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Factorization method

The method consists in factorizing the Hamiltonian

H = −1

2

d2

dx2
+ V (x)

as a product of two first-order differential operators

The aim: to solve the eigenvalue problem for H, i.e.,

Hψ(x) = Eψ(x)

with the appropriate boundary conditions
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Origins of the method
In 1935 Dirac factorizes the harmonic oscillator

In 1940 Schrödinger factorizes the hydrogen atom

Between 1941 and 1951 Infeld contributes strongly to
the subject. In 1951 his classical review paper
including a wide classification of potentials solvable
through factorization is published. After this work the
subject was believed to be exhausted
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Factorization method rebirth

In 1984 Mielnik discovers the generalized factorization
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Factorization method rebirth

In 1984 I applied Mielnik’s factorization to the hidrogen
atom, Andrianov et al related it with Darboux
transformaton and MM Nieto with SUSY QM

In 1985 Sukumar generalized the methods for arbitrary
potentials and factorization energies

In 1993 Andrianov et al introduced the higher-order
generalizations of the method

In 1995 Bogdan and me tried to implement the
second-order generalization. In 1997 I found
numerically that such generalization was possible

In 1998 our widen collaboration (including LM Nieto
and LW Glasser) succeeded in finding the way to
implement analytically the second-order method.
Mielnik’s role was crucial for achieving this goal
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Harmonic oscillator factorization
The Hamiltonian

H = −1
2
d2

dx2
+ x2

2

fulfills the two factorizations

H = aa+ − 1
2
= a+a+ 1

2

a = 1√
2

(

d
dx

+ x
)

, a+ = 1√
2

(

− d
dx

+ x
)

thus the two intertwining relations

(H + 1)a = aH

(H − 1)a+ = a+H

and commutation relationships (Heisenberg-Weyl algebra)

[H, a] = −a, [H, a+] = a+, [a, a+] = 1
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Harmonic oscillator factorization

Due to aa+ and a+a are positive definite operators,
then the eigenvalues of H fulfill En ≥ 1/2

The action of a (a+) on an eigenfunction ψn of H
associated to En produces a new eigenfunction of H
with eigenvalue En − 1 (En + 1)

The iterated action of a could lead to a contradiction ⇒
there must exists an eigenfunction ψ0(x) which is
annihilated by a. Thus ψ0(x) = (π)−1/4e−x

2/2 and
E0 = 1/2

The iterated action of a+ on ψ0(x) produces the
eigenfunctions ψn(x) = (a+)nψ0(x)/

√
n! of H

associated to En = n+ 1/2
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Harmonic oscillator factorization

-3 -2 -1 1 2 3

1

2

3

4

5

– p. 9/21



Mielnik factorization
In 1984 Mielnik proposed that

H = bb+ − 1
2

b = 1√
2

[

d
dx

+ β(x)
]

, b+ = 1√
2

[

− d
dx

+ β(x)
]

thus β(x) must fulfill β′ + β2 = x2 + 1 whose general
solution is

β = x+ e−x2

λ+
∫ x

0
e−y2dy

= x+
[

log
(

λ+
∫ x

0
e−y

2

dy
)]′

The key point is that

Hλ = b+b+ 1
2
= −1

2
d2

dx2
+ Vλ(x)

Vλ(x) =
x2

2
−
[

e−x2

λ+
∫ x

0
e−y2dy

]′
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Mielnik factorization
The following intertwining relations are relevant,

(Hλ − 1)b+ = b+H

(H + 1)b = bHλ

The eigenfunctions of Hλ are obtained from those of H,

θn+1 =
b+ψn√
n+1

, n = 0, 1, . . .

plus an eigenfunction associated to E0 = 1/2,

θ0 ∝ exp
[

−
∫ x

0
β(y)dy

]

∝ e−
x2

2

λ+
∫ x

0
e−y2dy

For |λ| > √
π/2 the potential Vλ(x) and θn(x), n = 0, 1, . . .

are non-singular, i.e., in this domain Hλ is a new
Hamiltonian isospectral to the harmonic oscillator one
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Mielnik factorization

-6 -3 3 6

-20

-10

10

20

λ ∈
{√

π
2

+ 10−14, 0.88625, 1, 10
}

– p. 12/21



Second-order technique
In 1995 Bogdan and me started to explore the
second-order intertwining technique

H2B
+
2 = B+

2 H0

Hi = −1
2
d2

dx2
+ Vi(x), i = 0, 2,

B+
2 = 1

2

(

d2

dx2
− η(x) d

dx
+ γ(x)

)

After some work we found that

V2 = V0 − η′

γ = η′

2
+ η2

2
− 2V0 + d

ηη′′

2
− η′2

4
+ η4

4
+ η2η′ − 2V0η

2 + dη2 + c = 0, c, d ∈ R

Given V0, the potential V2 and γ will be obtained if we can
determine η
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Second-order technique

In 1997, I was able to find non-singular solutions η for
V0 =

x2

2
, d = −2, c = 1. A bit later, with Glasser and Luismi

Nieto in 1998, we were able to find the corresponding
analytic solutions. Almost immediately Luismi and me were
able to find the analytic solution in the general case by
means of the following ansatz:

η′ = −η2 + 2βη + 2ξ

where β y ξ must fulfill

ξ1,2 = ±√
c, ǫj =

d+ξj
2
, β′

j + β2
j = 2[V0 − ǫj], j = 1, 2

which implies that

η′ = −η2 + 2βjη + 2ξj, j = 1, 2
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Second-order technique
Later, together with Bogdan and other members of the
widened group (Fernández, Hussin, Mielnik 1998, Mielnik,
Nieto, Rosas-Ortiz 2000) we derived rigorously the explicit
expressions for the second and higher-order cases.
However, in the second-order case, since ξ1,2 = ±√

c a
classification scheme based on the sign of c arises

(i) Real case with c > 0

In this case ǫ1, ǫ2 ∈ R, ǫ1 6= ǫ2. The ansatz leads to

η′ = −η2 + 2β1η + 2(ǫ1 − ǫ2)

η′ = −η2 + 2β2η + 2(ǫ2 − ǫ1)

By subtracting them it is obtained η in terms of β1,2:

η = −2(ǫ1 − ǫ2)

β1 − β2
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Second-order technique

(ii) Confluent case with c = 0

For ξ = 0 it turns out that ǫ ≡ ǫ1 = ǫ2 ∈ R. Given the Riccati
solution β associated to ǫ, it must be solved the resulting
Bernoulli equation for η

η′ = −η2 + 2βη

Thus

η =
e2

∫
β(x)dx

w0 +
∫

e2
∫
β(x)dxdx

, w0 ∈ R

An alternative expression in terms of the derivative with
respect to the factorization energy appears:

η = −2

(

∂β

∂ǫ

)−1
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Second-order technique

(iii) Complex case with c < 0

Now ǫ1,2 ∈ C, ǫ2 = ǭ1. As we want that V2 would be real ⇒
β2 = β̄1. Hence the previous expression reduces to:

η = −2Im(ǫ1)

Im[β1]

Along the years we were applying the technique to several
potentials with a discrete part of the spectrum (harmonic
oscillator, Coulomb potential, among others). Specially
interesting were systems with purely continuous spectrum,
as the free particle. Are there other potentials to which we
could apply the technique?
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Periodic potentials

In 2001 B Samsonov visited Cinvestav. We wanted to
apply the factorization techniques to periodic systems, as
the Lamé potentials V (x) = n(n+ 1)m sn2(x,m), n ∈ N.
The main results in the first-order case were:

If we take as seed solution a Bloch function belonging
to the forbidden energy band which is below the lowest
band edge it turns out that the new potential are
periodic, with the same period as the initial potentials

However, if we take a nodeless linear combinations of
the two Bloch functions we will create an isolated
bound state at the factorization energy chosen, and the
new potential will be just asymptotically periodic, with
zones where the periodicity is broken. This can be
interpreted as if lattice periodicity defects would be
created in the material
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Periodic potentials

In the second-order case the main results were:

If we take as seed solutions two Bloch functions whose
factorization energies belong to the same forbidden
band it turns out that the new potentials are as well
periodic, with the same period as the initial potentials
and the same band structure

However, if we take two appropriate linear
combinations of the two Bloch functions with
factorization energies belonging to the same forbidden
band we can create two isolated bound states at the
two factorization energies chosen. The new potential in
this case will be just asymptotically periodic, with
zones in which the periodicity is broken. Once again,
this can be interpreted as if lattice periodicity defects
would be created in the material
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State of the art up to 2004

In 2003 we invited Bogdan to write a review paper on
the factorization method. It appeared as the opening
article in the special issue of the “International
Conference on Progress in Supersymmetric Quantum
Mechanics” published in J. Phys. A: Math. Gen. 37,
Number 43 (2004)

What a wise decision: such an article is considered
nowadays a classic on the factorization techniques due
to the highest and widespread impact it has have in the
scientific community, as well as the very special issue
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