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Supersymmetric quantum mechanicsand Painlevé equations – p. 1/106
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Introduction

Interesting to explore links of SUSY QM with nonlinear
differential equations

Simplest case: connection with Riccati equation

SUSY partners of the free particle lead to solutions of
the KdV equation

A link between the harmonic oscillator SUSY partners
and Painlevé IV (PIV ) equation will be found

A procedure for generating solutions of the PIV (and
PV ) equation will be available
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Introduction

The first people who realized that there is a connection
between second-degree polynomial
Heisenberg-algebras, PIV equation and first-order
SUSY QM were Veselov and Shabat (1993), Dubov,
Eleonsky and Kulagin (1994), Adler (1994)

This link was further explored in the higher-degree
case by Andrianov, Cannata, Ioffe and Nishnianidze
(2000), Fernández, Negro and Nieto (2004), Carballo,
Fernández, Negro and Nieto (2004), Mateo and Negro
(2008), Bermúdez, Fernández, González,
Morales-Salgado and Negro (starting from 2010)
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First-order SUSY QM

Let us take two Schrödinger type Hamiltonians

Hi = −1

2

d2

dx2
+ Vi(x), i = 0, 1 (1)

which are intertwined as

H1A
+
1 = A+

1H0

A±
1 =

1√
2

(

∓ d

dx
+ α1(x)

)

Let us stress that

d

dx
f = f

d

dx
+ f ′,

d2

dx2
f = f

d2

dx2
+ 2f ′ d

dx
+ f ′′

Supersymmetric quantum mechanicsand Painlevé equations – p. 5/106



First-order SUSY QM

Thus

√
2H1A

+
1 =

1

2

d3

dx3
− α1

2

d2

dx2
− (V1 + α′

1)
d

dx
+ α1V1 −

α′′
1

2
√
2A+

1H0 =
1

2

d3

dx3
− α1

2

d2

dx2
− V0

d

dx
+ α1V0 − V ′

0

which implies that

V1 = V0 − α′
1

α1V1 −
α′′
1

2
= α1V0 − V ′

0
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First-order SUSY QM

Substituting V1 and integrating

α′
1 + α2

1 = 2[V0(x)− ǫ1]

In terms of u(0)1 (x) such that α1(x) =
u
(0)
1

′

u
(0)
1

:

−1

2
u
(0)
1

′′
+ V0u

(0)
1 = H0u

(0)
1 = ǫ1u

(0)
1

The relevant factorizations:

H0 = A−
1 A

+
1 + ǫ1

H1 = A+
1 A

−
1 + ǫ1
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First-order SUSY QM

Suppose that H0 is a solvable Hamiltonian such that

H0ψ
(0)
n = Enψ

(0)
n , n = 0, 1, . . .

A nodeless mathematical eigenfunction u(0)1 for ǫ1 ≤ E0 is

chosen. Thus, if A+
1 ψ

(0)
n 6= 0 then

{

ψ
(1)
n =

A+
1 ψ

(0)
n√

En−ǫ1

}

is an
orthonormal set of eigenfunctions of H1 with eigenvalues
{En}. This set constitutes a basis if ∄ a normalizable

eigenfunction ψ(1)
ǫ1 which is orthogonal to the previous set
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First-order SUSY QM

Hence, let us look for ψ(1)
ǫ1 such that

(ψ
(1)
ǫ1 , ψ

(1)
n ) ∝ (ψ

(1)
ǫ1 , A

+
1 ψ

(0)
n ) = 0 ⇒ A−

1 ψ
(1)
ǫ1 = 0

By solving this first-order differential equation

ψ(1)
ǫ1

∝ e−
∫ x

0 α1(y)dy =
1

u
(0)
1

Since H1ψ
(1)
ǫ1 = ǫ1ψ

(1)
ǫ1 , then Sp(H1) depends on either ψ(1)

ǫ1

is normalizable or not. Three different cases arise.
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First-order SUSY QM

(i) For ǫ1 = E0 and u(0)1 = ψ
(0)
0 , which is nodeless in the

domain of V0, α1 = ψ
(0)
0

′
/ψ

(0)
0 . Thus V1 = V0 − α′

1 is
non-singular, the associated eigenfunctions and
eigenvalues of H1 become

ψ(1)
n =

A+
1 ψ

(0)
n√

En − E0

Sp(H1) = {En, n = 1, 2, . . . }

Note that E0 6∈ Sp(H1) since ψ(1)
ǫ1 ∝ 1/u

(0)
1 is not

normalizable
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First-order SUSY QM

(ii) For ǫ1 < E0 a nodeless seed solution u(0)1 can be

chosen and thus α1 = u
(0)
1

′
/u

(0)
1 is non-singular. Since in

general u(0)1 diverges at the ends of the domain it turns out
that the eigenfunctions and eigenvalues of H1 are given by

ψ(1)
ǫ1

∝ 1

u
(0)
1

, ψ(1)
n =

A+
1 ψ

(0)
n√

En − ǫ1

Sp(H1) = {ǫ1, En, n = 0, 1, 2, . . . }
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First-order SUSY QM

(iii) For ǫ1 < E0 solutions u(0)1 with a node at one end of the
problem domain can be found, the transformation induced

by α1 = u
(0)
1

′
/u

(0)
1 is still non-singular. The eigenfunctions

and eigenvalues of H1 become

ψ(1)
n =

A+
1 ψ

(0)
n√

En − ǫ1
Sp(H1) = {En, n = 0, 1, 2, . . . }
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First-order SUSY QM
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First-order SUSY QM

Example: harmonic oscillator potential

V0(x) =
x2

2

Eigenfunctions and eigenvalues

ψ(0)
n (x) =

√

1

2nn!
√
π
Hn(x)e

−x2

2 , En = n+
1

2
, n = 0, 1, . . .

Hn(x) are the Hermite polynomials
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First-order SUSY QM

The SE for arbitrary ǫ

−1
2
u(0)

′′
+ x2

2
u(0) = ǫu(0)

The general solution [a = (1− 2ǫ)/4]

u(0)(x) = e−
x2

2

[

1F1

(

a, 1
2
; x2

)

+ 2ν
Γ(a+ 1

2
)

Γ(a)
x 1F1

(

a+ 1
2
, 3
2
; x2

)

]

where 1F1 (a, b; y) =
Γ(b)
Γ(a)

∞
∑

n=0

Γ(a+n)
Γ(b+n)

yn

n!
is the confluent

hypergeometric function, Γ(x) is the Gamma function
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First-order SUSY QM

(i) 1-SUSY through the ground state: ǫ1 = E0 =
1
2

and

u
(0)
1 = ψ

(0)
0 ∝ e−

x2

2

Thus

V1(x) =
x2

2
− {log[u(0)1 ]}′′ = x2

2
+ 1

Just the initial potential displaced!
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First-order SUSY QM

(ii) 1-SUSY through general u(0)1 (x) with ǫ1 < E0 and
|ν1| < 1 it is obtained

V1(x) =
x2

2
− {log[u(0)1 ]}′′

which is essentially different from the initial potential
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First-order SUSY QM

-4 4

5

10

ǫ1 =
1

2
− 0.1 ν1 = 0.1
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First-order SUSY QM

-4 4

5

10

ǫ1 =
1

2
− 0.01 ν1 = 0.1
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First-order SUSY QM

-4 4

5

10

ǫ1 =
1

2
− 0.001 ν1 = 0.1
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First-order SUSY QM

ǫ1 = 0, ν1 = 0.9
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First-order SUSY QM

Interesting case: ǫ1 = −1
2
, u(0)1 (x) = e

x2

2 [1 + ν1Erf(x)]

-2

0

2

0

-0.4

-0.8

-2

0

2

Abraham-Moses-Mielnik potentials
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First-order SUSY QM

(iii) 1-SUSY through u(0)1 (x) associated to ǫ1 < E0 and
|ν1| = 1

V1(x) =
x2

2
− {log[u(0)1 ]}′′

is also different from the initial potential

Supersymmetric quantum mechanicsand Painlevé equations – p. 23/106



First-order SUSY QM

-4 4

5

10

ǫ1 =
1

2
− 0.001 ν1 = 1
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First-order SUSY QM

-4 -2 2 4

2

4

6

8

10

12

Abraham-Moses-Mielnik with ǫ1 = −1
2
, ν1 = 1
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Higher-order SUSY QM

Let us iterate the 1-SUSY procedure taking V1 and V2 as
the known and new potentials respectively and

A+
2 =

1√
2

(

− d

dx
+ α2(x, ǫ2)

)

where α2(x, ǫ2) = u
(1)
2

′
/u

(1)
2 , ǫ2 < ǫ1. It is required that

H2A
+
2 = A+

2H1 ⇒
V2 = V1 − α′

2(x, ǫ2)

α′
2(x, ǫ2) + α2

2(x, ǫ2) = 2[V1 − ǫ2]

−1
2
u
(1)
2

′′
+ V1u

(1)
2 = H1u

(1)
2 = ǫ2u

(1)
2
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Higher-order SUSY QM

α2(x, ǫ2) = −α1(x, ǫ1)−
2(ǫ1 − ǫ2)

α1(x, ǫ1)− α1(x, ǫ2)

Finite difference formula!
The new potential

V2 = V1 − α′
2(x, ǫ2) = V0 +

[

2(ǫ1 − ǫ2)

α1(x, ǫ1)− α1(x, ǫ2)

]′

= V0 − [logW (u
(0)
1 , u

(0)
2 )]′′
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Higher-order SUSY QM

The maximal set of eigenfunctions and eigenvalues of H2

ψ(2)
ǫ2

∝ 1

u
(1)
2

∝ u
(0)
1

W (u
(0)
1 , u

(0)
2 )

ψ(2)
ǫ1

=
A+

2 ψ
(1)
ǫ1√

ǫ1 − ǫ2
∝ u

(0)
2

W (u
(0)
1 , u

(0)
2 )

ψ(2)
n =

A+
2 ψ

(1)
n√

En − ǫ2
=

A+
2 A

+
1 ψ

(0)
n

√

(En − ǫ1)(En − ǫ2)

Sp(H2) = {ǫ2, ǫ1, En, n = 0, 1, 2, . . . }
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Higher-order SUSY QM
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Higher-order SUSY QM

Example: harmonic oscillator

-4 4

5

10

(ǫ1, ǫ2) = (−1,−1.2) (ν1, ν2) = (0.9, 1.1)
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Higher-order SUSY QM

(ǫ1, ǫ2) = (−1,−1.2) (ν1, ν2) = (0.99, 1.01)
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Higher-order SUSY QM

(ǫ1, ǫ2) = (3.2, 3) (ν1, ν2) = (1.01, 0.99)
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Higher-order SUSY QM

Repeating the 1-SUSY procedure k times taking k
solutions {α1(x, ǫi), i = 1, 2, . . . , k, ǫi+1 < ǫi} it is obtained
the Hamiltonian Hk with associated potential:

Vk = Vk−1 − α′
k(x, ǫk) = V0 −

k
∑

i=1

α′
i(x, ǫi)

where

αi+1(x, ǫi+1) = −αi(x, ǫi)−
2(ǫi − ǫi+1)

αi(x, ǫi)− αi(x, ǫi+1)
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Higher-order SUSY QM

The chain of intertwining relations:

HiA
+
i = A+

i Hi−1, i = 1, . . . , k

The chain of factorizations

H0 = A−
1 A

+
1 + ǫ1

Hi = A+
i A

−
i + ǫi = A−

i+1A
+
i+1 + ǫi+1, i = 1, . . . , k − 1

Hk = A+
k A

−
k + ǫk

The potential Vk is determined by k Riccati solutions
α1(x, ǫi), i = 1, . . . , k leading to k factorizations of H0

H0 =
1
2

[

d
dx

+ α1(x, ǫi)
] [

− d
dx

+ α1(x, ǫi)
]

+ ǫi, i = 1, . . . , k
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Higher-order SUSY QM

The maximal set of eigenfunctions and eigenvalues of Hk:

ψ(k)
ǫk

∝ e−
∫ x

0 αk(y,ǫk)dy

ψ(k)
ǫk−1

=
A+

k
ψ
(k−1)
ǫk−1√

ǫk−1−ǫk
...

ψ(k)
ǫ1

=
A+

k
...A+

2 ψ
(1)
ǫ1√

(ǫ1−ǫ2)...(ǫ1−ǫk)

ψ(k)
n =

A+
k
...A+

1 ψ
(0)
n√

(En−ǫ1)...(En−ǫk)

Sp(Hk) = {ǫi, En, i = k, . . . , 1, n = 0, 1, 2, . . . }
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Higher-order SUSY QM

Example: harmonic oscillator with k = 3

-4 4

-5

5

10

(ǫ1, ǫ2, ǫ3) = (−1,−1.2,−1.4) (ν1, ν2, ν3) = (0.9, 1.1, 0.9)
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Higher-order SUSY QM

-4 4

-10

10

(ǫ1, ǫ2, ǫ3) = (1
2
− 0.01, 1

2
− 0.02, 1

2
− 0.03)

(ν1, ν2, ν3) = (0.9, 1.1, 0.9)
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Higher-order SUSY QM

There are intertwining operators of order kth

B+
k = A+

k . . . A
+
1 , Bk = A1 . . . Ak

HkB
+
k = B+

k H0, H0Bk = BkHk

such that

B+
k Bk = A+

k . . . A
+
1 A1 . . . Ak = A+

k . . . A
+
2 (H1 − ǫ1)A2 . . . Ak

= A+
k . . . A

+
3 (H2 − ǫ1)(H2 − ǫ2)A3 . . . Ak

= · · · = (Hk − ǫ1) . . . (Hk − ǫk)

BkB
+
k = (H0 − ǫ1) . . . (H0 − ǫk) ⇒

B+
k ψ

(0)
n =

√

(En − ǫ1) . . . (En − ǫk)ψ
(k)
n

Bkψ
(k)
n =

√

(En − ǫ1) . . . (En − ǫk)ψ
(0)
n
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Harmonic oscillator SUSY partners

Recall the solution of the SE for V0(x) = x2

2
and arbitrary ǫ

u = e−
x2

2 [1F1(
1−2ǫ
4
, 1
2
; x2) + 2xν

Γ( 3−2ǫ
4

)

Γ( 1−2ǫ
4

) 1F1(
3−2ǫ
4
, 3
2
; x2)]

A k-th order SUSY transformation creating k new levels is
performed with the factorization energies ordered as

ǫk < ǫk−1 < · · · < ǫ1 < E0 =
1
2

The constants νi, i = 1, . . . , k in ui associated to ǫi fulfill

|νi| < 1 for odd i, |νi| > 1 for even i

Supersymmetric quantum mechanicsand Painlevé equations – p. 39/106



Harmonic oscillator SUSY partners

The intertwining relations

HkB
+
k = B+

k H0

H0Bk = BkHk

The new potential

Vk(x) = x2

2
− {ln[W (u1, . . . , uk)]}′′, k ≥ 1

The eigenfunctions of Hk

ψ(k)
n =

B+
k ψn

[(En − ǫ1) . . . (En − ǫk)]1/2
, En

ψ(k)
ǫj

∝ W (u1, . . . , uj−1, uj+1, . . . , uk)

W (u1, . . . , uk)
, ǫj
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Harmonic oscillator SUSY partners

The factorizations

B+
k Bk = (Hk − ǫ1) . . . (Hk − ǫk)

BkB
+
k = (H0 − ǫ1) . . . (H0 − ǫk)

The spectrum of the Hamiltonian Hk

Sp(Hk) = {ǫj, En = n+ 1
2
, j = 1, . . . , k, n = 0, 1, . . . }

suggests the following natural ladder operators for Hk

L−
k = B+

k aBk

L+
k = B+

k a
+Bk
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Harmonic oscillator SUSY partners
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Harmonic oscillator SUSY partners

The (2k + 1)-th order differential ladder operators L±
k are

such that:

[Hk, L
−
k ] = −L−

k

[Hk, L
+
k ] = L+

k

In fact, since H0 a
+ = a+(H0 + 1), H0 a = a(H0 − 1)

HkL
−
k = HkB

+
k aB

−
k = B+

k H0 aB
−
k

= B+
k a(H0 − 1)B−

k = B+
k aB

−
k (Hk − 1)

= L−
k (Hk − 1)
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Harmonic oscillator SUSY partners

The analogue of the number operator N(Hk) ≡ L+
k L

−
k is a

(2k + 1)-th degree polynomial in Hk

N(Hk) ≡ L+
k L

−
k = B+

k a
+B−

k B
+
k aB

−
k

= B+
k a

+

k
∏

i=1

(H0 − ǫi) aB
−
k

= B+
k

(

H0 −
1

2

) k
∏

i=1

(H0 − ǫi − 1)B−
k

=

(

Hk −
1

2

) k
∏

i=1

(Hk − ǫi − 1) (Hk − ǫi)
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Harmonic oscillator SUSY partners

Conclusion: the operator set {L−
k , L

+
k , Hk} close a (2k)-th

degree polynomial Heisenberg algebra since

[L−
k , L

+
k ] = N(Hk + 1)−N(Hk)

The roots of N(Hk) suggest that Sp(Hk) is composed of
k + 1 ladders: an infinite one departing from E0 = 1/2 and
k finites ones (of just one step), starting and ending at
ǫi, i = 1, . . . , k

The operator L−
k annihilates the k + 1 extremal states

{ψ(k)
0 , ψ

(k)
ǫi , i = 1, . . . , k}

The operator L+
k annihilates the k extremal states

{ψ(k)
ǫi , i = 1, . . . , k}
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Harmonic oscillator SUSY partners

Examples: For k = 0 with B0 = B+
0 ≡ I it turns out that

L−
0 = a, L+

0 = a+ and

[H0, L
−
0 ] = −L−

0

[H0, L
+
0 ] = L+

0

[L−
0 , L

+
0 ] = I

N(H0) = H0 −
1

2
= N

The Heisenberg-Weyl algebra is recovered!
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Harmonic oscillator SUSY partners

For k = 1 with arbitrary ǫ1 the quadratic case is found

[L−
1 , L

+
1 ] = (H1 − ǫ1)(3H1 − ǫ1)

The analogue of the number operator is cubic in H1:

N(H1) =
(

H1 − 1
2

)

(H1 − ǫ1) (H1 − ǫ1 − 1)

For general k a (2k)-th degree PHA is obtained, defined by
the polynomial N(Hk)
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Polynomial Heisenberg algebras

Polynomial Heisenberg algebras of (m− 1)-th degree:
deformations of the Heisenberg-Weyl algebra of kind:

[H,L+
m] = L+

m

[H,L−
m] = −L−

m

[L−
m,L+

m] ≡ Nm(H + 1)−Nm(H) ≡ Pm−1(H)

The analogue of the number operator

Nm(H) ≡ L+
mL−

m

is a m-th degree polynomial in H!
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Polynomial Heisenberg algebras

Differential realizations: through one-dimensional
Schrödinger-type Hamiltonians

H = −1

2

d2

dx2
+ V (x)

L±
m being differential ladder operators of order m and

Nm(H) a m-th degree polynomial in H which can be
factorized as

Nm(H) =
m
∏

i=1

(H − Ei)

Pm−1(H) is a (m− 1)-th degree polynomial in H
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Polynomial Heisenberg algebras

Sp(H): appears from the study of the Kernel KL−

m
of L−

m

L−
m ψ = 0 ⇒ L+

mL−
m ψ =

m
∏

i=1

(H − Ei)ψ = 0

Since KL−

m
in invariant under H,

L−
mHψ = (H + 1)L−

mψ = 0 ∀ ψ ∈ KL−

m

a natural basis choice in KL−

m
is

HψEi = EiψEi

ψEi are the extremal states: by applying L+
m onto them m

energy ladders with spacing ∆E = 1 will arise
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Polynomial Heisenberg algebras

(a) If s extremal states have physical meaning,
{ψEi , i = 1, . . . , s}, there will be s physical ladders obtained
from the iterated action of L+

m onto these extremal states
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(b) If for the j-th ladder ∃ n ∈ N such that

(

L+
m

)n−1
ψEj 6= 0,

(

L+
m

)n
ψEj = 0

we will have

L−
m(L+

m)
nψEj = L−

mL+
m(L+

m)
n−1ψEj

=
m
∏

i=1

(H + 1− Ei) (L+
m)

n−1ψEj

=
m
∏

i=1

(Ej + n− Ei) (L+
m)

n−1ψEj = 0
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Therefore El = Ej + n for some l ∈ {s+ 1, . . . ,m},
j ∈ {1, . . . , s} ⇒ Sp(H) consists of s− 1 infinite ladders and
one of lenght n which starts from Ej and ends at Ej + n− 1.
Conclusion: Sp(H) can have up to m infinite ladders
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General systems described by PHA of degree 0, 1, 2

Zeroth-degree PHA (m = 1): First-order ladder operators
Let us take

H = −1

2

d2

dx2
+ V (x)

L+
1 =

1√
2

[

− d
dx

+ f(x)

]

, L−
1 = (L+

1 )
†

which satisfy
[H,L+

1 ] = L+
1

A system involving V , f , and their derivatives is obtained
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f ′ − 1 = 0

V ′ − f = 0

Up to coordinate and energy displacements

f(x) = x

V (x) =
x2

2

The normalized extremal state is obtained by solving
L−

1 ψE1 = 0, leading to

ψE1 = π−1/4 exp(−x2/2)
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Conclusions.

The spectrum of H consists of an equidistant infinite
energy ladder departing from E1 = 1/2

The number operator is linear in H

N1(H) = H − E1

We recover the Heisenberg-Weyl algebra through the
identification

L−
1 = a, L+

1 = a+
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First-degree PHA (m=2): Second-order ladder operators
Now let us take

L+
2 =

1

2

[

d2

dx2
+ g(x)

d
dx

+ h(x)

]

, L−
2 = (L+

2 )
†

Then, a system of equations for V , g, h, and their
derivatives is obtained

g′ + 1 = 0

h′ + 2V ′ + g = 0

h′′ + 2V ′′ + 2gV ′ + 2h = 0
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The general solution (up to coordinate and energy
displacements)

g(x) = −x

h(x) =
x2

4
− γ

x2
− 1

2

V (x) =
x2

8
+

γ

2x2

γ is an integration constant. Now there are two extremal
states, which are annihilated by L−

2 and are eigenstates of
H with eigenvalues E1,2, given by
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ψE1 ∝ x1/2+
√
γ+1/4 exp

(

−x
2

4

)

, E1 =
1

2
+

1

2

√

γ +
1

4

ψE2 ∝ x1/2−
√
γ+1/4 exp

(

−x
2

4

)

, E2 =
1

2
− 1

2

√

γ +
1

4

Now N2(H) is quadratic in H

N2(H) = (H − E1)(H − E2)

The potentials can be expressed as [γ = ℓ(ℓ+ 1), ℓ ≥ 0]

V (x) =
x2

8
+
ℓ(ℓ+ 1)

2x2
, x > 0, ℓ ≥ 0
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Some conclusions:

The general systems having second-order ladder
operators are characterized by the radial oscillator
potentials

They have in general two infinite ladders, departing
from E1 and E2
By physical considerations (boundary conditions) in
general it is ruled out the one starting from E2
The ladder operators of the first-degree PHA (together
with the Hamiltonian) generate the so(2, 1) algebra
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Polynomial Heisenberg algebras

Second-degree PHA (m = 3): Third-order ladder operators
Now both L±

3 are third-order differential ladder operators.
To build them it is proposed a closed chain of SUSY
transformations, i.e.,

L+
3 = A+

3 A
+
2 A

+
1 =

1

23/2

(

d
dx

− f3

)(

d
dx

− f2

)(

d
dx

− f1

)

L−
3 = A−

1 A
−
2 A

−
3 =

1

23/2

(

− d
dx

− f1

)(

− d
dx

− f2

)(

− d
dx

− f3

)

such that

Hj+1A
+
j = A+

j Hj, HjA
−
j = A−

j Hj+1, j = 1, 2, 3
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The associated factorizations

H1 = A−
1 A

+
1 + ǫ1

H2 = A+
1 A

−
1 + ǫ1 = A−

2 A
+
2 + ǫ2

H3 = A+
2 A

−
2 + ǫ2 = A−

3 A
+
3 + ǫ3

H4 = A+
3 A

−
3 + ǫ3

The closure condition

H4 = H1 − 1 ≡ H − 1
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An explicit calculation leads to

f ′
1 + f ′

2 = f 2
1 − f 2

2 + 2(ǫ1 − ǫ2)

f ′
2 + f ′

3 = f 2
2 − f 2

3 + 2(ǫ2 − ǫ3)

f ′
3 + f ′

1 = f 2
3 − f 2

1 + 2(ǫ3 − ǫ1 + 1)

If we add the three equations we obtain

f ′
1 + f ′

2 + f ′
3 = 1 ⇒

f1 + f2 + f3 = x
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Then f2 = x− f1 − f3, and substituting this into the first
equation and then solve for f1:

f1 = −g
2
+
g′

2g
+
ǫ1 − ǫ2
g

where
g ≡ f3 − x ⇒ f3 = x+ g

Due to f2 = x− f1 − f3 it turns out that

f2 = −g
2
− g′

2g
− ǫ1 − ǫ2

g
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Since f1, f2, f3 are expressed in terms of g, we replace
them in the third equation to obtain

gg′′ =
1

2
g′

2
+

3

2
g4 + 4xg3 + 2

(

x2 − a
)

g2 + b

which is the Painlevé IV equation with parameters

a = ǫ1 + ǫ2 − 2ǫ3 − 1, b = −2(ǫ1 − ǫ2)
2

Once we find a solution to this equation the potential can
be found through

V (x) =
x2

2
− g′

2
+
g2

2
+ xg + ǫ3 +

1

2
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In addition, since fi, i = 1, 2, 3 are expressed in terms of g
the ladder operators L±

3 are also completely determined.
The energies of the extremal states are the roots of the
generalized number operator, which is cubic

N3(H) = (H − E1)(H − E2)(H − E3)

where Ei = ǫi + 1, i = 1, 2, 3. The three extremal states are
obtained from

L−
3 ψEj = (H − Ej)ψEj = 0, j = 1, 2, 3,

which leads to the following expressions
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ψE1 ∝
(

g′

2g
− g

2
− 1

g

√

− b
2
− x

)

exp
[

∫

(

g′

2g
+ g

2
− 1

g

√

− b
2

)

dx
]

ψE2 ∝
(

g′

2g
− g

2
+ 1

g

√

− b
2
− x

)

exp
[

∫

(

g′

2g
+ g

2
+ 1

g

√

− b
2

)

dx
]

ψE3 ∝ exp
(

−x2

2
−
∫

g dx
)

The physical ladders are obtained departing from the
extremal states with physical meaning

In this way we determine the spectrum of the
Hamiltonian H

All this discussion concerns what is called as direct
approach
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Example: let the following solution to the PIV equation

g(x) = −x− α(x)

where E1 = E3, α(x) = u′/u satisfies the Riccati equation

α′(x) + α2(x) = x2 − 2ǫ

with ǫ = E3 − E2 + 1/2, and u(x) is the corresponding
Schrödinger solution given by (|ν| < 1)

u(x) = e−x2

2

[

1F1

(

1−2ǫ
4
, 1
2
; x2

)

+ 2xν
Γ( 3−2ǫ

4 )
Γ( 1−2ǫ

4 ) 1F1

(

3−2ǫ
4
, 3
2
; x2

)

]

This solution g(x) leads to the harmonic oscillator potential
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V (x) =
x2

2
+ E2 −

1

2

The three extremal states become

ψE1 = 0

ψE2 ∝ exp

(

−x
2

2

)

ψE3 ∝ u(x)

Thus, the only physical ladder is generated from ψE2
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There is a straightforward connection between the third
extremal state and g(x), the solution to the PIV equation:

g(x) = −x− {ln[ψE3(x)]}′

Thus, if we would know a system ruled by a second-degree
PHA, specifically its extremal states, we could find
solutions to the PIV equation. This is the spirit of the
inverse problem which we will explore in detail in the last
lecture
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First-order SUSY QM

L±
1 are third-order differential ladder operators

Thus, the first-order SUSY partner of the oscillator
could provide solutions to the PIV equation

We just need to idenfity the extremal states of the
system as well as their corresponding energies

The energies are the roots involved in the analogue of
the number operator

N(H1) = (H1 − 1
2
)(H1 − ǫ1 − 1)(H1 − ǫ1)
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Solutions of PIV through SUSY QM

The extremal states associated to 1
2

and ǫ1 have been
given previously. The one associated to ǫ1 + 1 has to be
built with the help of the seed solution u1 employed to
implement the transformation. All this allows to identify the
extremal states of our system in the way

ψE1 ∝ A+
1 e

−x2/2, E1 =
1

2

ψE2 ∝ A+
1 a

+u1, E2 = ǫ1 + 1

ψE3 ∝ 1
u1
, E3 = ǫ1
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The first-order SUSY partner potential V1(x) of the
harmonic oscillator and the corresponding non-singular
solution of PIV are

V1(x) =
x2

2
− {ln[u1(x)]}′

g1(x, ǫ1) = −x− {ln[ψE3(x)]}′ = −x+ {ln[u1(x)]}′

The parameters of the PIV equation are here

a = 1
2
− ǫ1 ≥ 0, b = −2(ǫ1 +

1
2
)2 ≤ 0 ⇒ b = −2(a− 1)2
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The index in the PIV solution indicate the order of the
transformation

Two more solutions of the PIV equation are obtained
by cyclic permutations of the indices (1, 2, 3). However,
they will have singularities
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Solutions of PIV through SUSY QM

ǫ1 = 0.25, ν1 = 0.99 (blue); ǫ1 = 0, ν1 = 0.1 (magenta);
ǫ1 = −1, ν1 = 0.5 (yellow); and ǫ1 = −4, ν1 = 0.5 (green)
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Solutions of PIV through SUSY QM

ǫ1 = 0.25, ν1 = 0.99 (blue); ǫ1 = 0, ν1 = 0.1 (magenta);
ǫ1 = −1, ν1 = 0.5 (yellow); and ǫ1 = −4, ν1 = 0.5 (green)
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Higher-order SUSY QM

L±
k are (2k + 1)-order differential ladder operators

Is it possible to reduce somehow the order of this
natural ladder operators to three?

If so we could obtain new systems which perhaps
would supply us with new solutions to the PIV
equation

The answer turns out to be positive and it is contained
in the following reduction theorem
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Theorem. Suppose that the kth-order SUSY partner Hk of
the harmonic oscillator Hamiltonian H0 is generated by k
connected Schrödinger seed solutions

uj = (a−)j−1u1, ǫj = ǫ1 − (j − 1), j = 1, . . . , k

u1(x) is a nodeless solution for ǫ1 < 1/2 and |ν1| < 1. Thus,
the natural (2k + 1)th-order ladder operator L+

k = B+
k a

+B−
k

of Hk is factorized in the form

L+
k = Pk−1(Hk)l

+
k

where Pk−1(Hk) = (Hk − ǫ1) . . . (Hk − ǫk−1), and l+k is a
third-order differential ladder operator such that
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[Hk, l
+
k ] = l+k

l+k l
−
k = (Hk − ǫk)

(

Hk −
1

2

)

(Hk − ǫ1 − 1)

Note that

The operators l±k connect the eigenstates of the new
levels ǫj, j = 1, . . . , k, which form a finite ladder of
lenght k starting from ǫk = ǫ1 − (k − 1) and ending at ǫ1

The operator l+k annihilates the eigenstate for ǫ1
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From the roots of l+k l
−
k the operator l−k annihilates the

following three extremal states, two of which are
physical:

ψE1 ∝ B+
k e

−x2/2, E1 = 1
2

ψE2 ∝ B+
k a

+u1, E2 = ǫ1 + 1

ψE3 ∝ W (u1,...,uk−1)

W (u1,...,uk)
, E3 = ǫk = ǫ1 − (k − 1)

The operators l±k and the Hamiltonian Hk fulfill a
second-degree PHA, thus we will generate solutions to
the PIV equation departing from its extremal states
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The kth-order SUSY partner potential of the harmonic
oscillator and the corresponding non-singular solution of
the PIV equation become now

Vk(x) =
x2

2
− {ln[W (u1, . . . , uk)]}′′, k ≥ 2

gk(x, ǫ1) = −x− {ln[ψE3(x)]}′ = −x−
{

ln
[

W (u1,...,uk−1)

W (u1,...,uk)

]}′

The parameters of the PIV equation are now

a = −ǫ1 + 2k − 3
2
, b = −2

(

ǫ1 +
1
2

)2

Supersymmetric quantum mechanicsand Painlevé equations – p. 82/106
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Solutions of PIV through SUSY QM

ǫ1 = 0.25, ν1 = 0.99 (blue) ǫ1 = {0.25 (magenta), −0.75
(yellow), −2.75 (green)}, ν1 = 0.5
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Solutions of PIV through SUSY QM

ǫ1 = 0.25, ν1 = 0.99 (blue) ǫ1 = {0.25 (magenta),−0.75
(yellow),−2.75(green)}, ν1 = 0.5
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Solutions of PIV through SUSY QM

ǫ1 = 0.25, ν1 = 0.99 (blue) ǫ1 = {0.25 (magenta), −0.75
(yellow),−2.75(green)}, ν1 = 0.5
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ǫ1 = 0.25, ν1 = 0.99 (blue) ǫ1 = {0.25 (magenta), −0.75
(yellow), −2.75(green)}, ν1 = 0.5

Supersymmetric quantum mechanicsand Painlevé equations – p. 87/106
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Partial conclusions:

The first-order SUSY partners of the harmonic
oscillator provide straightforwardly non-singular real
solutions to the PIV equation

Its higher-order SUSY partners require a reduction
process which, once performed, produces new real
non-singular solution to the PIV equation

In the parameters space of solutions a− b we have
been able to identify some curves on which
one-parametric families of solutions exist
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We would like to be able to expand the points in the
parameter space a− b on which we can find also
non-singular solutions to the PIV equation

Let us tackle this issue
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In our previous treatment we got the restriction
ǫ1 < E0 = 1/2, |ν1| < 1 in order that the new potentials
Vk and the corresponding PIV solution would be
non-singular

The previous facts imply that the complete finite ladder
of Hk (with k steps) is placed below E0

From the spectral design point of view it would be
important to surpass this restriction so that it would be
possible to place (either partially or totally) the finite
ladder of Hk above E0
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Solutions of PIV through SUSY QM

This can be done, but there is a price to pay: the
transformation function u1 associated to the real
factorization energy ǫ1 will have to be complex

As a consequence, we will obtain now complex
potentials with real energy spectra

Almost all the previous formulae remain valid, the main
change is that in the real case A−

j = (A+
j )

†, but now
this is not true, although A±

j maintain its original form

A±
j =

1

21/2

(

∓ d

dx
+ αj

)
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Thus, the normalization factors appearing in the
previous formulae are no longer valid although the
corresponding eigenfunctions would be
square-integrable

The reduction theorem is still valid, so we will have to
supply one complex solution u1 of the SSE associated
to a real ǫ1 which now can be any real number
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Let us assume that the k seed solutions of the SSE used
to implement the SUSY transformation are connected in
the way

uj = (a−)j−1u1,

ǫj = ǫ1 − (j − 1), j = 1, . . . , k,

where now

u1(x) = e−x
2/2

[

1F1

(

1−2ǫ1
4
, 1
2
; x2

)

+ Λ x 1F1

(

3−2ǫ1
4
, 3
2
; x2

)]

where Λ = λ+ iκ (λ, κ ∈ R), ǫ1 ∈ R. Once again, this
system has third-order differential ladder operators, the
corresponding extremal states being
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ψE1 ∝ B+
k e

−x2/2, E1 = 1
2

ψE2 ∝ B+
k a

+u1, E2 = ǫ1 + 1

ψE3 ∝ W (u1,...,uk−1)

W (u1,...,uk)
, E3 = ǫk = ǫ1 − (k − 1)

With this labels choice we obtain the following solution to
the PIV equation

gk(x) = −x− {ln[ψE3(x)]}′ = −x−
{

ln
[

W (u1,...,uk−1)

W (u1,...,uk)

]}′

ai = −ǫ1 + 2k − 3
2
, bi = −2

(

ǫ1 +
1
2

)2
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Moreover, by making a cyclic permutation of the indices we
can obtain now two additional non-singular solutions for
different parameters a, b:

gk(x) = −x−
{

ln
[

B+
k e

−x2/2
]}′

aii = 2ǫ1 − k, bii = −2k2

gk(x) = −x−
{

ln
[

B+
k a

+u1
]}′

aiii = −ǫ1 − k − 3
2
, biii = −2(ǫ1 − k + 1

2
)2
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Solutions of PIV through SUSY QM

Real PIV solutions corresponding to ai = 1, bi = 0 (k = 1,
ǫ1 = −1/2, ν = 0.7) (blue); ai = 4, bi = −2 (k = 2,
ǫ1 = −3/2, ν = 0.5) (magenta); ai = 7, bi = −8 (k = 3,
ǫ1 = −1/2, ν = 0.3) (yellow)
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Solutions of PIV through SUSY QM

Real (solid line) and imaginary (dashed line) parts of some
complex solutions to PIV for aii = 12, bii = −8 (k = 2,
ǫ1 = 7, λ = κ = 1)
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Solutions of PIV through SUSY QM

Real (solid line) and imaginary (dashed line) parts of some
complex solutions to PIV for aiii = −5, biii = −8 (k = 1,
ǫ1 = 5/2, λ = κ = 1)
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Solutions of PIV through SUSY QM

Real (solid curve) and imaginary (dashed curve) parts of
some complex solutions to PIV for aiii = −5/2,
biii = −121/2 (k = 2, ǫ1 = 5, λ = 1, κ = 5)
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Solutions of PIV through SUSY QM

Real (solid curve) and imaginary (dashed curve) parts of
some complex solutions to PIV for aiii = 9, biii = −2
(k = 1, ǫ1 = 5, λ = κ = 1)
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We have simply derived real non-singular solutions to
the PIV equation with real parameters a, b

This procedure has been as well successfully applied
to complex non-singular solutions to the PIV equation
with real parameters a, b

The same technique can be applied to generate
non-singular complex solutions to the PIV equation
associated to complex parameters a, b

A similar method can be followed for generating
solutions to the PV equation
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Conclusions

SUSY QM is a powerful technique for generating
exactly solvable potentials (with modified spectra
compared with the initial one)

System ruled by polynomial Heisenberg algebras are
quite interesting

A confluence between these two subjects led us to
implement a simple technique for generating solutions
to PIV and PV equations

Simple methods for addressing complicated matters
are available, we hope having contributed to this view
of science (life)

Supersymmetric quantum mechanicsand Painlevé equations – p. 103/106
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