## Differentiable and Kähler geometry in the coadjoint orbit of a nuclear operator

Who? Gabriel Larotonda

Instituto Argentino de Matemática (CONICET) \& Universidad de Buenos Aires - Argentina.

Where XXXIX Workshop on Geometric Methods in Physics
\& University of Bialystok, Poland. June 2022.
When?
Joint works with 1) D. Beltiţă \& 2) T. Goliński

## Definitions

H separable complex Hilbert space
$B(H)$ linear bounded operators on $H$
$B_{1}(H) \quad$ nuclear operators $=$ compact \& singular values in $\ell_{1}(\mathbb{N})$
$U(\mathcal{H})$ unitary operators; Lie group with Lie algebra

$$
\operatorname{Lie}(U(H))=B(H)_{a h}=\left\{V^{*}=-V: V \in B(\mathcal{H})\right\}
$$

$U_{1}(H) \quad$ nuclear unitary group $=$

$$
\left\{u \in U(H): u-1 \in B_{1}(H)\right\}=\left\{e^{z}: z \in B_{1}(H)_{a h}\right\}
$$

$\mathcal{O}(\rho) \quad$ The unitary coadjoint orbit of $\rho \in B_{1}(H)_{\text {ah }}$

$$
\mathcal{O}(\rho)=\left\{u \rho u^{*}: u \in U_{1}(H)\right\} \subset B_{1}(H)_{a h} .
$$

## Part 1 (joint work with Daniel Beltiţă)

## Manifold structure of $\mathcal{O}(\rho)$ and its closure $\mathcal{O}_{\rho}$

$\rho^{*}=-\rho \quad \rho=i \sum_{j=0}^{\infty} \lambda_{j} p_{j} \quad$ real $\lambda_{j} \neq \lambda_{k}$, infinitely many
$p_{0} \quad$ kernel projection (possibly $\infty$-dimensional)
eigen-projections ; finite rank for $j \neq 0$
$\mathcal{O}(\rho)=\left\{u \rho u^{*}: u \in B_{1}(H)\right\} \subset B_{1}(H)$ is not closed (closed if and only if the spectrum of $\rho$ is finite).

## Unitary orbit

Let $P_{x}=$ orthogonal range projection of $x \in B(H)$, then
$\overline{\mathcal{O}(\rho)}^{\|\cdot\| \|_{\infty}}$

$$
\begin{equation*}
=\overline{\mathcal{O}(\rho)}{ }^{\|\cdot\|_{1}}=\left\{v \rho v^{*}: v^{*} v=P_{\rho}\right\}=: \mathcal{O}_{\rho} \tag{Bel-Lar-22}
\end{equation*}
$$

the orbit with partial isometries with initial space $P_{\rho}$.
$\operatorname{ker} \pi=K$
Action map $\pi: U_{1}(H) \rightarrow B_{1}(H)_{a h}, \quad \pi: u \mapsto u \rho u^{*}$, with stabilizer $K \subset U_{1}(H)$ subgroup of unitaries commuting with $\rho$.

Theorem $K$ Banach-Lie subgroup; $U_{1}(H) / K$ has a Banach-manifold structure s.t. that $q: U_{1}(H) \rightarrow U_{1}(H) / K$ is a submersion.
$j: U_{1}(H) / K \rightarrow \mathcal{O}(\rho), \quad j: u K \mapsto u \rho u^{*} \quad$ is a continuous bijection.

## Unitary orbit

Remark
Via $j: u K \mapsto u \rho u^{*}$, the orbit $\mathcal{O}(\rho) \simeq U_{1}(H) / K$ has a manifold structure s.t. $i: \mathcal{O}(\rho) \hookrightarrow B_{1}(H)$ is a weak immersion: $i_{*}$ the diferential of the inclusion map $i$, is injective but its range is not closed in $B_{1}(H)$.

Bel-L-22 The following are equivalent:
1 the range of $i_{*}$ is closed
$2 \mathcal{O}(\rho)$ is closed in $B_{1}(H)$
$3 \mathcal{O}(\rho) \subset B_{1}(H)$ is an embedded manifold
4 the action map $\pi$ has smooth strong cross-sections
$5 \quad \rho$ has finite spectrum.

## Groupoid orbit

$$
\text { Recall } \mathcal{O}_{\rho}=\overline{\mathcal{O}(\rho)}=\left\{x=v \rho v^{*}: v^{*} v=P_{\rho}, v v^{*}=P_{x}\right\}
$$

$$
\mathcal{V}_{\rho}=\text { partial isometries of } B(H) \text { s.t. } v^{*} v=P_{\rho},
$$

$$
K_{\rho}=\left\{v \in \mathcal{V}_{\rho}: v \rho v^{*}=\rho\right\}
$$

Theorem
and

Bel-L
Moreover
$\mathcal{V}_{\rho}$ is a submanifold of $B(H)$ and $K_{\rho}$ a Lie subgroup (Andruchow-Corach-Mbekhta-05, Bel-Goliński-Jakimowicz-Pelletier-19)
$\mathcal{O}_{\rho} \simeq \mathcal{V}_{\rho} / K_{\rho}$ has a Banach manifold structure such that the inclusion maps $\mathcal{O}(\rho) \stackrel{i_{1}}{\longrightarrow} \mathcal{O}_{\rho} \stackrel{i_{2}}{\longleftrightarrow} B(H)$ are weak immersions $\mathcal{O}_{\rho}$ is closed in $B(H) \Leftrightarrow 0$ is the only accum. point of $\sigma(\rho)$. In that case, if the spectrum is infinite, the manifold topology of $\mathcal{O}_{\rho}$ is strictly finer than the norm topology of $B(H)$.

## Part 2 (joint work with Tomasz Goliński)

Kähler geometry in the unitary orbit $\mathcal{O}(\rho)$
$\rho=i \sum_{j=0}^{\infty} \lambda_{j} p_{j}$, infinitely many $\lambda_{j} \neq \lambda_{k}$
$B(H)_{a h}=D_{\rho} \oplus C_{\rho}$ diagonal / co-diagonal decomposition with respect to $\rho$ : if $x_{j k}=p_{j} \times p_{k}$ then
$\left(\begin{array}{cccc}x_{11} & x_{12} & x_{13} & \cdots \\ -x_{12}^{*} & x_{22} & x_{23} & \cdots \\ -x_{13}^{*} & -x_{23}^{*} & x_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right)=\left(\begin{array}{cccc}x_{11} & 0 & 0 & \cdots \\ 0 & x_{22} & 0 & \cdots \\ 0 & 0 & x_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right)+\left(\begin{array}{cccc}0 & x_{12} & x_{13} & \cdots \\ -x_{12}^{*} & 0 & x_{23} & \cdots \\ -x_{13}^{*} & -x_{23}^{*} & 0 & \cdots \\ \vdots & \vdots & \vdots & 0\end{array}\right)$
$E: B_{1}(H) \rightarrow B_{1}(H)$ the map $E: x \mapsto \sum_{j=0}^{\infty} p_{j} x p_{j}$ projection onto $D_{\rho}$ with $\operatorname{ker} E=D_{\rho}$.

## Geometry of the orbit $\mathcal{O}(\rho)$

- $\mathcal{O}(\rho)=\left\{u \rho u^{*}: u \in B_{1}(H)\right\} \subset B_{1}(H)$ is not closed
- $U_{1}(H) / K \simeq \mathcal{O}(\rho), \mathcal{O}(\rho) \hookrightarrow B_{1}(H)$ only a weak immersion $\operatorname{Lie}(K)=D_{\rho} \cap U_{1}(H)$ diagonal unitary operators,
$T_{\rho} \mathcal{O}(\rho) \simeq C_{\rho} \cap B_{1}(H)_{\text {ah }}$ co-diagonal operators
$T U_{1}(H) \simeq U_{1}(H) \times B_{1}(H)_{\text {ah }}$ the tangent bundle of the group
$T \mathcal{O}(\rho) \simeq U_{1}(H) \times_{K} C_{\rho} \cap B_{1}(H)_{\text {ah }}$
where $k \cdot(u, z)=\left(u k^{-1}, k z k^{*}\right)$


## Kähler geometry of $\mathcal{O}(\rho)$

$$
T_{\rho} \mathcal{O}(\rho) \simeq C_{\rho} \cap B_{1}(H)_{a h}, \quad T \mathcal{O}(\rho) \simeq U_{1}(H) \times_{K} C_{\rho} \cap B_{1}(H)_{a h}
$$

Kähler structure:

$$
\omega(v, J w)=g(v, w)
$$

$\omega \quad K K S$-symplectic form $\omega_{x}(v, w)=\operatorname{Tr}(x[v, w]), x \in \mathcal{O}(\rho)$
$J$ Complex structure $J(v)=i \sum_{j=1}^{\infty} \sum_{k=0}^{j-1} p_{k} v p_{j}-p_{j} v p_{k}$
$g$ Riemannian metric $G(v)=\sum_{j, k \geq 0}\left|\lambda_{j}-\lambda_{k}\right| p_{j} v p_{k}$

$$
g(v, w)=-\operatorname{Tr}(G(v) w)
$$

Levi-Civita connection and geodesics in $(\mathcal{O}(\rho), g)$
$X=u x, Y=u y$ with $x, y \in T \mathcal{O}(\rho)=C_{\rho} \cap B_{1}(H)_{a h}$ left-invariant vector fields then (Goliński-L-22)

$$
u^{*} \nabla_{X} Y(u)=1 / 2\left((1-E)[x, y]+G^{-1}([G(x), y]+[G(y), x])\right.
$$

geodesics
$\gamma$ geodesic $\Longleftrightarrow \gamma=\Gamma_{t} \rho \Gamma_{t}^{*}$ with $\Gamma_{t} \subset U_{1}(H)$ such that if $c_{t}=\Gamma_{t}^{-1} \Gamma_{t}^{*}$, then $c_{t} \subset C_{\rho}$ and

$$
G\left(c_{t}^{\prime}\right)=\left[G\left(c_{t}\right), c_{t}\right]
$$


$G\left(c_{t}\right)$ has constant eigenvalues, and the eigenspaces of its non-zero eigenvalues have constant dimension.
$G\left(c_{t}\right)=v_{t} G\left(c_{0}\right) v_{t}^{*}$ with $v_{t}^{*} v_{t} \in P_{G\left(c_{0}\right)}$ a path in $\mathcal{V}_{G\left(c_{0}\right)}$.

## Thank You very much for your kind attention!

E．Andruchow，D．Stojanoff，Differentiable structure of similarity orbits．J． Operator Theory 21 （1989），no．2，349－366．

E．Andruchow，G．Corach，M．Mbekhta，On the geometry of generalized inverses．Math．Nachr． 278 （2005），no．7－8，756－770．

D．Beltiță，T．Goliński，G．Jakimowicz，F．Pelletier，Banach－Lie groupoids and generalized inversion．J．Funct．Anal． 276 （2019），no．5，1528－1574．

D．Beltiță，G．Larotonda，Unitary group orbits versus groupoid orbits of normal operators．arXiv prepint， 2022.

P．Bóna，Extended quantum mechanics，Acta Phys．Slov． 50 （2000）1－198．
D．Deckard，L．A．Fialkow，Characterization of Hilbert space operators with unitary cross sections．J．Operator Theory 2 （1979），no．2，153－158．
T．Goliński，G．Larotonda，On the Kähler geometry of coadjoint orbits． preprint（in preparation），hopefully 2022.

J．Grabowski，M．Kus，G．Marmo，T．Shulman：Geometry of quantum dynamics in infinite－dimensional Hilbert space．J．Phys．A 51 （2018），no．16， 165－301．
（ A．A．Kirillov：Lectures on the orbit method．Graduate Studies in Mathematics，64．American Mathematical Society，Providence，RI， 2004.

