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Local nets in Algebraic Quantum Field Theory (AQFT)

In AQFT one studies nets of von Neumann algebras (M(O))O⊆M in
B(H), H a cplx Hilbert space, M(O) models observables measurable in
the “laboratory” O ⊆ M (an open subset of the space-time manifold M).
Axioms:

Isotony: O1 ⊆ O2 implies M(O1) ⊆M(O2)

Locality: O1 ⊆ O′2 implies M(O1) ⊆M(O2)′ [O′ = causal compl.]

Reeh–Schlieder property: There exists a unit vector Ω ∈ H that is
cyclic for each M(O).

Covariance: There is a symmetry group G of M and a unitary
representation U : G → U(H) such that, for g ∈ G
UgM(O)U−1g =M(gO)

Bisognano–Wichmann property: Ω is separating for some M(W ),
W ⊆ M “wedge region” with modular group of (M(W ),Ω) in G .

Invariance of vacuum: U(g)Ω = Ω for g ∈ G .

Problem: For dimG <∞, determine structural implications for G and
describe wedge regions W ⊆ M.
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Modular groups of von Neumann algebras

H a complex Hilbert space, B(H) bounded operators on H
Commutant of S ⊆ B(H): S ′ = {a ∈ B(H) : (∀s ∈ S)as = sa}
von Neumann algebra: M⊆ B(H) a ∗-subalgebra with M =M′′.
For a von Neumann algebra M⊆ B(H), a vector Ω ∈ H is called

cyclic if MΩ = H.

separating if M ∈M,MΩ = 0 implies M = 0.

Theorem (Tomita 1967, Takesaki 1970)

Any cyclic and separating vector Ω ∈ H for the von Neumann algebra M
determines a conjugation J (=antilinear isometry) and a positive
selfadjoint operator ∆ > 0 such that

J∆J = ∆−1, JMJ =M′ and ∆itM∆−it =M for t ∈ R
(modular automorphism group)

From Ω to (∆, J): The operator S(MΩ) = M∗Ω, M ∈M, is densely
defined. Its closure has the polar decomposition S = J∆1/2.

Karl-Hermann Neeb (FAU) Geometric aspects of modular theory 3 / 19



Examples of wedge regions

Minkowski spacetime: M = R1,d−1,
G = Rd o SO1,d−1(R)↑ (Poincaré group),
Wedge region: WR = {(x0,x) ∈ R1,d−1 : x0 > |x1|} (Rindler wedge)
Modular group is implemented by the Lorentz boosts

γ(t) = eth, h(x0, x) = (x1, x0, 0, . . . , 0).

Conformal compactif. of Minkowski space: M = (S1 × Sd−1)/{±},
G = SO2,d(R)e (conformal group).
Wedge regions: G -translates W = g .WR (double cones, future or past
light cone) and γW (t) = gγ(t)g−1.

CFT: M = S1, G = Möb ∼= PGL2(R), W ⊆ S1 is an open non-dense
interval and the modular group is conjugate to PSO1,1(R) in G .

de Sitter space: M = dSd = {x ∈ R1,d : x20 − x2 = −1},
G = SO1,d(R)↑ (Lorentz group),
Wedge region: W = WR ∩ dSd

Modular group = Lorentz boosts (same as for Minkowski space R1,d).
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Def.: A element h of a Lie algebra g is called an Euler element if ad h is
diagonalizable with eigenvalues ⊆ {−1, 0, 1}.

Theorem (Euler Element Theorem, Morinelli, N.,’22)

Let U : G → U(H) be a unitary rep., dimG <∞ and ker(U) discrete.

(a) Ω is a unit vector fixed by U(G ).

(b) M⊆ B(H) a von Neumann algebra with Ω cylic and separating.

(c) N ⊆M a von Neumann algebra for which Ω is cyclic and
{g ∈ G : UgNU−1g ⊆M} is an e-neighborhood in G .

(d) For the modular operator ∆ of the pair (M,Ω), there exists an
element h ∈ g such that U(exp(th)) = ∆−it/2π for t ∈ R.

Then h is an Euler element and the modular conjugation J of (M,Ω)
satisfies

JU(exp x)J = U(exp τhx) for the involution τh = eπi ad h.

Important application to nets of local algebras:
M =M(W ), W wedge region, and N =M(O) with O ⊆W compact.
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Euler elements in simple real Lie algebras: (N., Morinelli, CMP, 2021).

g ⊇ a maximal ad-diagonalizable, Σ(g, a) ⊆ a∗ restricted root system

{α1, . . . , αn} ⊆ Σ(g, a) (simple restricted roots; basis of a∗)

hj ∈ a with αi (hj) = δij (dual basis). Euler elements h are conjugate to
some hj and red dots mark nodes for which hj is Euler.

An, n ≥ 1 : • • • · · · • •
Bn, n ≥ 2, : • ◦ ◦ · · · ◦ 〉◦
Cn, n ≥ 3, : ◦ ◦ ◦ · · · ◦〈 •
Dn, n ≥ 4, : • ◦ ◦ · · · ◦ ◦

•

•

E6 : • ◦ ◦

◦

◦ •

E7 : ◦ ◦ ◦

◦

◦ ◦ •
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Inclusions of von Neumann algebras

• M ⊆ B(H) a von Neumann algebra
• Ω ∈ H cyclic separating unit vector for M with modular data (∆, J).
• A unitary representation U : G → U(H) fixing Ω.
• An Euler element h ∈ g such that ∆−it/2π = U(exp th) for t ∈ R.
• JU(exp x)J = U(exp τhx) for the involution τh = eπi ad h.

Then inclusions of von Neumann algebras among the (UgMU−1g )g∈G are
encoded in the endomorphism semigroup

SM = {g ∈ G : UgMU−1g ⊆M}
⊇ GM = {g ∈ G : UgMU−1g =M} = SM ∩ S−1M .

To describe this semigroup, we need the positive cone of U

CU := {x ∈ g : − i · ∂U(x) ≥ 0}, ∂U(x) =
d

dt

∣∣∣
t=0

U(exp tx),

which is a closed, convex, Ad(G )-invariant cone in g.
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The Euler element h defines a 3-grading

g = g1(h)⊕ g0(h)⊕ g−1(h) with gλ(h) = ker(ad h − λ1).

The endomorphism semigroups can be determined:

Theorem (Structure Theorem for SM), N. 2020, 2021)

If ker(U) is discrete and C± = ±CU ∩ g±1(h), then

SM = GM exp(C++C−) = exp(C+)GM exp(C−) and L(GM) = g0(h).

Inclusions imply spectral conditions:
SM 6= GM ⇒ CU 6= {0} .

Conclusion: Under suitable non-degeneracy assumptions

“modular groups” in finite-dim. Lie groups are gen. by Euler elts

inclusions can be determined by the positive cone of the rep.

Problem: Construct such nets of operator algebras!
On which homogeneous spaces do they exist?
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Causal symmetric spaces

M = G/H symmetric space: H ⊆ G τ open subgr., τ involution on G

(g, τ) symmetric Lie algebra, g = h⊕ q, h = gτ , q = g−τ

(g, τ,C ) causal if C ⊆ q is Ad(H)-invariant pointed generating closed
convex cone. Then

C ⊆ q ∼= TeH(G/H) and CgH := g .C ⊆ TgH(G/H)

defines a G -invariant cone field (causal structure) on G/H.

(g, τ,C ) non-compactly causal (ncc) if C is hyperbolic
(x ∈ C ◦ ⇒ ad x diagonalizable).

(g, τ,C ) compactly causal (cc) if C is elliptic (x ∈ C ◦ ⇒ ad x elliptic).

Duality: (g, τ,C ) is cc ⇐⇒ (gc = h + iq, τ c , iC ) is ncc

Lorentzian exs.: de Sitter space: dSd ∼= SO1,d(R)/ SO1,d−1(R) is ncc
Anti-de Sitter space: AdSd ∼= SO2,d−1(R)/ SO1,d−1(R) is cc
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From Euler elements to causal symmetric spaces

Let g be simple and h ∈ g an Euler element.
There exists a Cartan involution θ with θ(h) = −h
g = k⊕ p corresp. Cartan decomposition, k = gθ, p = g−θ

Theorem

For τ := θeπi ad h the triple (g, τ,C ) is non-compactly causal for
C := cone(ead hh) ⊆ q.

In the context of the Theorem we call h a causal Euler element for (g, τ).

Theorem (Classification Theorem; Ólafsson, 1980s)

The above construction leads to a bijection from the set of G -orbits of
Euler elements in g to isoclasses of irreducible ncc symm. Lie algebras
(g, τ,C ), where C ⊆ q is a minimal Ad(H)-invariant cone.

Consequence: Classification of irreducible causal symmetric spaces by
duality and Euler elements. ⇒ Natural causal manifolds from Euler
elements.
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General scheme to obtain nets of algebras

• M a causal G -manifold,
• (Cm)m∈M , Cm ⊆ Tm(M) a G -invariant causal structure on M
• U : G → U(H) unitary representation

O ⊆
open M = G/H causal manifold

↓ V net of closed real subspaces

(first quantization)

V(O) ⊆ H 1-particle space with G -rep U

↓ Γ a second quantization functor

M(O) = R(V(O)) ⊆ B(Γ(H)) net of von Neumann algebras
(local observables)

Ex: Bosonic second quantization: Γ(H) = F+(H) Fock space,
R(V) = W (V)′′, where W (v) ∈ B(Γ(H)) are the Weyl operators.
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Def. A closed real subspace V ⊆ H is called standard if

V + iV = H (V cyclic) and V ∩ iV = {0} (V separating).

Then S(v + iw) := v − iw on V + iV is a closed operator on H,

polar decomposition S = JV∆
1/2
V defines a conjugation JV and a positive

operator ∆V with JV∆VJV = ∆−1V and V = Fix(JV∆
1/2
V ).

Axioms for a net of real subspaces:
• G Lie group, • M causal G -manifold, • U : G → U(H) unitary rep.
A net of real subspaces on M is a family V(O) ⊆ H of closed real
subspaces, O ⊆ M open, such that

Isotony: O1 ⊆ O2 implies V(O1) ⊆ V(O2)

Locality: O1 ⊆ O′2 implies V(O1) ⊆ V(O2)′ := V(O2)⊥ω , ω = Im〈·, ·〉
Reeh–Schlieder property: V(O) is cyclic if O 6= ∅.
Covariance: UgV(O) = V(gO) for g ∈ G .

Bisognano–Wichmann prop.: V(W ) is standard for a “wedge domain”
W ⊆ M and ∆−it/2π = U(exp th) for an Euler element h ∈ L(G )

Fact: Second quantization translates V(O) into algebras R(V(O))
preserving all five axioms and U(G ) fixes Ω.
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Nets of real subspaces from distribution vectors

Let U : G → U(H) be a unitary representation.
H∞ ⊆ H (smooth vectors), Uξ : G → H, g 7→ U(g)ξ smooth.
H∞ carries a natural Fréchet topology, which defines a “rigging”

H∞ ↪→ H η−−→H−∞, η(ξ) = |ξ〉

H−∞ (distribution vectors) = continuous antilinear functionals on H∞.
Any test function ϕ ∈ C∞c (G ,C) defines a smearing operator

U(ϕ) : H−∞ → H, U(ϕ)η =

∫
G
ϕ(g)U(g)η dg ∈ H.

Let E ⊆ H−∞ be a real subspace, O ⊆ M := G/H a homogeneous space
and qM : G → G/H, g 7→ gH. Then

HM
E (O) := span{U(ϕ)E, ϕ ∈ C∞c (G ,R), supp(ϕ) ⊆ q−1M (O)}

defines a covariant isotone net of closed real subspaces on M.
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Wedge domains in causal homogeneous spaces

Let M = G/H be a causal homogeneous space,
(Cm)m∈M the invariant cone field (causal structure).
For an Euler element h ∈ g, we define the modular flow on M by

αt(m) = exp(th).m and XM
h (m) :=

d

dt

∣∣∣
t=0

αt(m)

is called the modular vector field.

Def.: The open subset

W := W+
M (h) := {m ∈ M : XM

h (m) ∈ C ◦m}

is called the positivity domain of the modular flow of h on M.

Ex. (a) For G = Aff(R), M = R and αt(x) = etx : W+
M (h) = (0,∞).

(b) For Lorentz boost h on M = R1,d−1: W+
M (h) = WR (Rindler wedge).

(c) Same as (b) in conformal completion of M = R1,d−1.
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Existence of nets of real subspaces

Group case (N.,Ólafsson, ’21; Daniel Oeh ’21)
• Spectral condition: g = Rh + (CU − CU), CU pos cone of U.
• M = G left action, Cg = g .CU (causal structure)
• αt(g) = exp(th)g exp(−th) modular flow
• W = Gh exp(C ◦+ + C ◦−) (semigroup), C± = ±CU ∩ g±1(h)
• Isotony, Reeh–Schlieder, Covariance, Bisognano–Wichmann
• Generalizations: Nets on Cayley type spaces G/Gh and simple Jordan
space times (coverings of conformal completions of Jordan algebras)

Compactly causal symmetric spaces (N.,Ólafsson, ’22)
• Spectral condition: g = CU − CU , CU pos cone of U, g semisimple.
• M = G/H, H ⊆ G τ open, τ(h) = h, C = CU ∩ q defines causal structure
• αt(gH) = exp(th)gH modular flow
• W = Gh exp(C ◦+ + C ◦−)H, C± = ±CU ∩ g±1(h)
• Isotony, Reeh–Schlieder, Covariance, Bisognano–Wichmann
• E = Rη fixed by H and J.
• Includes: Group case and Anti-de Sitter space AdSd .
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An approach for ncc spaces (with Jan Frahm and G. Ó.)

G a connected simple Lie group

h ∈ g an Euler element, θ(h) = −h, θ Cartan involution

(g, τ,C ) simple ncc, where τ = τhθ, τh := eπi ad h

H ⊆ G τ an open θ-invariant subgroup with Ad(H)C = C

M = G/H corresponding ncc symmetric space.

(U,H) an irreducible unitary representation of G .

J a conjugation on H with JU(g)J = U(τh(g)) for g ∈ G .

Conjecture 1: For any K -finite vector v ∈ H, the limit

β(v) := lim
t→π/2

e it·∂U(h)v exists in H−∞

and define a (gC,H ∩ K )-equivariant linear map β : H[K ] → (H−∞)[H] to
the space of H-finite distribution vectors.
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Consider a finite-dimensional real K -invariant subspace EK ⊆ H of J-fixed
vectors and put EH := β(EK ) ⊆ H−∞.
Conjecture 2: Assume that U(G )EK spans a dense subspace of H. Then
the following assertions hold:

Reeh–Schlieder Theorem: If ∅ 6= O ⊆ G , then
HG
EH

(O) = span{U(C∞c (G ,R))EH} is total in H.
Bisognano–Wichmann property:
If W = W+

M (h) ⊆ G/H is the wedge region, then

H
G/H
EH

(W ) = HG
EH

(q−1M (W )) is standard with modular operator

∆ = e2πi ·∂U(h).

Example: de Sitter space dSd (work of Bros/Moschella in ’90s)
For de Sitter space and H-spherical representations one can use
reflection positivity on the sphere (N., ’Olafsson, ’20)
Need realizations of unitary representations in bundle-valued
distributions which are boundary values of holomorphic functions on
suitable complex manifolds. If M = G/H is ncc, then M ⊆ ∂Ξ,
Ξ complex crown of G/K
(Krötz, Gindikin, Stanton, ’Olafsson; 2002-2005).
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Further observations:

For compactly causal spaces M there is no natural order (∃ closed
causal curves), but the wedge space W := {gW : g ∈ G} has an
order structure (Ex: Anti-de Sitter space).

For non-compactly causal spaces M there is a global order on M, but
the wedge space W := {gW : g ∈ G} has no order structure
(Ex: de Sitter space).

Duality M ↔ Mc between compactly causal and non-compactly
causal symmetric spaces with Lie algebra (g, τ)
• g = h⊕ q↔ gc = h⊕ iq, h = Fix(τ), q = Fix(−τ)
• de Sitter ↔ anti-de Sitter,
• group type spaces M = G ↔ Mc = GC/G .

Geometric characterization of wedge domains (for cc and ncc
symmetric spaces on which the modular flow has fixed points):
Wedge domains W = W+

M (h) can also be characterized by
KMS-like conditions or by polar decompositions of domains
(N., Ólafsson, ’21,’22).
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KHN and G. Ólafsson, Nets of standard subspaces on Lie groups,
Advances in Math. 384 (2021), 107715, arXiv:2006.09832
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