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Motivation

Motivation

We want to receive a quantum system from a classical one by means of an
appropriate deformation.

The description of a quantum system should use a similar mathematical
language as used for classical systems.

We want to receive a complete theory of quantum mechanics in the language
of deformation quantization.

The theory should be non-formal.

Operator representation on a Hilbert space is received as an appropriate
representation of the quantum system.
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Classical system

Classical system

Starting point: classical Hamiltonian system (T ∗G,ω,H)

Configuration space G — Lie group

We can add magnetic field by modifying the symplectic structure:

ωF = ω + π∗F,

where F = dA is an exact 2-form on G representing magnetic field (Faraday
tensor) and A is a 1-form on G representing magnetic potential.

Example

Rigid body in a magnetic field:

G = SO(3), H(q, p) =
1

2
Iijpipj =

p2
1

2I1
+

p2
2

2I2
+

p2
3

2I3
,

where I1, I2, I3 are the principal moments of inertia and p1, p2, p3 are fiber
variables (angular momenta) corresponding to a basis X1, X2, X3 ∈ g = so(3):
pj(q, p) = 〈p,Xj〉.
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Classical system

Main observation: the classical Hamiltonian system (T ∗G,ω,H) can be fully
characterized by a certain subalgebra of the Poisson algebra C∞(T ∗G).

Consider the space F0(T ∗G) of functions on T ∗G ∼= G× g∗ which momentum
Fourier transforms are smooth and compactly supported.

The Fourier transform of f : T ∗G→ C in the momentum variable:

f̃(q,X) =
1

(2π)n

∫
g∗
f(q, p)ei〈p,X〉 dp for q ∈ G, X ∈ g

F0(T ∗G) is a pre-C∗-algebra with respect to the norm ‖f‖0 = sup
x∈T∗G

|f(x)|. Its

completion is equal C0(T ∗G).
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Classical system

The algebra F0(T ∗G) fully characterizes the classical Hamiltonian system:

all information about the Poisson manifold T ∗G is encoded in F0(T ∗G),

states can be defined as continuous positive-definite linear functionals on
F0(T ∗G) normalized to unity:

‖Λ‖ = 1,

Λ(f̄ · f) ≥ 0 for every f ∈ F0(T ∗G).

Then from Riesz representation theorem Λ(f) =

∫
T∗G

f dµ.
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Ziemowit Domański (PUT) Deformation quantization . . . Bia lystok, 19–25 June 2022 5 / 23



Quantization

Quantization

For ~ ∈ R, ~ 6= 0 let F~(T ∗G) ⊂ L2(T ∗G,dl) be an associative noncommutative
algebra with a product denoted ?~, with a Lie bracket

[[f, g]]~ =
1

i~
(f ?~ g − g ?~ f),

and with an involution being a complex-conjugation.

Scalar product and L2-norm on F~(T ∗G)

(f, g) =

∫
T∗G

f(x)g(x) dl(x), ‖f‖2 =

∫
T∗G

|f(x)|2 dl(x),

where dl =
dx

|2π~|n
.

Let us assume that the following property holds

‖f ?~ g‖2 ≤ ‖f‖2‖g‖2, f, g ∈ F~(T ∗G).
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Quantization

We will denote by L~(T ∗G) the closure of F~(T ∗G) in L2(T ∗G,dl). The space
L~(T ∗G) is a Hilbert subspace of L2(T ∗G,dl).

C∗-norm on F~(T ∗G)

For f ∈ F~(T ∗G) we define ‖f‖~ as the operator norm of the bounded linear
operator h 7→ f ?~ h defined on a dense subspace of the Hilbert space L~(T ∗G):

‖f‖~ = sup{‖f ?~ g‖2 | g ∈ F~(T ∗G), ‖g‖2 = 1}.

Completion of F~(T ∗G) with respect to the C∗-norm ‖ · ‖~ will be denoted
A~(T ∗G). The space A~(T ∗G) is a C∗-algebra of observables.
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Quantization

By quantization of the algebra F0(T ∗G) we mean a family of pre-C∗-algebras
F~(T ∗G), where ~ ∈ R, ~ 6= 0, satisfying the following condition:

For any f, g ∈ F0(T ∗G) there exists ~0 > 0 such that for every ~ ∈ (−~0, ~0) the
functions f, g ∈ F~(T ∗G) and

the map ~ 7→ ‖f‖~ is continuous on (−~0, ~0),

‖f ?~ g − f · g‖~ → 0 as ~→ 0,

‖[[f, g]]~ − {f, g}‖~ → 0 as ~→ 0.
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Quantization

We will be dealing only with weakly exponential Lie groups.

Weakly exponential Lie group

There exists an open neighborhood O of 0 in g, such that:

1 it is star-shaped and symmetric, i.e. if X ∈ O then tX ∈ O for −1 ≤ t ≤ 1,

2 the exponential map exp: g→ G restricted to O is a diffeomorphism onto
U = exp(O),

3 G \ U is of measure zero.

Examples: (Rn,+), SO(3,R), SU(2), SL(2,C). However, SL(2,R) is not
weakly exponential.
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Quantization

The rotation group SO(3):

Norm on so(3)

On so(3) we can introduce a norm ‖X‖ of element X as the length |ω| of the
corresponding Euler vector ω. The Euler vector represents the axis of rotation and
its length is equal to the angle of rotation.

O = {X ∈ so(3) | ‖X‖ < π}
U = exp(O) = {R ∈ SO(3) | TrR 6= −1} consists of all rotations except ones
with angle π.
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Quantization

Special unitary group SU(2):

Norm on su(2)

On su(2) we can introduce a norm ‖X‖ = 2
√

detX.

O = {X ∈ su(2) | ‖X‖ < 2π}
U = exp(O) = SU(2) \ {−I}
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Quantization

Realization of the algebras F~(T ∗G):

A space of square integrable functions f on T ∗G whose momentum Fourier
transforms f̃ have support in G× ~−1O and for which the functions

f(a, b) = |~|−nf̃
(
a exp( 1

2Va(b)), ~−1Va(b)
)
e

i
~ Φ(a,b)F (~−1Va(b))−1,

defined on a dense subset {(a, b) ∈ G×G | a−1b ∈ U} of G×G, extend to
smooth compactly supported functions on G×G.

For X ∈ g
F (X) =

√
|detφ(~ adX)|,

where φ(x) =
1− e−x

x
.

For q ∈ G

Vq = (Lq ◦ exp |O)−1, so that Vq(a) = exp−1(q−1a) for a ∈ Lq(U).
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Quantization

For a, b, c ∈ G

Φ(a, b, c) =

∫
∆(a,b,c)

F, Φ(a, b) = Φ(e, a, b),

where ∆(a, b, c) is a surface enclosed by one-parameter subgroups connecting a
with b, b with c, and c with a.
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Quantization

(f ?~ g)(q, p) =

∫
g×g

f̃
(
q exp(−~

2 (X � Y )) exp(~
2X), X

)
× g̃
(
q exp(~

2 (X � Y )) exp(−~
2Y ), Y

)
e

i
~ Φq(X,Y )e−i〈p,X�Y 〉L(X,Y ) dX dY

X � Y = ~−1 exp−1
(
exp(~X) exp(~Y )

)
= X + Y +

~
2

[X,Y ] +
~2

12
([X, [X,Y ]] + [Y, [Y,X]]) + · · ·

for X,Y ∈ ~−1O such that exp(~X) exp(~Y ) ∈ U .

L(X,Y ) =
F (X)F (Y )

F (X � Y )

Φq(X,Y ) = Φ
(
q exp(−~

2 (X � Y )), q exp(~
2 (X � Y )), q exp(−~

2 (X � Y )) exp(~X)
)

Ziemowit Domański (PUT) Deformation quantization . . . Bia lystok, 19–25 June 2022 14 / 23



Quantization

(f ?~ g)(q, p) =

∫
g×g

f̃
(
q exp(−~

2 (X � Y )) exp(~
2X), X

)
× g̃
(
q exp(~

2 (X � Y )) exp(−~
2Y ), Y

)
e

i
~ Φq(X,Y )e−i〈p,X�Y 〉L(X,Y ) dX dY

X � Y = ~−1 exp−1
(
exp(~X) exp(~Y )

)
= X + Y +

~
2

[X,Y ] +
~2

12
([X, [X,Y ]] + [Y, [Y,X]]) + · · ·

for X,Y ∈ ~−1O such that exp(~X) exp(~Y ) ∈ U .

L(X,Y ) =
F (X)F (Y )

F (X � Y )

Φq(X,Y ) = Φ
(
q exp(−~

2 (X � Y )), q exp(~
2 (X � Y )), q exp(−~

2 (X � Y )) exp(~X)
)
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Quantization

(f ?~ g)(q, p) =

∫
g×g

f̃
(
q exp(−~

2 (X � Y )) exp(~
2X), X

)
× g̃
(
q exp(~

2 (X � Y )) exp(−~
2Y ), Y

)
e

i
~ Φq(X,Y )e−i〈p,X�Y 〉L(X,Y ) dX dY

X � Y = ~−1 exp−1
(
exp(~X) exp(~Y )

)
= X + Y +

~
2

[X,Y ] +
~2

12
([X, [X,Y ]] + [Y, [Y,X]]) + · · ·
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Quantization

Extension of F~(T ∗G) to an algebra of distributions:

Algebra of distributions F?(T ∗G)

Treating F~(T ∗G) as the space of test functions we define the space of
distributions F ′~(T ∗G) as the space of linear functionals on F~(T ∗G). The space

F?(T ∗G) = {f ∈ F ′~(T ∗G) | f ?~ g, g ?~ f ∈ F~(T ∗G) for every g ∈ F~(T ∗G)}

is closed with respect to the star-product.

All smooth functions polynomial in fiber variables pj

f(q, p) =
k∑

l=0

f i1i2...il(q)pi1pi2 · · · pil

for k ≥ 0 and f i1i2...il ∈ C∞(G), are in F?(T ∗G).
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Quantization

States

Continuous positive linear functionals on A~(T ∗G) normalized to unity. They are
of the form:

Λ(f) =

∫
T∗G

f ?~ ρdl,

where ρ ∈ L~(T ∗G) is a quasi-probabilistic distribution function:

1 ρ̄ = ρ,

2

∫
T∗G

ρdl = 1,

3

∫
T∗G

f̄ ?~ f ?~ ρ dl ≥ 0 for every f ∈ F~(T ∗G).
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Ziemowit Domański (PUT) Deformation quantization . . . Bia lystok, 19–25 June 2022 16 / 23



Quantization

States

Continuous positive linear functionals on A~(T ∗G) normalized to unity. They are
of the form:

Λ(f) =

∫
T∗G

f ?~ ρdl,

where ρ ∈ L~(T ∗G) is a quasi-probabilistic distribution function:

1 ρ̄ = ρ,

2

∫
T∗G

ρdl = 1,

3

∫
T∗G

f̄ ?~ f ?~ ρ dl ≥ 0 for every f ∈ F~(T ∗G).
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Quantization

Operator representation

From Gelfand-Naimark theorem the C∗-algebra of observables A~(T ∗G) can be
isometrically represented as an algebra of bounded linear operators on a certain
Hilbert space H.

Let H = L2(G,dm). Then the representation f 7→ f̂ on F~(T ∗G) is expressed by
the formula

f̂ψ(q) =

∫
g

f̃
(
q exp(~

2X), X
)
ψ
(
q exp(~X)

)
e

i
~ Φ(q,q exp(~X))F (X) dX.

The integral kernel of f̂ :

f(a, b) = |~|−nf̃
(
a exp( 1

2Va(b)), ~−1Va(b)
)
e

i
~ Φ(a,b)F (~−1Va(b))−1.
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Quantization

L~(T ∗G) ↔ B2(H) (space of Hilbert-Schmidt operators)

A~(T ∗G) ↔ K(H) (space of compact operators)

F?(T ∗G) ↔ F̂?(T ∗G)
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Rigid body

Rigid body

Quantization of a rigid body:
G = SO(3)

There exists other quantization:

Observation

SO(3) is doubly covered by SU(2). To every rotation q ∈ SO(3) correspond two
elements −a, a ∈ SU(2).

Take as F~(T ∗SO(3)) the subalgebra of F~(T ∗SU(2)) consisting of symmetric
functions: f(−a, p) = f(a, p). Such functions can be identified with functions on
T ∗SO(3).

The algebra F~(T ∗SO(3)) from the previous quantization is a subalgebra of the
new algebra F~(T ∗SO(3)).
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Rigid body

In the operator representation

H = L2(SU(2),dm) = H+ ⊕H−,

where
H± = {ψ ∈ H | ψ(−x) = ±ψ(x)}.

The Hilbert space H+ is naturally isomorphic to L2(SO(3),dm).
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Rigid body

Hamilton operator of a rigid body in a magnetic field:

H(q, p) =
1

2
Iijpipj =

p2
1

2I1
+

p2
2

2I2
+

p2
3

2I3
↓

Ĥ =
1

4
Iij p̂ip̂j +

1

2
p̂iI

ij p̂j +
1

4
p̂ip̂jI

ij − ~2

24
Ck

ilC
l
jkI

ij

=
p̂2

1

2I1
+

p̂2
2

2I2
+

p̂2
3

2I3
+

~2

24

(
1

I1
+

1

I2
+

1

I3

)
,

where

p̂j = i~LXj
−Aj ,

[p̂i, p̂j ] = i~(Ck
ij p̂k + Fij).
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Rigid body

Magnetic field of a magnetic monopole of magnetic charge k:

F = dA

A = −k(〈q, u1〉α1 + 〈q, u2〉α2 + 〈q, u3〉α3),

where q ∈ R3 is the center of charge describing the direction of the magnetic
field, u1, u2, u3 ∈ R3 are vectors corresponding to X1, X2, X3 via the natural
isomorphism of Lie algebras so(3) ∼= R3 and α1, α2, α3 are left invariant 1-forms
on G = SO(3) such that αi(LXj

) = δij .

For simplicity let us take A = −k‖q‖α1.

Spectrum of Ĥ:

Spec(Ĥ) = {Ej,` | j ∈ 1
2Z, j ≥ 0, ` = −j,−j + 1, . . . , j − 1, j},

where for I1 = I2 = I3 = I (spherical top)

Ej,` =
~2

2I
j(j + 1)− ~

k‖q‖
I

`+
k2‖q‖2

2I
+

~2

8I

and for I1 6= I2 = I3 = I (symmetric top)

Ej,` =
~2

2I
j(j + 1) +

~2

2

(
1

I1
− 1

I

)
`2 − ~

k‖q‖
I1

`+
k2‖q‖2

2I1
+

~2

24

(
1

I1
+

2

I

)
.
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Rigid body

Thank you :)
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