Geometric aspects of the modular theory of operator algebras

Karl-Hermann Neeb

Department of Mathematics, FAU Erlangen-Nürnberg

XXXIX Workshop on Geometric Methods in Physics Białystok, Poland 19.06–25.06.2022

(jt. project with Vincenzo Morinelli, Gestur Ólafsson)

< □ > < □ > < □ > < □ > < □ > < □ > = □

Local nets in Algebraic Quantum Field Theory (AQFT)

In AQFT one studies nets of von Neumann algebras $(\mathcal{M}(\mathcal{O}))_{\mathcal{O}\subseteq M}$ in $B(\mathcal{H}), \mathcal{H}$ a cplx Hilbert space, $\mathcal{M}(\mathcal{O})$ models observables measurable in the "laboratory" $\mathcal{O}\subseteq M$ (an open subset of the space-time manifold M). Axioms:

- Isotony: $\mathcal{O}_1 \subseteq \mathcal{O}_2$ implies $\mathcal{M}(\mathcal{O}_1) \subseteq \mathcal{M}(\mathcal{O}_2)$
- Locality: $\mathcal{O}_1 \subseteq \mathcal{O}'_2$ implies $\mathcal{M}(\mathcal{O}_1) \subseteq \mathcal{M}(\mathcal{O}_2)'$ [$\mathcal{O}' = \mathsf{causal \ compl.}$]
- Reeh–Schlieder property: There exists a unit vector Ω ∈ H that is cyclic for each M(O).
- Covariance: There is a symmetry group G of M and a unitary representation $U: G \to U(\mathcal{H})$ such that, for $g \in G$ $U_g \mathcal{M}(\mathcal{O}) U_g^{-1} = \mathcal{M}(g \mathcal{O})$
- Bisognano–Wichmann property: Ω is separating for some $\mathcal{M}(W)$, $W \subseteq M$ "wedge region" with modular group of $(\mathcal{M}(W), \Omega)$ in G.
- Invariance of vacuum: $U(g)\Omega = \Omega$ for $g \in G$.

Problem: For dim $G < \infty$, determine structural implications for G and describe wedge regions $W \subseteq M$.

Modular groups of von Neumann algebras

 \mathcal{H} a complex Hilbert space, $B(\mathcal{H})$ bounded operators on \mathcal{H} Commutant of $S \subseteq B(\mathcal{H})$: $S' = \{a \in B(\mathcal{H}) : (\forall s \in S) as = sa\}$ von Neumann algebra: $\mathcal{M} \subseteq B(\mathcal{H})$ a *-subalgebra with $\mathcal{M} = \mathcal{M}''$. For a von Neumann algebra $\mathcal{M} \subseteq B(\mathcal{H})$, a vector $\Omega \in \mathcal{H}$ is called

- cyclic if $\overline{\mathcal{M}\Omega} = \mathcal{H}$.
- separating if $M \in \mathcal{M}, M\Omega = 0$ implies M = 0.

Theorem (Tomita 1967, Takesaki 1970)

Any cyclic and separating vector $\Omega \in \mathcal{H}$ for the von Neumann algebra \mathcal{M} determines a conjugation J (=antilinear isometry) and a positive selfadjoint operator $\Delta > 0$ such that

$$J\Delta J = \Delta^{-1}, \quad J\mathcal{M}J = \mathcal{M}' \quad and \quad \Delta^{it}\mathcal{M}\Delta^{-it} = \mathcal{M} \quad for \quad t \in \mathbb{R}$$

(modular automorphism group)

From Ω to (Δ, J) : The operator $S(M\Omega) = M^*\Omega$, $M \in \mathcal{M}$, is densely defined. Its closure has the polar decomposition $\overline{S} = J \Delta^{1/2}$

Examples of wedge regions

Minkowski spacetime: $M = \mathbb{R}^{1,d-1}$, $G = \mathbb{R}^d \rtimes SO_{1,d-1}(\mathbb{R})^{\uparrow}$ (Poincaré group), Wedge region: $W_R = \{(x_0, \mathbf{x}) \in \mathbb{R}^{1,d-1} : x_0 > |x_1|\}$ (Rindler wedge) Modular group is implemented by the Lorentz boosts

$$\gamma(t) = e^{th}, \quad h(x_0, \mathbf{x}) = (x_1, x_0, 0, \dots, 0).$$

Conformal compactif. of Minkowski space: $M = (\mathbb{S}^1 \times \mathbb{S}^{d-1})/\{\pm\},\$ $G = \mathrm{SO}_{2,d}(\mathbb{R})_e$ (conformal group).

Wedge regions: G-translates $W = g.W_R$ (double cones, future or past light cone) and $\gamma_W(t) = g\gamma(t)g^{-1}$.

CFT: $M = \mathbb{S}^1$, $G = \text{M\"ob} \cong \text{PGL}_2(\mathbb{R})$, $W \subseteq \mathbb{S}^1$ is an open non-dense interval and the modular group is conjugate to $\text{PSO}_{1,1}(\mathbb{R})$ in G.

de Sitter space: $M = dS^d = \{x \in \mathbb{R}^{1,d} : x_0^2 - \mathbf{x}^2 = -1\},\$ $G = SO_{1,d}(\mathbb{R})^{\uparrow}$ (Lorentz group), Wedge region: $W = W_R \cap dS^d$ Modular group = Lorentz boosts (same as for Minkowski space $\mathbb{R}^{1,d}$). **Def.:** A element *h* of a Lie algebra \mathfrak{g} is called an Euler element if ad *h* is diagonalizable with eigenvalues $\subseteq \{-1, 0, 1\}$.

Theorem (Euler Element Theorem, Morinelli, N.,'22)

Let $U: G \to U(\mathcal{H})$ be a unitary rep., dim $G < \infty$ and ker(U) discrete.

- (a) Ω is a unit vector fixed by U(G).
- (b) $\mathcal{M} \subseteq B(\mathcal{H})$ a von Neumann algebra with Ω cylic and separating.
- (c) $\mathcal{N} \subseteq \mathcal{M}$ a von Neumann algebra for which Ω is cyclic and $\{g \in G : U_g \mathcal{N} U_g^{-1} \subseteq \mathcal{M}\}$ is an e-neighborhood in G.
- (d) For the modular operator Δ of the pair (\mathcal{M}, Ω) , there exists an element $h \in \mathfrak{g}$ such that $U(\exp(th)) = \Delta^{-it/2\pi}$ for $t \in \mathbb{R}$.

Then h is an Euler element and the modular conjugation J of (\mathcal{M}, Ω) satisfies

 $JU(\exp x)J = U(\exp \tau_h x)$ for the involution $\tau_h = e^{\pi i \operatorname{ad} h}$.

Important application to nets of local algebras: $\mathcal{M} = \mathcal{M}(W)$, W wedge region, and $\mathcal{N} = \mathcal{M}(\mathcal{O})$ with $\overline{\mathcal{O}} \subseteq W$ compact.

ヘロト 人間ト 人団ト 人団ト

Euler elements in simple real Lie algebras: (N., Morinelli, CMP, 2021). $\mathfrak{g} \supseteq \mathfrak{a}$ maximal ad-diagonalizable, $\Sigma(\mathfrak{g}, \mathfrak{a}) \subseteq \mathfrak{a}^*$ restricted root system $\{\alpha_1, \ldots, \alpha_n\} \subseteq \Sigma(\mathfrak{g}, \mathfrak{a})$ (simple restricted roots; basis of \mathfrak{a}^*)

 $h_j \in \mathfrak{a}$ with $\alpha_i(h_j) = \delta_{ij}$ (dual basis). Euler elements h are conjugate to some h_j and red dots mark nodes for which h_j is Euler.

Inclusions of von Neumann algebras

- $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ a von Neumann algebra
- $\Omega \in \mathcal{H}$ cyclic separating unit vector for \mathcal{M} with modular data (Δ, J) .
- A unitary representation $U \colon G \to U(\mathcal{H})$ fixing Ω .
- An Euler element $h \in \mathfrak{g}$ such that $\Delta^{-it/2\pi} = U(\exp th)$ for $t \in \mathbb{R}$.
- $JU(\exp x)J = U(\exp \tau_h x)$ for the involution $\tau_h = e^{\pi i \operatorname{ad} h}$.

Then inclusions of von Neumann algebras among the $(U_g \mathcal{M} U_g^{-1})_{g \in G}$ are encoded in the endomorphism semigroup

$$S_{\mathcal{M}} = \{g \in G : U_g \mathcal{M} U_g^{-1} \subseteq \mathcal{M}\}$$
$$\supseteq G_{\mathcal{M}} = \{g \in G : U_g \mathcal{M} U_g^{-1} = \mathcal{M}\} = S_{\mathcal{M}} \cap S_{\mathcal{M}}^{-1}.$$

To describe this semigroup, we need the positive cone of U

$$C_U := \{x \in \mathfrak{g} : -i \cdot \partial U(x) \ge 0\}, \qquad \partial U(x) = \frac{d}{dt}\Big|_{t=0} U(\exp tx),$$

which is a closed, convex, $\mathrm{Ad}(G)$ -invariant cone in \mathfrak{g} .

The Euler element h defines a 3-grading

$$\mathfrak{g} = \mathfrak{g}_1(h) \oplus \mathfrak{g}_0(h) \oplus \mathfrak{g}_{-1}(h)$$
 with $\mathfrak{g}_\lambda(h) = \ker(\operatorname{ad} h - \lambda 1).$

The endomorphism semigroups can be determined:

Theorem (Structure Theorem for $S_{\mathcal{M}}$), N. 2020, 2021) If ker(U) is discrete and $C_{\pm} = \pm C_U \cap \mathfrak{g}_{\pm 1}(h)$, then

$$S_{\mathcal{M}} = G_{\mathcal{M}} \exp(C_+ + C_-) = \exp(C_+) G_{\mathcal{M}} \exp(C_-)$$
 and $L(G_{\mathcal{M}}) = \mathfrak{g}_0(h)$.

Inclusions imply spectral conditions: $S_{\mathcal{M}} \neq G_{\mathcal{M}} \Rightarrow C_U \neq \{0\}$.

Conclusion: Under suitable non-degeneracy assumptions

- "modular groups" in finite-dim. Lie groups are gen. by Euler elts
- inclusions can be determined by the positive cone of the rep.

Problem: Construct such nets of operator algebras! On which homogeneous spaces do they exist?

Causal symmetric spaces

- M = G/H symmetric space: $H \subseteq G^{\tau}$ open subgr., τ involution on G
- (\mathfrak{g}, τ) symmetric Lie algebra, $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{q}, \quad \mathfrak{h} = \mathfrak{g}^{\tau}, \quad \mathfrak{q} = \mathfrak{g}^{-\tau}$
- (𝔅, τ, C) causal if C ⊆ 𝔅 is Ad(H)-invariant pointed generating closed convex cone. Then

 $C \subseteq \mathfrak{q} \cong T_{eH}(G/H)$ and $C_{gH} := g.C \subseteq T_{gH}(G/H)$

defines a G-invariant cone field (causal structure) on G/H.

- (\mathfrak{g}, τ, C) non-compactly causal (ncc) if C is hyperbolic ($x \in C^{\circ} \Rightarrow \operatorname{ad} x$ diagonalizable).
- (\mathfrak{g}, τ, C) compactly causal (cc) if C is elliptic ($x \in C^{\circ} \Rightarrow \operatorname{ad} x$ elliptic).

Duality: (\mathfrak{g}, τ, C) is cc $\iff (\mathfrak{g}^c = \mathfrak{h} + i\mathfrak{q}, \tau^c, iC)$ is ncc

Lorentzian exs.: de Sitter space: $dS^d \cong SO_{1,d}(\mathbb{R})/SO_{1,d-1}(\mathbb{R})$ is ncc Anti-de Sitter space: $AdS^d \cong SO_{2,d-1}(\mathbb{R})/SO_{1,d-1}(\mathbb{R})$ is cc

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

From Euler elements to causal symmetric spaces

Let \mathfrak{g} be simple and $h \in \mathfrak{g}$ an Euler element. There exists a Cartan involution θ with $\theta(h) = -h$ $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ corresp. Cartan decomposition, $\mathfrak{k} = \mathfrak{g}^{\theta}, \mathfrak{p} = \mathfrak{g}^{-\theta}$

Theorem

For $\tau := \theta e^{\pi i \operatorname{ad} h}$ the triple (\mathfrak{g}, τ, C) is non-compactly causal for $C := \operatorname{cone}(e^{\operatorname{ad}\mathfrak{h}}h) \subseteq \mathfrak{q}.$

In the context of the Theorem we call h a causal Euler element for (\mathfrak{g}, τ) .

Theorem (Classification Theorem; Ólafsson, 1980s)

The above construction leads to a bijection from the set of *G*-orbits of *Euler elements in* \mathfrak{g} to isoclasses of irreducible ncc symm. Lie algebras (\mathfrak{g}, τ, C) , where $C \subseteq \mathfrak{q}$ is a minimal $\operatorname{Ad}(H)$ -invariant cone.

Consequence: Classification of irreducible causal symmetric spaces by duality and Euler elements. \Rightarrow Natural causal manifolds from Euler elements.

General scheme to obtain nets of algebras

- *M* a causal *G*-manifold,
- $(C_m)_{m \in M}, C_m \subseteq T_m(M)$ a G-invariant causal structure on M
- $U \colon G \to \mathrm{U}(\mathcal{H})$ unitary representation

$$\begin{array}{cccc} \mathcal{O} & & \bigcap_{open}^{\subset} & M = G/H & \text{causal manifold} \\ & \downarrow \mathbb{V} & & \text{net of closed real subspaces} \\ & & & (first quantization) \\ \mathbb{V}(\mathcal{O}) & \subseteq & \mathcal{H} & 1\text{-particle space with } G\text{-rep } U \\ & & \downarrow \Gamma & & \text{a second quantization functor} \\ \mathcal{M}(\mathcal{O}) = \mathcal{R}(\mathbb{V}(\mathcal{O})) & \subseteq & B(\Gamma(\mathcal{H})) & & \text{net of von Neumann algebras} \\ & & & (\text{local observables}) \end{array}$$

Ex: Bosonic second quantization: $\Gamma(\mathcal{H}) = \mathcal{F}_+(\mathcal{H})$ Fock space, $\mathcal{R}(V) = W(V)''$, where $W(v) \in B(\Gamma(\mathcal{H}))$ are the Weyl operators.

Def. A closed real subspace $V \subseteq \mathcal{H}$ is called **standard** if

 $\overline{V + iV} = \mathcal{H}$ (V cyclic) and $V \cap iV = \{0\}$ (V separating).

Then S(v + iw) := v - iw on V + iV is a closed operator on \mathcal{H} , polar decomposition $S = J_V \Delta_V^{1/2}$ defines a conjugation J_V and a positive operator Δ_V with $J_V \Delta_V J_V = \Delta_V^{-1}$ and $V = \operatorname{Fix}(J_V \Delta_V^{1/2})$.

Axioms for a net of real subspaces:

• *G* Lie group, • *M* causal *G*-manifold, • $U: G \to U(\mathcal{H})$ unitary rep. A net of real subspaces on *M* is a family $V(\mathcal{O}) \subseteq \mathcal{H}$ of closed real subspaces, $\mathcal{O} \subseteq M$ open, such that

- Isotony: $\mathcal{O}_1 \subseteq \mathcal{O}_2$ implies $V(\mathcal{O}_1) \subseteq V(\mathcal{O}_2)$
- Locality: $\mathcal{O}_1 \subseteq \mathcal{O}'_2$ implies $\mathbb{V}(\mathcal{O}_1) \subseteq \mathbb{V}(\mathcal{O}_2)' := \mathbb{V}(\mathcal{O}_2)^{\perp_{\omega}}, \omega = \mathrm{Im}\langle \cdot, \cdot \rangle$
- Reeh–Schlieder property: $V(\mathcal{O})$ is cyclic if $\mathcal{O} \neq \emptyset$.
- Covariance: $U_g V(\mathcal{O}) = V(g\mathcal{O})$ for $g \in G$.
- Bisognano-Wichmann prop.: V(W) is standard for a "wedge domain" W ⊆ M and Δ^{-it/2π} = U(exp th) for an Euler element h ∈ L(G)

Fact: Second quantization translates $V(\mathcal{O})$ into algebras $\mathcal{R}(V(\mathcal{O}))$ preserving all five axioms and U(G) fixes Ω .

Nets of real subspaces from distribution vectors

Let $U: G \to U(\mathcal{H})$ be a unitary representation. $\mathcal{H}^{\infty} \subseteq \mathcal{H}$ (smooth vectors), $U^{\xi}: G \to \mathcal{H}, g \mapsto U(g)\xi$ smooth. \mathcal{H}^{∞} carries a natural Fréchet topology, which defines a "rigging"

$$\mathcal{H}^{\infty} \hookrightarrow \mathcal{H} \xrightarrow{\eta} \mathcal{H}^{-\infty}, \quad \eta(\xi) = |\xi\rangle$$

 $\mathcal{H}^{-\infty}$ (distribution vectors) = continuous antilinear functionals on \mathcal{H}^{∞} . Any test function $\varphi \in C_c^{\infty}(G, \mathbb{C})$ defines a smearing operator

$$U(\varphi) \colon \mathcal{H}^{-\infty} \to \mathcal{H}, \quad U(\varphi)\eta = \int_{\mathcal{G}} \varphi(g) U(g)\eta \, dg \in \mathcal{H}.$$

Let $E \subseteq \mathcal{H}^{-\infty}$ be a real subspace, $\mathcal{O} \subseteq M := G/H$ a homogeneous space and $q_M : G \to G/H, g \mapsto gH$. Then

$$\mathsf{H}^{M}_{\mathsf{E}}(\mathcal{O}) := \overline{\operatorname{span}}\{U(\varphi)\mathsf{E}, \varphi \in \mathsf{C}^{\infty}_{c}(\mathsf{G},\mathbb{R}), \operatorname{supp}(\varphi) \subseteq q^{-1}_{M}(\mathcal{O})\}$$

defines a covariant isotone net of closed real subspaces on M.

Wedge domains in causal homogeneous spaces

Let M = G/H be a causal homogeneous space, $(C_m)_{m \in M}$ the invariant cone field (causal structure). For an Euler element $h \in \mathfrak{g}$, we define the modular flow on M by

$$\alpha_t(m) = \exp(th).m$$
 and $X_h^M(m) := \frac{d}{dt}\Big|_{t=0} \alpha_t(m)$

is called the modular vector field.

Def.: The open subset

$$W := W^+_M(h) := \{m \in M \colon X^M_h(m) \in C^\circ_m\}$$

is called the positivity domain of the modular flow of h on M.

Ex. (a) For $G = Aff(\mathbb{R})$, $M = \mathbb{R}$ and $\alpha_t(x) = e^t x$: $W^+_M(h) = (0, \infty)$.

(b) For Lorentz boost h on $M = \mathbb{R}^{1,d-1}$: $W_M^+(h) = W_R$ (Rindler wedge).

(c) Same as (b) in conformal completion of $M = \mathbb{R}^{1,d-1}$.

Existence of nets of real subspaces

Group case (N., Ólafsson, '21; Daniel Oeh '21)

- Spectral condition: $\mathfrak{g} = \mathbb{R}h + (C_U C_U)$, C_U pos cone of U.
- M = G left action, $C_g = g.C_U$ (causal structure)
- $\alpha_t(g) = \exp(th)g\exp(-th)$ modular flow
- $W = G^h \exp(C^{\circ}_+ + C^{\circ}_-)$ (semigroup), $C_{\pm} = \pm C_U \cap \mathfrak{g}_{\pm 1}(h)$
- Isotony, Reeh-Schlieder, Covariance, Bisognano-Wichmann
- Generalizations: Nets on Cayley type spaces G/G^h and simple Jordan space times (coverings of conformal completions of Jordan algebras)

Compactly causal symmetric spaces (N., Ólafsson, '22)

- Spectral condition: $g = C_U C_U$, C_U pos cone of U, g semisimple.
- M = G/H, $H \subseteq G^{\tau}$ open, $\tau(h) = h$, $C = C_U \cap q$ defines causal structure
- $\alpha_t(gH) = \exp(th)gH$ modular flow
- $W = G^h \exp(C^\circ_+ + C^\circ_-) H$, $C_\pm = \pm C_U \cap \mathfrak{g}_{\pm 1}(h)$
- Isotony, Reeh-Schlieder, Covariance, Bisognano-Wichmann
- $\mathbf{E} = \mathbb{R}\eta$ fixed by H and J.
- Includes: Group case and Anti-de Sitter space AdS^d.

An approach for ncc spaces (with Jan Frahm and G. Ó.)

- G a connected simple Lie group
- $h \in \mathfrak{g}$ an Euler element, heta(h) = -h, heta Cartan involution
- (\mathfrak{g}, τ, C) simple ncc, where $\tau = \tau_h \theta$, $\tau_h := e^{\pi i \operatorname{ad} h}$
- $H \subseteq G^{\tau}$ an open θ -invariant subgroup with $\operatorname{Ad}(H)C = C$
- M = G/H corresponding ncc symmetric space.
- (U, \mathcal{H}) an irreducible unitary representation of G.
- J a conjugation on $\mathcal H$ with $JU(g)J = U(au_h(g))$ for $g \in G$.

Conjecture 1: For any *K*-finite vector $v \in \mathcal{H}$, the limit

$$\beta(v) := \lim_{t \to \pi/2} e^{it \cdot \partial U(h)} v$$
 exists in $\mathcal{H}^{-\infty}$

and define a $(\mathfrak{g}_{\mathbb{C}}, H \cap K)$ -equivariant linear map $\beta \colon \mathcal{H}^{[K]} \to (\mathcal{H}^{-\infty})^{[H]}$ to the space of *H*-finite distribution vectors.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Consider a finite-dimensional real *K*-invariant subspace $E_K \subseteq \mathcal{H}$ of *J*-fixed vectors and put $E_H := \beta(E_K) \subset \mathcal{H}^{-\infty}$.

Conjecture 2: Assume that $U(G)E_K$ spans a dense subspace of \mathcal{H} . Then the following assertions hold:

- Reeh–Schlieder Theorem: If $\emptyset \neq \mathcal{O} \subseteq G$, then $H_{E_H}^G(\mathcal{O}) = \overline{\operatorname{span}} \{ U(C_c^{\infty}(G, \mathbb{R})) E_H \}$ is total in \mathcal{H} .
- Bisognano-Wichmann property:

If $W = W_M^+(h) \subseteq G/H$ is the wedge region, then

 $\mathsf{H}_{\mathsf{E}_{H}}^{\mathcal{G}/\mathcal{H}}(W) = \mathsf{H}_{\mathsf{E}_{H}}^{\mathcal{G}}(q_{M}^{-1}(W))$ is standard with modular operator $\Delta = e^{2\pi i \cdot \partial U(h)}$.

- Example: de Sitter space dS^d (work of Bros/Moschella in '90s)
- For de Sitter space and *H*-spherical representations one can use reflection positivity on the sphere (N., 'Olafsson, '20)
- Need realizations of unitary representations in bundle-valued distributions which are boundary values of holomorphic functions on suitable complex manifolds. If M = G/H is ncc, then M ⊆ ∂Ξ, Ξ complex crown of G/K

(Krötz, Gindikin, Stanton, 'Olafsson; 2002-2005).

Further observations:

- For compactly causal spaces M there is no natural order (∃ closed causal curves), but the wedge space W := {gW : g ∈ G} has an order structure (Ex: Anti-de Sitter space).
- For non-compactly causal spaces M there is a global order on M, but the wedge space W := {gW : g ∈ G} has no order structure (Ex: de Sitter space).
- Duality M ↔ M^c between compactly causal and non-compactly causal symmetric spaces with Lie algebra (g, τ)
 - $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{q} \leftrightarrow \mathfrak{g}^{c} = \mathfrak{h} \oplus i\mathfrak{q}, \quad \mathfrak{h} = \operatorname{Fix}(\tau), \mathfrak{q} = \operatorname{Fix}(-\tau)$
 - $\bullet \ \text{de Sitter} \leftrightarrow \text{anti-de Sitter,} \\$
 - group type spaces $M = G \leftrightarrow M^c = G_{\mathbb{C}}/G$.
- Geometric characterization of wedge domains (for cc and ncc symmetric spaces on which the modular flow has fixed points): Wedge domains $W = W_M^+(h)$ can also be characterized by KMS-like conditions or by polar decompositions of domains (N., Ólafsson, '21,'22).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

- Hilgert, J., and G. Ólafsson, "Causal Symmetric Spaces, Geometry and Harmonic Analysis," Academic Press, 1997
- Morinelli, V., and KHN, Covariant homogeneous nets of standard subspaces, Comm. Math. Phys. 386 (2021), 305–358 https://doi.org/10.1007/s00220-021-04046-6 arXiv:2010.07128
- Morinelli, V., KHN, and G. Ólafsson, *Modular geodesics and wedge domains in general non-compactly causal symmetric spaces*, in prep.
- Morinelli, V., KHN, and G. Ólafsson, *From Euler elements and* 3-gradings to non-compactly causal symmetric spaces, in preparation
- KHN and G. Ólafsson, *Nets of standard subspaces on Lie groups*, Advances in Math. **384** (2021), 107715, arXiv:2006.09832
- KHN and G. Ólafsson, *Wedge domains in compactly causal symmetric spaces*, arXiv2107.13288; Internat. Math. Res. Notices
- KHN and G. Ólafsson, Wedge domains in non-compactly causal symmetric spaces, arXiv:2205.07685