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Superintegrable systems

• In a classical mechanics, an n-dimensional Hamiltonian system with Hamiltonian

H =
1

2
gikpipj + V (~x , ~p), Xa = fa(~x , ~p), a = 1, . . . , n − 1,

is called completely integrable (Liouville integrable) if it allows n integrals of motion
(including H) that are well-defined functions on phase space, are in involution

{H,Xa}p = 0, {Xa,Xb}p = 0, a, b = 1, . . . , n − 1

and are functionally independent

• The system is superintegrable if it is integrable and allows additional integrals of motion
Yb(~x , ~p), {H,Yb}p = 0, b = n, n + 1, . . . , n + k, k = 1, . . . , n − 1 that are also
well-defined functions on phase space and the integrals {H,X1, . . . ,Xn−1,Yn, . . . ,Yn+k}
are functionally independent

• It is maximally superintegrable if the set contains 2n − 1 functions and minimally
superintegrable if it contains n + 1 such integrals.

• The same definitions apply in quantum mechanics but {H,Xa,Yb} are well-defined
quantum mechanical operators, assumed to form an algebraically independent set

• The best known examples of (maximally) superintegrable systems are the Kepler-Coulomb
V (~x) = α

r
(Fock-1935, Bargmann 1936) and the harmonic oscillator V (~x) = αr2 (Jauch,

Hill 1940, Moshinsky, Smirnov 1966)

• Miller, Post, Winternitz 2013, J.Phys.A: Math.Theor. 46, 423001 (review paper)
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The N-dimensional Smorodinsky-Winternitz system

H = −
1

2

N∑
i=1

∂2
i + b

N∑
i=1

x2
i +

N∑
i=1

ai

x2
i

, (1)

where all masses are equal and we set ~ = mi = 1, ∂i = ∂/∂xi .

• The SW system on 2- and 3-dimensional Euclidean space are best examples of maximally

superintegrable systems
− Winternitz P, Smorodinsky Y A,Uhlir Mand Fris I 1967, Sov. J. Nucl. Phys. 4 44
− Makarov A A, Smorodinsky J A, Valiev K and Winternitz P 1967, Nuov Cim. A 52 1061
− Evans N W 1990 Superintegrability in classical mechanics Phys. Rev. A 41 5666

• how to apply R-matrix approach to the Rosochatius model, which is the generalization of

the SW system, studied
− Gagnon L, Harnad J and Winternitz P 1985, J. Math. Phys. 26 7

• The Rosochatius model and its various applications (e.g. to Myers–Perry black holes and

resonant space-times) were studied
− Ivanov E, Nersessian A and Shmavonyan H 2019, Phys. Rev. D 99 085007
− Galajinsky A, Nersessian A and Saghatelian A 2013, J. High Energy Phys. JHEP06(2013)002
− Evnin O, Demirchian H and Nersessian A 2018, Phys. Rev. D 97 025014
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The N-dimensional Smorodinsky-Winternitz system

• The quadratic algebras and algebraic derivations of spectra for 2D models were presented
− Daskaloyannis C 2001, J. Math. Phys. 42 1100

• A similar approach was studied for many other 2D models (e.g. SW-i,ii,iii, and others)
− Post S 2011, SIGMA 7 036

• The N-dimensional analogs of the SW system have been formulated
− Evans N W 1990 Super-integrability of the Winternitz system Phys. Lett. A 147 483
− Evans N W 1991 Group theory of the Smorodinsky–Winternitz system J. Math. Phys. 32 3369

• The symmetry algebra of the classical SW system with a magnetic field was constructed

− Shmavonyan H 2019 CN -Smorodinsky-Winternitz system in a constant magnetic field Phys. Lett. A 383 1223

• The supersymmetric extensions of the SW system in the complex Euclidean space CN

were investigated
− Ivanov E, Nersessian A and Shmavonyan H 2019, Phys. Rev. D 99 085007

• Other types of algebraic construction of the SW system based on dynamical potential

algebra and dynamical symmetries have been obtained
− Quesne C 2011 Revisiting the symmetries of the quantum Smorodinsky-Winternitz system in D-dimensions

SIGMA 7 035
− Kerimov G A 2012, J. Phys. A: Math. Theor. 45 185201
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The N-dimensional Smorodinsky-Winternitz system

Our purpose is to-

• present an algebraic derivation of the spectrum of the N-dimensional SW system based on
the complete symmetry algebra

• obtain various subalgebraic structures of the symmetry algebra which consist of distinct
quadratic algebras Q(3) and their Casimirs

• show how these substructures enable us to algebraically determine the spectrum of the
SW system

• Separation of variables of the N-dimensional SW system
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Separation of Variables
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The Schrödinger equation H Ψ = EΨ

• The corresponding Schrödinger equation and Hamilton-Jacobi equation of the SW
systems allow separation of variables in various coordinate systems

• In quantum mechanics, the separation of variables in Cartesian coordinates of the
HΨ = EΨ is done1 via

Ψ =
N∏
i=1

ψni , ψni = Nni e
−
√

b
2
x2
i x

1
2
±νi

i L
±νi
ni (
√

2bx2
i ),

in terms of the associated Laguerre polynomials Lan(x) and νi = 1
2

√
1+8ai , i = 1, ...,N.

• The corresponding spectrum and the degeneracies of each level are

E =
√

2b
N∑
i=1

(2ni ± νi + 1), deg(n) =

(
N + n − 1
N − 1

)
, (2)

where n =
∑N

i=1 ni .

1
Evans 1991, J. Math. Phys. 32 3369
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Hyperspherical coordinates

• The system H is also separable in N-dimensional hyperspherical coordinates, and the
Hamitonian operator H reduces to

H = −
1

2

[
∂2

∂r2
+

N − 1

r

∂

∂r
− 2br2

]
−

1

2r2

{(
∂2

∂θ2
1

+ (N − 2) cot θ1
∂

∂θ1
−

2a1

cos2 θ1

+
1

sin2 θ1

(
∂2

∂θ2
2

+ (N − 3) cot θ2
∂

∂θ2
−

2a2

cos2 θ2

+
1

sin2 θ2

(
∂2

∂θ2
3

+ (N − 4) cot θ3
∂

∂θ3
−

2a3

cos2 θ3

. . .

. . .

+
1

sin2 θN−3

(
∂2

∂θ2
N−2

+ cot θN−2
∂

∂θN−2
−

2aN−2

cos2 θN−2

+
1

sin2 θN−2

(
∂2

∂θ2
N−1

−
2aN−1

cos2 θN−1
−

2aN

sin2 θN−1

))
...

)))}
.
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• The ansatz

Ψ = ψ(r)

N−1∏
l=1

ψ(θl )

in the Schrödinger equation HΨ = EΨ, reduce to

−
1

2

(
∂2

∂r2
+

N − 1

r

∂

∂r
− 2br2 +

k1

r2

)
ψ(r) = Eψ(r), (3)(

∂2

∂θ2
`

+ (N − `− 1) cot θ`
∂

∂θ`
−

2a`

cos2 θ`
+

k`+1

sin2 θ`

)
ψ(θ`) = −k`ψ(θ`), (4)(

∂2

∂θ2
N−1

−
2aN−1

cos2 θN−1
−

2aN

sin2 θN−1

)
ψ(θN−1) = −kN−1ψ(θN−1), (5)

where ` = 1, 2, . . . ,N − 2.

• After a long computation, the solutions are as follows

ψ(θN−1) ∝ cos1/2±νN−1 (θN−1) sin1/2±νN (θN−1)P
(±νN ,±νN−1)
τN−1

(cos(2θN−1)).

ψ(θl ) ∝ cos1/2±νl (θl ) sinµl+1+1−(N−l)/2(θN−1)P
(µl+1,±νl )
τl (cos(2θl )),

ψ(r) := ψ2ν
τr

(r) ∝ e
−
√

b
2
r2

r2ν− N−2
2 L2ν

τr
(εr2),
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Energy spectrum

• the energy spectrum of the system

E =
√

2b

(
2τr + 2

N−1∑
i=1

τi ±
N∑
i=1

νi + N

)
, (6)

where

kl =

[
2

N−1∑
i=l

τi ±
N∑
i=l

νi + (N − l)

]2

−
1

4
(N − l − 1)2, l = 1, . . . ,N − 3,

µl = 2

N−1∑
i=l

τi ±
N∑
i=l

νi +
N − l − 2

2
, l = 1, . . . ,N − 1.

τr =
E

2ε
− ν −

1

2
, 2ν = 2

N−1∑
i=1

τi ±
N∑
i=1

νi + (N − 1), ε =
√

2b. (7)
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Algebraic Derivations
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Superintegrability

The N-dimensional SW system H is superintegrable. It has the following second order integrals
of motion

Bi = −∂2
i + 2bx2

i + 2
ai

x2
i

,

Aij = −J2
ij + 2

aix
2
j

x2
i

+ 2
ajx

2
i

x2
j

+
1

2
(= Aji ),

where

Jij = xi∂j − xj∂i , i , j = 1, 2, . . . ,N.

From the definition of the Hamiltonian H, it is clear the integrals Bi satisfy

H =
1

2

N∑
i

Bi

We can easily verify the following commutation relations

[H,Bi ] = [H,Aij ] = [Bi ,Bj ] = [Aij ,Bk ] = 0, i , j , k = 1, 2, . . . ,N and k 6= i , j .

We can further define more conserved charges

Cij = [Bi ,Aij ] = [Bj ,Aij ], Dijk = [Aij ,Ajk ],

[Cij ,H] = 0 = [Dijk ,H]
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Symmetry algebra SW(N)

It can be shown that the above constants of motion of the system H close to satisfy the
following quadratic symmetry algebra SW(N) relations,

[Ajk ,Dijk ] = 4{Aik ,Ajk}−4{Ajk ,Aij}+4(8aj−3)Aik−4(8ak−3)Aij ,

[Akl ,Dijk ] = 4{Aik ,Ajl}−4{Ajk ,Ail},
[Dijk ,Djkl ] = 4{Djkl ,Aij}−4{Dikl ,Ajk}−4{Dijk ,Ajl}−4(8aj−3)Dikl ,

[Dijk ,Dklm] = 4{Dilm,Ajk}−4{Djlm,Aik},
[Cik ,Ckl ] = 4{Cli ,Bk},
[Bi ,Dijk ] = 4{Bk ,Aij}−4{Bj ,Aik},
[Bi ,Cij ] = −4{Bi ,Bj}+32bAij ,

[Cij ,Djkl ] = 4{Cil ,Ajk}−4{Cik ,Ajl},
[Cij ,Dijk ] = −4{CikAij}−4{Cjk ,Aij},
[Aij ,Cij ] = 4{Aij ,Bj}−4{Aij ,Bi}−4(8aj−3)Bi+4(8ai−3)Bj ,

[Aij ,Cki ] = 4{Akj ,Bi}−4{Aik ,Bj},

where i 6= j 6= k 6= l 6= m with i , j , k, l ,m ∈ {1, ...,N} covering all non-vanishing commutators.
• The relations involving Aij and Dlmn define the Racah algebra R(N), which has been the subject of attention in last

years with connections to many other algebraic structures.

• It is interesting to see R(N) is embedded in the larger symmetry algebra SW(N) of the N-dimensional
Smorodinsky-Winternitz system.
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The quadratic algebra Q(3)

• The structures of the SW(N) and R(N) are complicated for N > 3 and higher rank

• To algebraically derive the spectrum, we exploit the existence of set of commutating
integrals, i.e., different subalgebras involving 3 generators which has similarity with the
quadratic algebra Q(3) introduced in context of two-dimensional systems2

• The algebraic approach involves identifying N substructures Qi (3), each involving 3
generators {Ei ,Fi ,Gi} for any fixed i = 1, ...N and satisfy the general commutation
relations

[Ei ,Fi ] = Gi ,

[Ei ,Gi ] = αiA
2
i + γi{Ei ,Gi}+ δiEi + εiFi + ζi ,

[Fi ,Gi ] = aiE
2
i − γiF

2
i − αi{Ei ,Fi}+ diEi − δiFi + zi , (8)

• The structure constants for each of the substructures, αi , γi , δi , εi , ζi , ai , di , zi , are
constants or more generally polynomials of central elements of the i-th substructure

• Each substructure has a cubic Casimir invariant as,

Ki = G2
i − αi{E

2
i , Fi} − γi{Ei , F

2
i } + (αiγi − δi ){Ei , Fi} + (γ2

i − εi )F
2
i

+ (γiδi − 2ζi )Fi +
2ai

3
E3
i +

(
di +

aiγi

3
+ α

2
i

)
E2
i +

(
ai εi

3
+ αiδi + 2zi

)
Ei . (9)

2
Daskaloyannis 2001, J. Math. Phys.42 1100
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Deformed oscillator algebra

• The quadratic algebra Qi (3) (8) for any fixed i value can be realized in terms of the
deformed oscillator algebra3,

[ℵi , b†i ] = b†i , [ℵi , bi ] = −bi , bib
†
i = Φ(ℵi + 1), b†i bi = Φ(ℵi ), (10)

• the function Φ(x) is real valued function satisfying

Φ(0) = 0, Φ(x) > 0, ∀x > 0

• The structure function is given by,

Φi (ni ) =
1

4

[
−

K ′i
εi
−

zi
√
εi
−

δi
√
εi

ζi

εi
+

(
ζi

εi

)2]

−
1

12

[
3di−ai

√
εi−3αi

δi
√
εi

+3
δ2
i

εi
−6

zi
√
εi

+6αi
ζi

εi
− 6

δi
√
εi

ζi

εi

]
(ni+ui )

+
1

4

[
α

2
i +di−ai

√
εi−3αi

δi
√
εi

+
δ2
i

εi
+2αi

ζi

εi

]
(ni+ui )

2

−
1

6

[
3α2

i −ai
√
εi−3αi

δi
√
εi

]
(ni+ui )

3+
1

4
α

2(ni+ui )
4 (11)

for γi = 0, εi 6= 0,
3

Daskaloyannis 2001, J. Math. Phys.42 1100
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Deformed oscillator algebra

• and by

Φi (ni ) = γ
8
i (3α2

i +4aiγi )[2(ni+ui )−3]2[2(ni+ui )−1]4[2(ni+ui )+1]2 − 3072γ6
i Ki [2(ni+ui )−1]2

− 48γ6
i (α2

i εi−αiγiδi+aiγi εi−γ
2
i di )[2(ni+ui )−1]4[2(ni+ui )+1]2[2(ni+ui )−3]

+ 32γ4
i

(
3α2

i ε
2
i +4αiγ

2
i ζi−6αiγiδi εi+2aiγi ε

2
i +2γ2

i δ
2
i −4γ2

i di εi+8γ3
i zi

)
× (12)

[2(ni+ui )−1]2[12(ni+ui )
2−12(ni+ui )−1] + 768(αi ε

2
i + 4γ2

i ζi − 2γiδi εi )
2

− 256γ2
i [2(ni+ui )−1]2(3α2

i ε
3
i +4αiγ

4
i ζi+12αiγ

2
i ζi εi−9αiγiδi ε

2
i +aiγi ε

3
i +2γ4

i δ
2
i

− 12γ3
i δiζi+6γ2

i δ
2
i εi+2γ4

i di εi−3γ2
i di ε

2
i −4γ5

i zi+12γ3
i zi εi )

for γi 6= 0.

• The construction of the deformed oscillator algebra rely on the integrals Ei being realized
only in terms of the number operators Ni associated with ni and provide constraints for
the eigenvalues of the operator Ei (Daskaloyannis 2001, J. Math. Phys.42 1100 )

e(Ei ) = Ei (qi ) =
γi

2

(
(qi + ui )

2 −
εi

γ2
i

−
1

4

)
, γi 6= 0; (13)

e(Ei ) = Ei (qi ) =
√
εi (qi + ui ), γi = 0, εi 6= 0. (14)

• Here denote the eigenvalues of the generators Ei in terms of qi

• Other constraints on the structure functions Φi (ni , ui ,H) of each substructures take the
form of Φi (0, ui ,H) = 0 and Φi (pi+1, ui ,H) = 0 where qi = 0, 1, ..., pi .
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The algebra Q(3) for N = 3 case

• To motivate our general discussions, we examine the distinct subalgebra structures of
SW(3).

• The Hamiltonian system H for N = 3 reads,

H = −
1

2
(∂2

1 + ∂2
2 + ∂2

3 ) + b(x2
1 + x2

2 + x2
3 ) +

a1

x2
1

+
a2

x2
2

+
a3

x2
3

.

• The corresponding second order integrals of motion are B1,B2,B3 and A12,A13,A23 and
satisfy

[H,Bi ] = 0, [H,Aij ] = 0, [Bi ,Bj ] = 0, i , j = 1, 2, 3;

[A23,B1] = 0, [A13,B2] = 0, [A12,B3] = 0.

• For more convenience, the diagrams below represent the above relations.

B1 B3 A12

H

B3 B2 A13

H

B2 B1 A23

H
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The algebra Q(3) for N = 3 case

• We also have the following four linearly independent commutators of the second order
integrals,

C12 = [B1,A12] = −[A12,B2],

C23 = [B2,A23] = −[A23,B3]

C31 = [B3,A31] = −[A31,B1],

D123 = [A12,A31] = [A13,A23] = [A23,A12]

• The above diagram shows that there are three possible subalgebras generated by three
generators

{E1,F1,C1} ≡ {A12,B1,C12}
{E2,F2,C2} ≡ {A23,B2,C23}
{E3,F3,C3} ≡ {A31,B3,C31}

• Each set satisfies the commutation relations (8) of the associate substructure with
appropriate structure constants
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The general N case

• We now generalize the above results to the general N case and consider subalgebra
structures generated by {Bi ,Bj ,Aij ;H,Bk , k = 1, 2, . . . ,N, k 6= i , j} for any fixed
i , j = 1, 2, . . . ,N.

• By direct computations, we get the following quadratic subalgebra structure, denoted by
Qij (3) for any fixed i , j = 1, 2, . . . ,N,

[Bi , Aij ] = Cij ,

[Bi , Cij ] = 8B2
i −8(2H−

∑
k 6=i,j

Bk )Bi+32bAij ,

[Aij , Cij ] = −8{Bi , Aij}+8(2H−
∑
k 6=i,j

Bk )(Aij +
1

2
[8ai−3])−8(4ai+4aj−3)Bi .

• The corresponding Casimir operator takes the form,

Kij = C2
ij − 8{B2

i , Aij} + 8(2H−
∑
k 6=i,j

Bk ){Bi , Aij} − 8(4ai+4aj−11)B2
i

+ 8(8ai−11)(2H−
∑
k 6=i,j

Bk )Bi − 32bA2
ij

• The Casimir operator can also be written in terms of only the central elements H and all
Bk , k 6= i , j as

K ′ij = 4(8ai−3)
(

2H−
∑

k 6=i,j Bk

)2
−8b(8ai−3)(8aj−3)
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Deformed oscillators realization
• In order to obtain the energy spectrum of the system H from the above subalgebra, we

construct its realization in terms of the deformed oscillator algebra (Daskaloyannis 2001,
J. Math. Phys.42 1100), the structure functions,

Φ(nij ; uij ,H) =
1

1024b2

[
4(nij+uij )−2−2νi

] [
4(nij+uij )−2+2νi

]
8b(nij+uij )−4b+4bνj+

√
2b(
∑
k 6=i,j

Bk−2H)

8b(nij+uij )−4b−4bνj+
√

2b(
∑
k 6=i,j

Bk−2H)


• The values of parameter uij and the eigenvalues of the operators

∑
k 6=i,j Bk are

determined by requiring that the corresponding representation of the deformed oscillator
algebra is finite dimensional, i.e.,

Φ(pij+1; uij , E) = 0, Φ(0; uij , E) = 0, Φ(nij ) > 0, ∀ nij > 0,

where pij are positive integer.
• These constraints give

uij =
1

2
+
εiνi

2
,

∑
k 6=i,j

Bk = 2H − 2
√

2b(pij+1+εiνi+εjνj ),

Φ(nij ) = nij (nij+εiνi )(nij−pij−1)(nij+εjνj−pij−1),

where εi = ±1, εj = ±1.
• The spectrum of H could be determined in terms of the pij , i, j ∈ {1, . . . ,N} from selected subsets of N

substructures.

• This can be seen alternatively guided by the form of the spectrum in Cartesian coordinates, and relation among the H

and the Bi operators.
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Energy spectrum

• We now use the constraints for the spectrum of Bi (Daskaloyannis 2001, J. Math.
Phys.42 1100) which is given by

e(Bi (x)) = 2
√

2b(2qi + εiνi + 1),

and by virtue of

H =
1

2

N∑
i

Bi ,

• the energy spectrum of system H is

E =
N∑
i

√
2b(2qi + εiνi + 1)

• this can be seen in the form of the spectrum of the Cartesian coordinates

• the above results are obtained based on the algebraic manipulation only without using
explicitly the corresponding Schrödinger equation
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Algebraic derivation based on Racah algebra R(N)

• The Racah R(N) subalgebra can also be used to derive the spectrum of the form obtained
in the hyperspherical coordinates

• The Racah subalgebra is related to the separation of variables in hyperspherical
coordinates via the relation

∑
i

∂2

∂x2
i

=
∂2

∂r2
+

N−1

r

∂

∂r
+

1

r2

∑
i<j

J2
ij .

• Define the new operator Z associated with the separation of variables in hyperspherical
coordinates,

Z =
∑
i<j

Aij = −
∑
i<j

J2
ij + 2r2

∑
i

ai

x2
i

− 2
∑
i

ai +
N(N−1)

4
,

such that H acquires the form

H = −
1

2

[
∂2

∂r2
+

N−1

r

∂

∂r
− 2br2 −

4Z + 8
∑

i ai − N(N−1)

4r2

]
(15)
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Algebraic derivation based on Racah algebra R(N)

• Comparing the above equation (15) with the radial equation (3) and using spectrum
equation (6), it leads to the spectrum of Z ,

e(Z) = k1−2
∑
i

ai+
N(N−1)

4

=

[
2

N−1∑
i=1

τi ±
N∑
i=1

νi+N−1

]2

−
1

4
(N−2)2−2

∑
i

ai+
N(N−1)

4

= ν2+
1

4
(3N−4)−2

∑
i

ai ,

where ν is given by (7), which allows to rewrite the eigenvalues (6) as

E =
√

2b(2τr + 2ν + 1)
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The su(1, 1) algebra and spectrum

• The Hamiltonian written in terms of the radial variable r and Z , where Z can be seen as a
Casimir of the Racah R(N) algebra, has similarities with the N-dimensional radial
oscillator.

• This suggests the existence of ladder differential operators in the radial variable r ,

D± = H ±
√

2br
∂

∂r
− 2br2 ±

√
b

2
N,

whose action on the wave functions is given by

D+ψ2ν
τr = 2

√
2b(τr+1)ψ2ν

τr +1, D−ψ2ν
τr = 2

√
2b(τr+2ν)ψ2ν

τr−1

• Then

D+D−ψ2ν
τr

= 8bτr (τr+2ν)ψ2ν
τr
, D−D+ψ2ν

τr
= 8b(τr+1)(τr + 2ν+1)ψ2ν

τr

• The differential operators D± satisfy the following su(1, 1) algebra relations,

[D+,H] = −2
√

2bD+, [D−,H] = 2
√

2bD−, [D−,D+] = 4
√

2bH.

• This means that the spectrum of the N-dimensional SW system H can be obtained in
same way as that for rotationally invariant systems with the Racah algebra R(N) playing
the same role as the angular momentum algebra, to show this,
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The new integrals and R(3) subalgebras
• we define new integrals,

Zl =
∑

1≤i<k≤l+1

Aik , 1 ≤ l ≤ N − 2, Yp =
∑

p≤i<k≤N

Aik , 1 ≤ p ≤ N − 1.

• We examine the subalgebra structures generated by Yi , Zi−1 and the central elements
Y1,Yi+1,Zi−2 with 2 ≤ i ≤ N − 1, Z0 = 4a1 + 1

2
and YN = 0.

• After a long computation we find that these elements obey the following quadratic algebra
relations,

[Zi−1, Yi ] = Ci ,

[Zi−1, Ci ] = 8Z2
i−1 + 8{Zi−1, Yi} − (8Y1 + 8Yi+1 + 8Zi−2 − 32ai + 12)Zi−1

+4(8
i∑

j=1

ai − 3i)Yi − 4(8ai − 3)Y1 − 4(8

i−1∑
j=1

aj − 3(i − 1))Yi+1

+8Y1Zi−2 − 8Yi+1Zi−2, (16)

[Yi , Ci ] = −8Y 2
i − 8{Zi−1, Yi} − 4(8

N∑
j=i

aj − 3(N − i + 1))Zi−1

+(8Y1 + 8Yi+1 + 8Zi−2 − 32ai + 12)Yi + 4(8ai − 3)Y1

+4(8
N∑

j=i+1

aj − 3(N − i))Zi−2 − 8Y1Yi+1 + 8Yi+1Zi−2.

• It follows that {Yi ,Zi−1,Ci ;Y1,Yi+1,Zi−2, 2 ≤ i ≤ N − 1,YN ≡ 0,Z0 = 4a1 + 1
2
} form

the subalgebra R(3) for fixed i .
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Casimir operator
• This quadratic subalgebra can be fitted into the general form (8) with

αi = 8, γi = 8, δi = −8(Y1+Yi+1+Zi−2−4ai+3/2), εi = 4(8
i∑

j=1

aj−3i),

ζi = −4(8ai−3)Y1 − 4[8

i−1∑
j=1

aj−3(i−1)]Yi+1 + 8Y1Zi−2 − 8Yi+1Zi−2, ai = 0,

di = −4[8
N∑
j=i

aj−3(N−i+1)],

zi = 4(8ai−3)Y1 + 4[8
N∑

j=i+1

aj−3(N−i)]Zi−2 − 8Y1Yi+1 + 8Yi+1Zi−2.

• The corresponding Casimir operator involving only the central elements Y1,Yi+1,Zi−2
takes the form,

K ′i = 4(8ai−3)Y 2
1 − 64Y1Yi+1 + 4[8

i−1∑
j=1

aj−3(i−1)]Y 2
i+1 + 32(8ai−3)Y1

−4(8ai−3)[8

i−1∑
j=1

aj−3(i−1)]Yi+1 + 16Z2
i−2Yi+1 − 64Zi−2Y1 − 16(8ai−3)Zi−2Yi+1

−4(8ai−3)[8
N∑

j=i+1

aj−3(N−i)]Zi−2 + 4[8
N∑

j=i+1

aj−3(N−i)]Z2
i−2

−16Zi−2Y1Yi+1 + 16Zi−2Y
2
i+1 − (8ai−3)[8

i−1∑
j=1

aj−3(i−1)][8
N∑

j=i+1

aj−3(N−i)].
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The realizations and spectrum

• The subalgebra algebra (16) can be realized in terms of the deformed oscillator algebra
with structure function given by

φ(ni , ui ) = [ni + ui −
1

4
(2− y1 − yi+1)][ni + ui −

1

4
(2− y1 + yi+1)]

[ni + ui −
1

4
(2 + y1 − yi+1)][ni + ui −

1

4
(2 + y1 + yi+1)]

[ni + ui −
1

4
(2 + zi−2 + 2νi )][ni + ui −

1

4
(2 + zi−2 − 2νi )]

[ni + ui −
1

4
(2− zi−2 − 2νi )][ni + ui −

1

4
(2− zi−2 + 2νi )],

where y1, yi+1, zi−2, νi satisfy

Y1 =
1

4
(3N − 4− 8

N∑
j=1

aj + y2
1 ),

Yi+1 =
1

4

(3N − 3i − 4)− 8
N∑

j=i+1

aj + y2
i+1

 , (17)

Zi−2 =
1

4
(3i − 7− 8

i−1∑
j=1

aj + z2
i−2).
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The realizations and spectrum
• Imposing the constraints φ(0, ui ) = 0 and φ(pi + 1, ui ) = 0, where pi is positive integer,

we obtain

ui =
1

4
(2 + ε1y1 + ε2yi+1), or ui =

1

4
(2 + ε1zi−2 + 2ε2νi ),

zi−2 = 4ε̄1(pi + 1) + ε̄2y1 + ε̄3yi+1 + 2ε̄4νi ,

or y1 = 4ε̄1(pi + 1) + ε̄2yi+1 + 2ε̄3νi + ε̄4zi−2, (18)

where ε1, ε2, ε̄1, ε̄2, ε̄3, ε̄4 take the values ±1.

• In the following we will take

ui =
1

4
(2 + zi−2 + 2νi )

• Using the fact that the integrals Zi−1 is diagonal in the number operator in the oscillator
realization, we obtain

Zi−1 = 4(ni + ui )
2 +

1

4
(3i − 8

i∑
j=1

aj )− 1,

• From the last relation of (17),

Zi−1 =
1

4
(3i − 8

i∑
j=1

aj ) +
1

4
z2
i−1 − 1

• Comparing these two relations, we have

zi−1 = 4(qi + ui )
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The spectrum e(Z )

• This gives us the recurrence relation,

zi−1 = 4qi + zi−2 + 2νi + 2,

with the initial condition z0 = ν1, from which we get

zN−2 = 4

N−1∑
i=1

qi + 2

N−1∑
i=1

νi + 2(N − 2). (19)

• By (18) we can write

y1 = 4ε̄1(pN + 1) + ε̄2yN+1 + 2ε̄3νN + ε̄4zN−2.

• Choosing suitable sign of ε̄i and setting yN+1 = 0, we have

y1 = 4(pN + 1) + 4

N−1∑
1

ni + 2
N∑
1

νi + 2(N − 2).

• Substitute into the first equation in (17), we obtain

e(Z) = e(Y1) =

2pN + 2

N−1∑
i=1

qi +
N∑
i=1

νi + N

2

+
1

4
(3N − 4)− 2

N∑
j=1

aj .
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The spectrum of H

• To derive the spectrum of H, we consider the algebra generated by the integrals,
{Y1,BN ;H,ZN−2}, which close to form the quadratic algebra

[Y1, BN ] = D,

[Y1,D] = 8{Y1, BN} − 16HY1 + 4(8
N∑
j=1

aj − 3N)BN + 16HZN−2 − 8(8aN − 3)H, (20)

[BN ,D] = −8B2
N − 32bY1 + 16HBN + 32bZN−2,

• Comparing these with the quadratic algebra (8), we have

α = 0, γ = 8, δ = −16H, ε = 4(8
N∑
j=1

aj − 3N),

ζ = 16HZN−2−8(8aN−3)H, a = 0, d = −32b, z = 32bZN−2

• The Casimir operator in terms of only the central elements H and ZN−2 has the form,

K ′ = 32bZ2
N−2+16(8aN−3)H2−32b(8aN−3)ZN−2−8b(8aN−3)

8

N−1∑
j=1

aj−3(N−1)
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The realizations

• The quadratic algebra can be realized in terms of the oscillator algebra with the structure
function,

φ(nN , uN ) = [nN + uN −
1

4
(2−

√
2

b
H)][nN + uN −

1

4
(2 +

√
2

b
H)]

[nN + uN −
1

4
(2 + zN−2 + 2νN )][nN + uN −

1

4
(2 + zN−2 − 2νN )]

[nN + uN −
1

4
(2− zN−2 − 2νN )][nN + uN −

1

4
(2− zN−2 + 2νN )],

where zN−2 satisfy

ZN−2 =
1

4
(3N − 7− 8

N−1∑
j=1

aj + z2
N−2)

• Imposing the constraints φ(0, uN) = 0 and φ(pN + 1, uN) = 0 (where pN is positive
integer) to the structure function gives
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The spectrum of H

• the solutions

uN =
1

4
(2 + ε1

√
2

b
H), or uN =

1

4
(2 + ε1zN−2 + 2ε2νN ),

e(H) =

√
b

2
(4(pN + 1) + ε1zN−2 + 2ε2νN ),

Y1 =
γ

2

[
(nN + uN )2 −

1

4
−

ε

γ2

]
, ε1, ε2 = ±1.

• By means of the recurrence relation (19), we have

e(H) =
√

2b

2pN + 2

N−1∑
i=1

qi +
N∑
i=1

νi + N

 .
• This formula coincides with the result from separation of variables in hyperspherical

coordinates

• This emphasizes the fact that algebraic derivations of the spectrum for N-dimensional SW
systems can be based only on differential operators and their operator algebra.
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Summary

• the symmetry algebra of a N-dimensional quantum superintegrable system is in general a
quite complicated algebraic structure

• the complete symmetry algebra for the N-dimensional SW system is a higher rank
quadratic algebra SW(N)

• the algebra SW(N) contains the Racah algebra R(N) as a subalgebra

• two distinct approaches discussed here rely on the construction of different sets of
substructures involving three generators (and central elements)

• present their corresponding deformed oscillator algebra and their cubic Casimir operators

• the algebraic derivation is not unique for a superintegrable system

• the higher rank quadratic algebras are useful in deriving the spectrum of a Hamiltonian in
quantum mechanics.

− F. Correa, M.F. Hoque, I. Marquette and Y-Z. Zhang, J. Phys. A: Math. Theor. 54
(2021), 395201
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