=1, v_{0}>0\right\}=G^{c} e_{0}$. The space $\mathrm{H}^{n}$ is a Riemannian symmetric space and $\mathrm{H}^{n} \subset \equiv$.

The crown can be used to transfer information between $\mathrm{S}_{+}^{n}, \mathrm{H}^{n}, \mathbb{L}_{+}^{n}$ and $\mathrm{dS}^{n}$ via analytic continuation, restriction and boundary value.

## Theorem

Let $y \in \mathrm{dS}^{n}$. The limit process

$$
\lim _{\equiv \ni v \rightarrow y} \int_{\mathrm{dS}^{n}} \overline{\varphi(x)} \psi(x, v) d \mu(x), \quad \varphi \in C_{c}^{\infty}\left(\mathrm{dS}^{n}\right)
$$

defines a distribution with singular support $\left\{(y,-y) \mid y \in \mathrm{dS}^{n}\right\}$.
See Frahm-Neeb-Ó, Iswarya-Ó (both in preparation) and Gindikin-Krötz-Ó for details

## The representation $\pi_{m}$

- The positive definite kernel $\psi$ defines a Hilbert space $\mathcal{H}_{m} \subset \mathcal{O}(\equiv \times \bar{\equiv})$ and unitary representation $\pi_{m}$ defined by the GNS construction:
- The space $\left\{\sum_{\text {finite }} \psi\left(\cdot, x_{j}\right) \mid x_{i} \in \equiv\right\}$ is dense and

$$
\langle\psi(\cdot, x), \psi(\cdot y)\rangle=\psi(y, x)
$$

- $\pi_{m}(g) \psi(x, y)=\psi\left(g^{-1} x, y\right)=\psi(x, g y)$.


## Identification of the representation $\widehat{\pi}$

## Theorem (Neeb-Ó 2019)

The following holds true:

- The representation $\pi_{m}$ is irreducible with a $K=\mathrm{SO}_{n}$-invariant vector $\psi\left(\cdot, e_{0}\right)$.
- $\widehat{\pi} \simeq \pi_{m}$.
- If $\pi$ is an irreducible unitary representation of $G^{c}$ with a non-zero $K$-fixed vector then $\pi \simeq \pi_{m}$ for some $m$.
- The representation $\pi_{m}$ extends to a anti-unitary representation of $G^{c} \ltimes\{\mathrm{id}, \tau\}$ by

$$
\pi_{m}(\tau) F(x . y)=\overline{F(\overline{\tau(x)}, \overline{\tau(y)})}
$$

