Deformation quantization on the cotangent bundle of a Lie group

Ziemowit Domański

Institute of Mathematics, Poznań University of Technology

> Białystok, 19-25 June 2022
> XXXIX Workshop on Geometric Methods in Physics

固
Z. Domański. Deformation quantization on the cotangent bundle of a Lie group. J. Math. Phys. 62, 033504 (2021).
目
Z. Domański. Quantization of a rigid body. [In preparation].

Motivation

- We want to receive a quantum system from a classical one by means of an appropriate deformation.

Motivation

- We want to receive a quantum system from a classical one by means of an appropriate deformation.
- The description of a quantum system should use a similar mathematical language as used for classical systems.

Motivation

- We want to receive a quantum system from a classical one by means of an appropriate deformation.
- The description of a quantum system should use a similar mathematical language as used for classical systems.
- We want to receive a complete theory of quantum mechanics in the language of deformation quantization.

Motivation

- We want to receive a quantum system from a classical one by means of an appropriate deformation.
- The description of a quantum system should use a similar mathematical language as used for classical systems.
- We want to receive a complete theory of quantum mechanics in the language of deformation quantization.
- The theory should be non-formal.

Motivation

- We want to receive a quantum system from a classical one by means of an appropriate deformation.
- The description of a quantum system should use a similar mathematical language as used for classical systems.
- We want to receive a complete theory of quantum mechanics in the language of deformation quantization.
- The theory should be non-formal.
- Operator representation on a Hilbert space is received as an appropriate representation of the quantum system.

Classical system

Starting point: classical Hamiltonian system $\left(T^{*} G, \omega, H\right)$
Configuration space G - Lie group

Classical system

Starting point: classical Hamiltonian system $\left(T^{*} G, \omega, H\right)$
Configuration space G - Lie group
We can add magnetic field by modifying the symplectic structure:

$$
\omega_{F}=\omega+\pi^{*} F,
$$

where $F=\mathrm{d} A$ is an exact 2-form on G representing magnetic field (Faraday tensor) and A is a 1 -form on G representing magnetic potential.

Classical system

Starting point: classical Hamiltonian system $\left(T^{*} G, \omega, H\right)$
Configuration space G - Lie group
We can add magnetic field by modifying the symplectic structure:

$$
\omega_{F}=\omega+\pi^{*} F,
$$

where $F=\mathrm{d} A$ is an exact 2-form on G representing magnetic field (Faraday tensor) and A is a 1 -form on G representing magnetic potential.

Example

Rigid body in a magnetic field:

$$
G=S O(3), \quad H(q, p)=\frac{1}{2} I^{i j} p_{i} p_{j}=\frac{p_{1}^{2}}{2 I_{1}}+\frac{p_{2}^{2}}{2 I_{2}}+\frac{p_{3}^{2}}{2 I_{3}},
$$

where I_{1}, I_{2}, I_{3} are the principal moments of inertia and p_{1}, p_{2}, p_{3} are fiber variables (angular momenta) corresponding to a basis $X_{1}, X_{2}, X_{3} \in \mathfrak{g}=\mathfrak{s o}(3)$: $p_{j}(q, p)=\left\langle p, X_{j}\right\rangle$.

Main observation: the classical Hamiltonian system $\left(T^{*} G, \omega, H\right)$ can be fully characterized by a certain subalgebra of the Poisson algebra $C^{\infty}\left(T^{*} G\right)$.

Main observation: the classical Hamiltonian system $\left(T^{*} G, \omega, H\right)$ can be fully characterized by a certain subalgebra of the Poisson algebra $C^{\infty}\left(T^{*} G\right)$.

Consider the space $\mathcal{F}_{0}\left(T^{*} G\right)$ of functions on $T^{*} G \cong G \times \mathfrak{g}^{*}$ which momentum Fourier transforms are smooth and compactly supported.

Main observation: the classical Hamiltonian system $\left(T^{*} G, \omega, H\right)$ can be fully characterized by a certain subalgebra of the Poisson algebra $C^{\infty}\left(T^{*} G\right)$.

Consider the space $\mathcal{F}_{0}\left(T^{*} G\right)$ of functions on $T^{*} G \cong G \times \mathfrak{g}^{*}$ which momentum Fourier transforms are smooth and compactly supported.

The Fourier transform of $f: T^{*} G \rightarrow \mathbb{C}$ in the momentum variable:

$$
\tilde{f}(q, X)=\frac{1}{(2 \pi)^{n}} \int_{\mathfrak{g}^{*}} f(q, p) e^{i\langle p, X\rangle} \mathrm{d} p \quad \text { for } q \in G, X \in \mathfrak{g}
$$

Main observation: the classical Hamiltonian system $\left(T^{*} G, \omega, H\right)$ can be fully characterized by a certain subalgebra of the Poisson algebra $C^{\infty}\left(T^{*} G\right)$.

Consider the space $\mathcal{F}_{0}\left(T^{*} G\right)$ of functions on $T^{*} G \cong G \times \mathfrak{g}^{*}$ which momentum Fourier transforms are smooth and compactly supported.

The Fourier transform of $f: T^{*} G \rightarrow \mathbb{C}$ in the momentum variable:

$$
\tilde{f}(q, X)=\frac{1}{(2 \pi)^{n}} \int_{\mathfrak{g}^{*}} f(q, p) e^{i\langle p, X\rangle} \mathrm{d} p \quad \text { for } q \in G, X \in \mathfrak{g}
$$

$\mathcal{F}_{0}\left(T^{*} G\right)$ is a pre- C^{*}-algebra with respect to the norm $\|f\|_{0}=\sup _{x \in T^{*} G}|f(x)|$. Its completion is equal $C_{0}\left(T^{*} G\right)$.

The algebra $\mathcal{F}_{0}\left(T^{*} G\right)$ fully characterizes the classical Hamiltonian system:

The algebra $\mathcal{F}_{0}\left(T^{*} G\right)$ fully characterizes the classical Hamiltonian system:

- all information about the Poisson manifold $T^{*} G$ is encoded in $\mathcal{F}_{0}\left(T^{*} G\right)$,

The algebra $\mathcal{F}_{0}\left(T^{*} G\right)$ fully characterizes the classical Hamiltonian system:

- all information about the Poisson manifold $T^{*} G$ is encoded in $\mathcal{F}_{0}\left(T^{*} G\right)$,
- states can be defined as continuous positive-definite linear functionals on $\mathcal{F}_{0}\left(T^{*} G\right)$ normalized to unity:

$$
\begin{aligned}
& \|\Lambda\|=1 \\
& \Lambda(\bar{f} \cdot f) \geq 0 \text { for every } f \in \mathcal{F}_{0}\left(T^{*} G\right) .
\end{aligned}
$$

Then from Riesz representation theorem $\Lambda(f)=\int_{T^{*} G} f \mathrm{~d} \mu$.

Quantization

For $\hbar \in \mathbb{R}, \hbar \neq 0$ let $\mathcal{F}_{\hbar}\left(T^{*} G\right) \subset L^{2}\left(T^{*} G, \mathrm{~d} l\right)$ be an associative noncommutative algebra with a product denoted \star_{\hbar}, with a Lie bracket

$$
\llbracket f, g \rrbracket_{\hbar}=\frac{1}{i \hbar}\left(f \star_{\hbar} g-g \star_{\hbar} f\right),
$$

and with an involution being a complex-conjugation.
Scalar product and L^{2}-norm on $\mathcal{F}_{\hbar}\left(T^{*} G\right)$

$$
(f, g)=\int_{T^{*} G} \overline{f(x)} g(x) \mathrm{d} l(x), \quad\|f\|_{2}=\int_{T^{*} G}|f(x)|^{2} \mathrm{~d} l(x)
$$

where $\mathrm{d} l=\frac{\mathrm{d} x}{|2 \pi \hbar|^{n}}$.
Let us assume that the following property holds

$$
\left\|f \star_{\hbar} g\right\|_{2} \leq\|f\|_{2}\|g\|_{2}, \quad f, g \in \mathcal{F}_{\hbar}\left(T^{*} G\right)
$$

We will denote by $\mathcal{L}_{\hbar}\left(T^{*} G\right)$ the closure of $\mathcal{F}_{\hbar}\left(T^{*} G\right)$ in $L^{2}\left(T^{*} G, \mathrm{~d} l\right)$. The space $\mathcal{L}_{\hbar}\left(T^{*} G\right)$ is a Hilbert subspace of $L^{2}\left(T^{*} G, \mathrm{~d} l\right)$.

We will denote by $\mathcal{L}_{\hbar}\left(T^{*} G\right)$ the closure of $\mathcal{F}_{\hbar}\left(T^{*} G\right)$ in $L^{2}\left(T^{*} G, \mathrm{~d} l\right)$. The space $\mathcal{L}_{\hbar}\left(T^{*} G\right)$ is a Hilbert subspace of $L^{2}\left(T^{*} G, \mathrm{~d} l\right)$.
C^{*}-norm on $\mathcal{F}_{\hbar}\left(T^{*} G\right)$
For $f \in \mathcal{F}_{\hbar}\left(T^{*} G\right)$ we define $\|f\|_{\hbar}$ as the operator norm of the bounded linear operator $h \mapsto f \star_{\hbar} h$ defined on a dense subspace of the Hilbert space $\mathcal{L}_{\hbar}\left(T^{*} G\right)$:

$$
\|f\|_{\hbar}=\sup \left\{\left\|f \star_{\hbar} g\right\|_{2} \mid g \in \mathcal{F}_{\hbar}\left(T^{*} G\right),\|g\|_{2}=1\right\} .
$$

We will denote by $\mathcal{L}_{\hbar}\left(T^{*} G\right)$ the closure of $\mathcal{F}_{\hbar}\left(T^{*} G\right)$ in $L^{2}\left(T^{*} G, \mathrm{~d} l\right)$. The space $\mathcal{L}_{\hbar}\left(T^{*} G\right)$ is a Hilbert subspace of $L^{2}\left(T^{*} G, \mathrm{~d} l\right)$.
C^{*}-norm on $\mathcal{F}_{\hbar}\left(T^{*} G\right)$
For $f \in \mathcal{F}_{\hbar}\left(T^{*} G\right)$ we define $\|f\|_{\hbar}$ as the operator norm of the bounded linear operator $h \mapsto f \star_{\hbar} h$ defined on a dense subspace of the Hilbert space $\mathcal{L}_{\hbar}\left(T^{*} G\right)$:

$$
\|f\|_{\hbar}=\sup \left\{\left\|f \star_{\hbar} g\right\|_{2} \mid g \in \mathcal{F}_{\hbar}\left(T^{*} G\right),\|g\|_{2}=1\right\} .
$$

Completion of $\mathcal{F}_{\hbar}\left(T^{*} G\right)$ with respect to the C^{*}-norm $\|\cdot\|_{\hbar}$ will be denoted $\mathcal{A}_{\hbar}\left(T^{*} G\right)$. The space $\mathcal{A}_{\hbar}\left(T^{*} G\right)$ is a C^{*}-algebra of observables.

By quantization of the algebra $\mathcal{F}_{0}\left(T^{*} G\right)$ we mean a family of pre- C^{*}-algebras $\mathcal{F}_{\hbar}\left(T^{*} G\right)$, where $\hbar \in \mathbb{R}, \hbar \neq 0$, satisfying the following condition:
For any $f, g \in \mathcal{F}_{0}\left(T^{*} G\right)$ there exists $\hbar_{0}>0$ such that for every $\hbar \in\left(-\hbar_{0}, \hbar_{0}\right)$ the functions $f, g \in \mathcal{F}_{\hbar}\left(T^{*} G\right)$ and

- the map $\hbar \mapsto\|f\|_{\hbar}$ is continuous on $\left(-\hbar_{0}, \hbar_{0}\right)$,
- $\left\|f \star_{\hbar} g-f \cdot g\right\|_{\hbar} \rightarrow 0$ as $\hbar \rightarrow 0$,
- $\left\|\llbracket f, g \rrbracket_{\hbar}-\{f, g\}\right\|_{\hbar} \rightarrow 0$ as $\hbar \rightarrow 0$.

We will be dealing only with weakly exponential Lie groups.
Weakly exponential Lie group
There exists an open neighborhood \mathcal{O} of 0 in \mathfrak{g}, such that:

We will be dealing only with weakly exponential Lie groups.
Weakly exponential Lie group
There exists an open neighborhood \mathcal{O} of 0 in \mathfrak{g}, such that:
(1) it is star-shaped and symmetric, i.e. if $X \in \mathcal{O}$ then $t X \in \mathcal{O}$ for $-1 \leq t \leq 1$,

We will be dealing only with weakly exponential Lie groups.
Weakly exponential Lie group
There exists an open neighborhood \mathcal{O} of 0 in \mathfrak{g}, such that:
(1) it is star-shaped and symmetric, i.e. if $X \in \mathcal{O}$ then $t X \in \mathcal{O}$ for $-1 \leq t \leq 1$,
(2) the exponential map exp: $\mathfrak{g} \rightarrow G$ restricted to \mathcal{O} is a diffeomorphism onto $\mathcal{U}=\exp (\mathcal{O})$,

We will be dealing only with weakly exponential Lie groups.
Weakly exponential Lie group
There exists an open neighborhood \mathcal{O} of 0 in \mathfrak{g}, such that:
(1) it is star-shaped and symmetric, i.e. if $X \in \mathcal{O}$ then $t X \in \mathcal{O}$ for $-1 \leq t \leq 1$,
(2) the exponential map exp: $\mathfrak{g} \rightarrow G$ restricted to \mathcal{O} is a diffeomorphism onto $\mathcal{U}=\exp (\mathcal{O})$,
(0) $G \backslash \mathcal{U}$ is of measure zero.

We will be dealing only with weakly exponential Lie groups.
Weakly exponential Lie group
There exists an open neighborhood \mathcal{O} of 0 in \mathfrak{g}, such that:
(1) it is star-shaped and symmetric, i.e. if $X \in \mathcal{O}$ then $t X \in \mathcal{O}$ for $-1 \leq t \leq 1$,
(2) the exponential map exp: $\mathfrak{g} \rightarrow G$ restricted to \mathcal{O} is a diffeomorphism onto $\mathcal{U}=\exp (\mathcal{O})$,
(c) $G \backslash \mathcal{U}$ is of measure zero.

Examples: $\left(\mathbb{R}^{n},+\right), S O(3, \mathbb{R}), S U(2), S L(2, \mathbb{C})$. However, $S L(2, \mathbb{R})$ is not weakly exponential.

The rotation group $S O(3)$:
Norm on $\mathfrak{s o (3)}$
On $\mathfrak{s o}(3)$ we can introduce a norm $\|X\|$ of element X as the length $|\boldsymbol{\omega}|$ of the corresponding Euler vector $\boldsymbol{\omega}$. The Euler vector represents the axis of rotation and its length is equal to the angle of rotation.

The rotation group $S O(3)$:
Norm on $\mathfrak{s o (3)}$
On $\mathfrak{s o}(3)$ we can introduce a norm $\|X\|$ of element X as the length $|\boldsymbol{\omega}|$ of the corresponding Euler vector $\boldsymbol{\omega}$. The Euler vector represents the axis of rotation and its length is equal to the angle of rotation.
$\mathcal{O}=\{X \in \mathfrak{s o}(3) \mid\|X\|<\pi\}$
$\mathcal{U}=\exp (\mathcal{O})=\{R \in S O(3) \mid \operatorname{Tr} R \neq-1\}$ consists of all rotations except ones with angle π.

Special unitary group $S U(2)$:
Norm on $\mathfrak{s u}(2)$
On $\mathfrak{s u}(2)$ we can introduce a norm $\|X\|=2 \sqrt{\operatorname{det} X}$.

Special unitary group $S U(2)$:
Norm on $\mathfrak{s u}(2)$
On $\mathfrak{s u}(2)$ we can introduce a norm $\|X\|=2 \sqrt{\operatorname{det} X}$.

$$
\begin{aligned}
& \mathcal{O}=\{X \in \mathfrak{s u}(2) \mid\|X\|<2 \pi\} \\
& \mathcal{U}=\exp (\mathcal{O})=S U(2) \backslash\{-I\}
\end{aligned}
$$

Realization of the algebras $\mathcal{F}_{\hbar}\left(T^{*} G\right)$:
A space of square integrable functions f on $T^{*} G$ whose momentum Fourier transforms \tilde{f} have support in $G \times \hbar^{-1} \overline{\mathcal{O}}$ and for which the functions

$$
\mathrm{f}(a, b)=|\hbar|^{-n} \tilde{f}\left(a \exp \left(\frac{1}{2} V_{a}(b)\right), \hbar^{-1} V_{a}(b)\right) e^{\frac{i}{\hbar} \Phi(a, b)} F\left(\hbar^{-1} V_{a}(b)\right)^{-1},
$$

defined on a dense subset $\left\{(a, b) \in G \times G \mid a^{-1} b \in \mathcal{U}\right\}$ of $G \times G$, extend to smooth compactly supported functions on $G \times G$.

Realization of the algebras $\mathcal{F}_{\hbar}\left(T^{*} G\right)$:
A space of square integrable functions f on $T^{*} G$ whose momentum Fourier transforms \tilde{f} have support in $G \times \hbar^{-1} \overline{\mathcal{O}}$ and for which the functions

$$
\mathrm{f}(a, b)=|\hbar|^{-n} \tilde{f}\left(a \exp \left(\frac{1}{2} V_{a}(b)\right), \hbar^{-1} V_{a}(b)\right) e^{\frac{i}{\hbar} \Phi(a, b)} F\left(\hbar^{-1} V_{a}(b)\right)^{-1},
$$

defined on a dense subset $\left\{(a, b) \in G \times G \mid a^{-1} b \in \mathcal{U}\right\}$ of $G \times G$, extend to smooth compactly supported functions on $G \times G$.

For $X \in \mathfrak{g}$

$$
F(X)=\sqrt{\left|\operatorname{det} \phi\left(\hbar \mathrm{ad}_{X}\right)\right|},
$$

where $\phi(x)=\frac{1-e^{-x}}{x}$.

Realization of the algebras $\mathcal{F}_{\hbar}\left(T^{*} G\right)$:
A space of square integrable functions f on $T^{*} G$ whose momentum Fourier transforms \tilde{f} have support in $G \times \hbar^{-1} \overline{\mathcal{O}}$ and for which the functions

$$
f(a, b)=|\hbar|^{-n} \tilde{f}\left(a \exp \left(\frac{1}{2} V_{a}(b)\right), \hbar^{-1} V_{a}(b)\right) e^{\frac{i}{\hbar} \Phi(a, b)} F\left(\hbar^{-1} V_{a}(b)\right)^{-1}
$$

defined on a dense subset $\left\{(a, b) \in G \times G \mid a^{-1} b \in \mathcal{U}\right\}$ of $G \times G$, extend to smooth compactly supported functions on $G \times G$.

For $X \in \mathfrak{g}$

$$
F(X)=\sqrt{\left|\operatorname{det} \phi\left(\hbar \operatorname{ad}_{X}\right)\right|},
$$

where $\phi(x)=\frac{1-e^{-x}}{x}$.

For $q \in G$

$$
V_{q}=\left(\left.L_{q} \circ \exp \right|_{\mathcal{O}}\right)^{-1}, \text { so that } V_{q}(a)=\exp ^{-1}\left(q^{-1} a\right) \text { for } a \in L_{q}(\mathcal{U}) .
$$

For $a, b, c \in G$

$$
\Phi(a, b, c)=\int_{\Delta(a, b, c)} F, \quad \Phi(a, b)=\Phi(e, a, b),
$$

where $\Delta(a, b, c)$ is a surface enclosed by one-parameter subgroups connecting a with b, b with c, and c with a.

$$
\begin{aligned}
& \left(f \star_{\hbar} g\right)(q, p)=\int_{\mathfrak{g} \times \mathfrak{g}} \tilde{f}\left(q \exp \left(-\frac{\hbar}{2}(X \diamond Y)\right) \exp \left(\frac{\hbar}{2} X\right), X\right) \\
& \quad \times \tilde{g}\left(q \exp \left(\frac{\hbar}{2}(X \diamond Y)\right) \exp \left(-\frac{\hbar}{2} Y\right), Y\right) e^{\frac{i}{\hbar} \Phi_{q}(X, Y)} e^{-i\langle p, X \diamond Y\rangle} L(X, Y) \mathrm{d} X \mathrm{~d} Y
\end{aligned}
$$

$$
\begin{aligned}
&\left(f \star_{\hbar} g\right)(q, p)=\int_{\mathfrak{g} \times \mathfrak{g}} \tilde{f}\left(q \exp \left(-\frac{\hbar}{2}(X \diamond Y)\right) \exp \left(\frac{\hbar}{2} X\right), X\right) \\
& \times \tilde{g}\left(q \exp \left(\frac{\hbar}{2}(X \diamond Y)\right) \exp \left(-\frac{\hbar}{2} Y\right), Y\right) e^{\frac{i}{\hbar} \Phi_{q}(X, Y)} e^{-i\langle p, X \diamond Y\rangle} L(X, Y) \mathrm{d} X \mathrm{~d} Y \\
& X \diamond Y=\hbar^{-1} \exp ^{-1}(\exp (\hbar X) \exp (\hbar Y)) \\
&=X+Y+\frac{\hbar}{2}[X, Y]+\frac{\hbar^{2}}{12}([X,[X, Y]]+[Y,[Y, X]])+\cdots
\end{aligned}
$$

for $X, Y \in \hbar^{-1} \mathcal{O}$ such that $\exp (\hbar X) \exp (\hbar Y) \in \mathcal{U}$.

$$
\begin{aligned}
&\left(f \star_{\hbar} g\right)(q, p)=\int_{\mathfrak{g} \times \mathfrak{g}} \tilde{f}\left(q \exp \left(-\frac{\hbar}{2}(X \diamond Y)\right) \exp \left(\frac{\hbar}{2} X\right), X\right) \\
& \times \tilde{g}\left(q \exp \left(\frac{\hbar}{2}(X \diamond Y)\right) \exp \left(-\frac{\hbar}{2} Y\right), Y\right) e^{\frac{i}{\hbar} \Phi_{q}(X, Y)} e^{-i\langle p, X \diamond Y\rangle} L(X, Y) \mathrm{d} X \mathrm{~d} Y \\
& X \diamond Y=\hbar^{-1} \exp ^{-1}(\exp (\hbar X) \exp (\hbar Y)) \\
&=X+Y+\frac{\hbar}{2}[X, Y]+\frac{\hbar^{2}}{12}([X,[X, Y]]+[Y,[Y, X]])+\cdots
\end{aligned}
$$

for $X, Y \in \hbar^{-1} \mathcal{O}$ such that $\exp (\hbar X) \exp (\hbar Y) \in \mathcal{U}$.

$$
L(X, Y)=\frac{F(X) F(Y)}{F(X \diamond Y)}
$$

$$
\begin{aligned}
&\left(f \star_{\hbar} g\right)(q, p)=\int_{\mathfrak{g} \times \mathfrak{g}} \tilde{f}\left(q \exp \left(-\frac{\hbar}{2}(X \diamond Y)\right) \exp \left(\frac{\hbar}{2} X\right), X\right) \\
& \times \tilde{g}\left(q \exp \left(\frac{\hbar}{2}(X \diamond Y)\right) \exp \left(-\frac{\hbar}{2} Y\right), Y\right) e^{\frac{i}{\hbar} \Phi_{q}(X, Y)} e^{-i\langle p, X \diamond Y\rangle} L(X, Y) \mathrm{d} X \mathrm{~d} Y \\
& X \diamond Y=\hbar^{-1} \exp ^{-1}(\exp (\hbar X) \exp (\hbar Y)) \\
&=X+Y+\frac{\hbar}{2}[X, Y]+\frac{\hbar^{2}}{12}([X,[X, Y]]+[Y,[Y, X]])+\cdots
\end{aligned}
$$

for $X, Y \in \hbar^{-1} \mathcal{O}$ such that $\exp (\hbar X) \exp (\hbar Y) \in \mathcal{U}$.

$$
L(X, Y)=\frac{F(X) F(Y)}{F(X \diamond Y)}
$$

$$
\Phi_{q}(X, Y)=\Phi\left(q \exp \left(-\frac{\hbar}{2}(X \diamond Y)\right), q \exp \left(\frac{\hbar}{2}(X \diamond Y)\right), q \exp \left(-\frac{\hbar}{2}(X \diamond Y)\right) \exp (\hbar X)\right)
$$

Extension of $\mathcal{F}_{\hbar}\left(T^{*} G\right)$ to an algebra of distributions:
Algebra of distributions $\mathcal{F}_{\star}\left(T^{*} G\right)$
Treating $\mathcal{F}_{\hbar}\left(T^{*} G\right)$ as the space of test functions we define the space of distributions $\mathcal{F}_{\hbar}^{\prime}\left(T^{*} G\right)$ as the space of linear functionals on $\mathcal{F}_{\hbar}\left(T^{*} G\right)$. The space

$$
\mathcal{F}_{\star}\left(T^{*} G\right)=\left\{f \in \mathcal{F}_{\hbar}^{\prime}\left(T^{*} G\right) \mid f \star_{\hbar} g, g \star_{\hbar} f \in \mathcal{F}_{\hbar}\left(T^{*} G\right) \text { for every } g \in \mathcal{F}_{\hbar}\left(T^{*} G\right)\right\}
$$

is closed with respect to the star-product.

Extension of $\mathcal{F}_{\hbar}\left(T^{*} G\right)$ to an algebra of distributions:
Algebra of distributions $\mathcal{F}_{\star}\left(T^{*} G\right)$
Treating $\mathcal{F}_{\hbar}\left(T^{*} G\right)$ as the space of test functions we define the space of distributions $\mathcal{F}_{\hbar}^{\prime}\left(T^{*} G\right)$ as the space of linear functionals on $\mathcal{F}_{\hbar}\left(T^{*} G\right)$. The space

$$
\mathcal{F}_{\star}\left(T^{*} G\right)=\left\{f \in \mathcal{F}_{\hbar}^{\prime}\left(T^{*} G\right) \mid f \star_{\hbar} g, g \star_{\hbar} f \in \mathcal{F}_{\hbar}\left(T^{*} G\right) \text { for every } g \in \mathcal{F}_{\hbar}\left(T^{*} G\right)\right\}
$$

is closed with respect to the star-product.

All smooth functions polynomial in fiber variables p_{j}

$$
f(q, p)=\sum_{l=0}^{k} f^{i_{1} i_{2} \ldots i_{l}}(q) p_{i_{1}} p_{i_{2}} \cdots p_{i_{l}}
$$

for $k \geq 0$ and $f^{i_{1} i_{2} \ldots i_{l}} \in C^{\infty}(G)$, are in $\mathcal{F}_{\star}\left(T^{*} G\right)$.

States

Continuous positive linear functionals on $\mathcal{A}_{\hbar}\left(T^{*} G\right)$ normalized to unity. They are of the form:

$$
\Lambda(f)=\int_{T^{*} G} f \star_{\hbar} \rho \mathrm{d} l,
$$

States

Continuous positive linear functionals on $\mathcal{A}_{\hbar}\left(T^{*} G\right)$ normalized to unity. They are of the form:

$$
\Lambda(f)=\int_{T^{*} G} f \star_{\hbar} \rho \mathrm{d} l,
$$

where $\rho \in \mathcal{L}_{\hbar}\left(T^{*} G\right)$ is a quasi-probabilistic distribution function:
(1) $\bar{\rho}=\rho$,

States

Continuous positive linear functionals on $\mathcal{A}_{\hbar}\left(T^{*} G\right)$ normalized to unity. They are of the form:

$$
\Lambda(f)=\int_{T^{*} G} f \star_{\hbar} \rho \mathrm{d} l,
$$

where $\rho \in \mathcal{L}_{\hbar}\left(T^{*} G\right)$ is a quasi-probabilistic distribution function:
(1) $\bar{\rho}=\rho$,
(2) $\int_{T^{*} G} \rho \mathrm{~d} l=1$,

States

Continuous positive linear functionals on $\mathcal{A}_{\hbar}\left(T^{*} G\right)$ normalized to unity. They are of the form:

$$
\Lambda(f)=\int_{T^{*} G} f \star_{\hbar} \rho \mathrm{d} l,
$$

where $\rho \in \mathcal{L}_{\hbar}\left(T^{*} G\right)$ is a quasi-probabilistic distribution function:
(1) $\bar{\rho}=\rho$,
(2) $\int_{T^{*} G} \rho \mathrm{~d} l=1$,

- $\int_{T^{*} G} \bar{f} \star_{\hbar} f \star_{\hbar} \rho \mathrm{d} l \geq 0$ for every $f \in \mathcal{F}_{\hbar}\left(T^{*} G\right)$.

Operator representation
From Gelfand-Naimark theorem the C^{*}-algebra of observables $\mathcal{A}_{\hbar}\left(T^{*} G\right)$ can be isometrically represented as an algebra of bounded linear operators on a certain Hilbert space \mathcal{H}.

Operator representation

From Gelfand-Naimark theorem the C^{*}-algebra of observables $\mathcal{A}_{\hbar}\left(T^{*} G\right)$ can be isometrically represented as an algebra of bounded linear operators on a certain Hilbert space \mathcal{H}.

Let $\mathcal{H}=L^{2}(G, \mathrm{~d} m)$. Then the representation $f \mapsto \hat{f}$ on $\mathcal{F}_{\hbar}\left(T^{*} G\right)$ is expressed by the formula

$$
\hat{f} \psi(q)=\int_{\mathfrak{g}} \tilde{f}\left(q \exp \left(\frac{\hbar}{2} X\right), X\right) \psi(q \exp (\hbar X)) e^{\frac{i}{\hbar} \Phi(q, q \exp (\hbar X))} F(X) \mathrm{d} X .
$$

Operator representation

From Gelfand-Naimark theorem the C^{*}-algebra of observables $\mathcal{A}_{\hbar}\left(T^{*} G\right)$ can be isometrically represented as an algebra of bounded linear operators on a certain Hilbert space \mathcal{H}.

Let $\mathcal{H}=L^{2}(G, \mathrm{~d} m)$. Then the representation $f \mapsto \hat{f}$ on $\mathcal{F}_{\hbar}\left(T^{*} G\right)$ is expressed by the formula

$$
\hat{f} \psi(q)=\int_{\mathfrak{g}} \tilde{f}\left(q \exp \left(\frac{\hbar}{2} X\right), X\right) \psi(q \exp (\hbar X)) e^{\frac{i}{\hbar} \Phi(q, q \exp (\hbar X))} F(X) \mathrm{d} X .
$$

The integral kernel of \hat{f} :

$$
f(a, b)=|\hbar|^{-n} \tilde{f}\left(a \exp \left(\frac{1}{2} V_{a}(b)\right), \hbar^{-1} V_{a}(b)\right) e^{\frac{i}{\hbar} \Phi(a, b)} F\left(\hbar^{-1} V_{a}(b)\right)^{-1}
$$

$$
\begin{aligned}
\mathcal{L}_{\hbar}\left(T^{*} G\right) & \leftrightarrow \mathcal{B}_{2}(\mathcal{H}) \quad \text { (space of Hilbert-Schmidt operators) } \\
\mathcal{A}_{\hbar}\left(T^{*} G\right) & \leftrightarrow \mathcal{K}(\mathcal{H}) \quad \text { (space of compact operators) } \\
\mathcal{F}_{\star}\left(T^{*} G\right) & \leftrightarrow \widehat{\mathcal{F}}_{\star}\left(T^{*} G\right)
\end{aligned}
$$

Rigid body

Quantization of a rigid body:

$$
G=S O(3)
$$

Rigid body

Quantization of a rigid body:

$$
G=S O(3)
$$

There exists other quantization:
Observation
$S O(3)$ is doubly covered by $S U(2)$. To every rotation $q \in S O(3)$ correspond two elements $-a, a \in S U(2)$.

Rigid body

Quantization of a rigid body:

$$
G=S O(3)
$$

There exists other quantization:
Observation
$S O(3)$ is doubly covered by $S U(2)$. To every rotation $q \in S O(3)$ correspond two elements $-a, a \in S U(2)$.

Take as $\mathcal{F}_{\hbar}\left(T^{*} S O(3)\right)$ the subalgebra of $\mathcal{F}_{\hbar}\left(T^{*} S U(2)\right)$ consisting of symmetric functions: $f(-a, p)=f(a, p)$. Such functions can be identified with functions on $T^{*} S O(3)$.

Rigid body

Quantization of a rigid body:

$$
G=S O(3)
$$

There exists other quantization:
Observation
$S O(3)$ is doubly covered by $S U(2)$. To every rotation $q \in S O(3)$ correspond two elements $-a, a \in S U(2)$.

Take as $\mathcal{F}_{\hbar}\left(T^{*} S O(3)\right)$ the subalgebra of $\mathcal{F}_{\hbar}\left(T^{*} S U(2)\right)$ consisting of symmetric functions: $f(-a, p)=f(a, p)$. Such functions can be identified with functions on $T^{*} S O(3)$.

The algebra $\mathcal{F}_{\hbar}\left(T^{*} S O(3)\right)$ from the previous quantization is a subalgebra of the new algebra $\mathcal{F}_{\hbar}\left(T^{*} S O(3)\right)$.

In the operator representation

$$
\mathcal{H}=L^{2}(S U(2), \mathrm{d} m)=\mathcal{H}_{+} \oplus \mathcal{H}_{-},
$$

where

$$
\mathcal{H}_{ \pm}=\{\psi \in \mathcal{H} \mid \psi(-x)= \pm \psi(x)\} .
$$

The Hilbert space \mathcal{H}_{+}is naturally isomorphic to $L^{2}(S O(3), \mathrm{d} m)$.

Hamilton operator of a rigid body in a magnetic field:

$$
\begin{gathered}
H(q, p)=\frac{1}{2} I^{i j} p_{i} p_{j}=\frac{p_{1}^{2}}{2 I_{1}}+\frac{p_{2}^{2}}{2 I_{2}}+\frac{p_{3}^{2}}{2 I_{3}} \\
\downarrow \\
\hat{H}=\frac{1}{4} I^{i j} \hat{p}_{i} \hat{p}_{j}+\frac{1}{2} \hat{p}_{i} I^{i j} \hat{p}_{j}+\frac{1}{4} \hat{p}_{i} \hat{p}_{j} I^{i j}-\frac{\hbar^{2}}{24} C_{i l}^{k} C_{j k}^{l} I^{i j} \\
=\frac{\hat{p}_{1}^{2}}{2 I_{1}}+\frac{\hat{p}_{2}^{2}}{2 I_{2}}+\frac{\hat{p}_{3}^{2}}{2 I_{3}}+\frac{\hbar^{2}}{24}\left(\frac{1}{I_{1}}+\frac{1}{I_{2}}+\frac{1}{I_{3}}\right),
\end{gathered}
$$

where

$$
\begin{aligned}
\hat{p}_{j} & =i \hbar L_{X_{j}}-A_{j} \\
{\left[\hat{p}_{i}, \hat{p}_{j}\right] } & =i \hbar\left(C_{i j}^{k} \hat{p}_{k}+F_{i j}\right) .
\end{aligned}
$$

Magnetic field of a magnetic monopole of magnetic charge k :

$$
\begin{aligned}
& F=\mathrm{d} A \\
& A=-k\left(\left\langle\mathbf{q}, u_{1}\right\rangle \alpha^{1}+\left\langle\mathbf{q}, u_{2}\right\rangle \alpha^{2}+\left\langle\mathbf{q}, u_{3}\right\rangle \alpha^{3}\right),
\end{aligned}
$$

where $\mathbf{q} \in \mathbb{R}^{3}$ is the center of charge describing the direction of the magnetic field, $u_{1}, u_{2}, u_{3} \in \mathbb{R}^{3}$ are vectors corresponding to X_{1}, X_{2}, X_{3} via the natural isomorphism of Lie algebras $\mathfrak{s o}(3) \cong \mathbb{R}^{3}$ and $\alpha^{1}, \alpha^{2}, \alpha^{3}$ are left invariant 1-forms on $G=S O(3)$ such that $\alpha^{i}\left(L_{X_{j}}\right)=\delta_{j}^{i}$.

Magnetic field of a magnetic monopole of magnetic charge k :

$$
\begin{aligned}
& F=\mathrm{d} A \\
& A=-k\left(\left\langle\mathbf{q}, u_{1}\right\rangle \alpha^{1}+\left\langle\mathbf{q}, u_{2}\right\rangle \alpha^{2}+\left\langle\mathbf{q}, u_{3}\right\rangle \alpha^{3}\right),
\end{aligned}
$$

where $\mathbf{q} \in \mathbb{R}^{3}$ is the center of charge describing the direction of the magnetic field, $u_{1}, u_{2}, u_{3} \in \mathbb{R}^{3}$ are vectors corresponding to X_{1}, X_{2}, X_{3} via the natural isomorphism of Lie algebras $\mathfrak{s o}(3) \cong \mathbb{R}^{3}$ and $\alpha^{1}, \alpha^{2}, \alpha^{3}$ are left invariant 1-forms on $G=S O(3)$ such that $\alpha^{i}\left(L_{X_{j}}\right)=\delta_{j}^{i}$.

For simplicity let us take $A=-k\|\mathbf{q}\| \alpha^{1}$.

Magnetic field of a magnetic monopole of magnetic charge k :

$$
\begin{aligned}
& F=\mathrm{d} A \\
& A=-k\left(\left\langle\mathbf{q}, u_{1}\right\rangle \alpha^{1}+\left\langle\mathbf{q}, u_{2}\right\rangle \alpha^{2}+\left\langle\mathbf{q}, u_{3}\right\rangle \alpha^{3}\right),
\end{aligned}
$$

where $\mathbf{q} \in \mathbb{R}^{3}$ is the center of charge describing the direction of the magnetic field, $u_{1}, u_{2}, u_{3} \in \mathbb{R}^{3}$ are vectors corresponding to X_{1}, X_{2}, X_{3} via the natural isomorphism of Lie algebras $\mathfrak{s o}(3) \cong \mathbb{R}^{3}$ and $\alpha^{1}, \alpha^{2}, \alpha^{3}$ are left invariant 1-forms on $G=S O(3)$ such that $\alpha^{i}\left(L_{X_{j}}\right)=\delta_{j}^{i}$.

For simplicity let us take $A=-k\|\mathbf{q}\| \alpha^{1}$.
Spectrum of \hat{H} :

$$
\operatorname{Spec}(\hat{H})=\left\{E_{j, \ell} \left\lvert\, j \in \frac{1}{2} \mathbb{Z}\right., j \geq 0, \ell=-j,-j+1, \ldots, j-1, j\right\}
$$

where for $I_{1}=I_{2}=I_{3}=I$ (spherical top)

$$
E_{j, \ell}=\frac{\hbar^{2}}{2 I} j(j+1)-\hbar \frac{k\|\mathbf{q}\|}{I} \ell+\frac{k^{2}\|\mathbf{q}\|^{2}}{2 I}+\frac{\hbar^{2}}{8 I}
$$

and for $I_{1} \neq I_{2}=I_{3}=I$ (symmetric top)

$$
E_{j, \ell}=\frac{\hbar^{2}}{2 I} j(j+1)+\frac{\hbar^{2}}{2}\left(\frac{1}{I_{1}}-\frac{1}{I}\right) \ell^{2}-\hbar \frac{k\|\mathbf{q}\|}{I_{1}} \ell+\frac{k^{2}\|\mathbf{q}\|^{2}}{2 I_{1}}+\frac{\hbar^{2}}{24}\left(\frac{1}{I_{1}}+\frac{2}{I}\right) .
$$

Thank you :)

