
Generalization of the concept of
classical r-matrix to Lie algebroids

Alina Dobrogowska
Faculty of Mathematics
University of Białystok

joint work with Grzegorz Jakimowicz

XXXIX Workshop on Geometric Methods in Physics
June 19-25, 2022, Białystok

A. Dobrogowska, G. Jakimowicz, Tangent lifts of
bi-Hamiltonian structures, J. Math. Phys. 58, no. 8, 1-15, 2017.

A. Dobrogowska, G. Jakimowicz, Generalization of the concept
of classical r-matrix to Lie algebroids, J. Geom. Phys. 165,
1-15, 2021.

Generalization of the concept of classical r-matrix to Lie algebroids



Lie Algebroid (A, [·, ·]A, aA)

Definition
A Lie algebroid (A, [·, ·]A, aA) is a vector bundle A −→M over a
manifold M , together with a vector bundle map aA : A −→ TM ,
called the anchor map, and a Lie bracket
[·, ·]A : Γ(A)× Γ(A) −→ Γ(A), such that the following Leibniz rule
is satisfied

[α, fβ]A = f [α, β]A + aA(α)(f)β,

for all α, β ∈ Γ(A), f ∈ C∞(M).

The anchor map is a Lie algebra homomorphism

a ([α, β]A) = [a(α), a(β)].
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Examples

[α, fβ]A = f [α, β]A + aA(α)(f)β,

Example
Any tangent bundle A = TM of a manifold M , with aA = id and
the usual Lie bracket of vector fields, is a Lie algebroid.

Example
Any Lie algebra A = g, with trivial anchor aA = 0, is a Lie
algebroid.
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Linear fiber-wise Poisson structure

If (A, [·, ·]A, a) is a Lie algebroid then on the total space A∗ of dual
bundle A∗

q−→M there exists a Poisson structure given by

{f ◦ q, g ◦ q} = 0,

{lX , g ◦ q} = a(X)(g) ◦ q,

{lX , lY } = l[X,Y ]A ,

where X,Y ∈ Γ∞(A), lX(v) = 〈v,X(q(v))〉, v ∈ A∗ and
f, g ∈ C∞(M).
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Example A = T ∗M

Let (M, {., .}) be a Poisson manifold, then its cotangent bundle
q∗ : T ∗M →M possesses a Lie algebroid structure

A = T ∗M

q∗

��

aT∗M
// TM

q

��
M

id
//M

given by
aT ∗M (df)(·) = {f, ·},

[df, dg]T ∗M = d{f, g},

where f, g ∈ C∞(M).
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Lifting of a Poisson structure from M to TM

If (M, {, }) = (M,π) is a Poisson manifold, then the manifold TM
possesses a Poisson structure given by

{f ◦ q, g ◦ q}TM = 0,

{ldf , g ◦ q}TM = {f, g} ◦ q,

{ldf , ldg}TM = ld{f,g},

where ldf (v) = 〈v, df(qM (v))〉, v ∈ TM and f, g ∈ C∞(M). Let
x = (x1, . . . , xN ) be a system of local coordinates on M . Then the
Poisson tensor πC on the manifold TM associated with π has the
form

πC(x,y) =

 0 π(x)

π(x)
∑N

s=1

∂π

∂xs
(x)ys

 ,

in the system of local coordinates
(x,y) = (x1, . . . , xN , y1 = ldx1 , . . . , yN = ldxN ) on TM .
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The complete lift, the vertical lift

π(x) =

N∑
1≤i<j

πij(x)
∂

∂xi
∧ ∂

∂xj
,

⇓

πC(x,y) =

N∑
1≤i<j

(
πij(x)

∂

∂xi
∧ ∂

∂yj
+ πij(x)

∂

∂yi
∧ ∂

∂xj

+

N∑
s=1

∂πij

∂xs
(x)ys

∂

∂yi
∧ ∂

∂yj

)
=⇒

 0 π(x)

π(x)
∑N

s=1

∂π

∂xs
(x)ys


πV (x,y) =

N∑
1≤i<j

πij(x)
∂

∂yi
∧ ∂

∂yj
=⇒

(
0 0

0 π(x)

)
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Lifting of Casimir functions from M to TM

Theorem
Let c1, . . . , cr, where r = dimM − rankπ, be Casimir functions for
the the Poisson structure π, then the functions

ci and ldci =

N∑
s=1

∂ci
∂xs

ys, i = 1, . . . r,

are the Casimir functions for the Poisson tensor πC .
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Lifting of functions in involution from M to TM

Theorem

Let functions {Hi}ki=1 be in involution with respect to the Poisson
bracket generated by π, then the functions

{Hi, ldHi
=

N∑
s=1

∂Hi

∂xs
(x)ys }ki=1

are in involution with respect to the Poisson tensor πC .
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Bi-Hamiltonian structures

Let M be a manifold with two non-proportional Poisson brackets
{·, ·}1, {·, ·}2. If their linear combination α{·, ·}1 + β{·, ·}2,
α, β ∈ R, is also a Poisson bracket, we say that the brackets are
compatible and we call M the bi-Hamiltonian manifold.
By analogy we will say that two Poisson tensors π1 and π2
are compatible if their Schouten–Nijenhuis bracket vanishes

[π1, π2]SN = 0,

∂πij1
∂xs

πsk2 +
∂πij2
∂xs

πsk1 +
∂πki1
∂xs

πsj2 +
∂πki2
∂xs

πsj1 +
∂πjk1
∂xs

πsi2 +
∂πjk2
∂xs

πsi1 = 0.

Theorem

If (M,π1, π2) is a bi-Hamilton manifold then (TM, πC1 , π
C
2 ) is a

bi-Hamilton manifold.
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In the case of a linear Poisson structure, when M = g∗, we have
additionally a Lie-Poisson structure on TM .

Theorem
Let π be the Lie-Poisson structure on g∗. Then the tensor

π̃Tg∗(x,y) =

(
λπ(y) π(x)

π(x) π(y)

)
gives the Poisson structure on Tg∗ for any λ ∈ R.

Theorem
Let c1, . . . , cr, where r = dimM − rankπ, be Casimir functions for
the Poisson structure π with λ 6= 0, then the functions

ci(t) + ci(w) ci(t)− ci(w), i = 1, . . . r,

where t =
(
x1 −

√
λy1, . . . , xN −

√
λyN

)
,

w =
(
x1 +

√
λy1, . . . , xN +

√
λyN

)
, are the Casimir functions.
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Example: Bi-Hamiltonian structure related to
so(3)

Let us consider the Lie algebra so(3) of skew-symmetric matrices.
We will now construct two Lie brackets on so(3) given by two
choices of the matrix S

[A,B] = AB −BA, [A,B]S = ASB −BSA,

where S = diag(s1, s2, s3).
The Poisson tensors can be written in the form

π1(X) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 , π2(X) =

 0 −s3x3 s2x2
s3x3 0 −s1x1
−s2x2 s1x1 0

 .
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In this case, the Casimirs for these structures assume the following
form

c1(X) = x21 + x22 + x23, c2(X) = s1x
2
1 + s2x

2
2 + s3x

2
3.

Choosing as the Hamiltonian the Casimir c2 we obtain Euler’s
equation, which describes the rotation of a rigid body

d~x

dt
= {c2, ~x}1 = {c1, ~x}2 = 2 (S~x)× ~x,

where ~x = (x1, x2, x2) and S = diag (s1, s2, s3).
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Example: Lifting of a Poisson structure from so(3)

The Poisson structures on T so(3) are given by tensors

πC(X,Y ) =



0 0 0 0 −x3 x2
0 0 0 x3 0 −x1
0 0 0 −x2 x1 0

0 −x3 x2 0 −y3 y2
x3 0 −x1 y3 0 −y1
−x2 x1 0 −y2 y1 0

 .

Moreover the Casimirs are given by

c1(X) = x21 + x22 + x23,
1

2
ldc1 = x1y1 + x2y2 + x3y3.

In this case we recognize the Lie-Poisson structure of
e(3) ∼= T so(3).
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We have another Poisson structure on T so(3)

π̃TM (X,Y ) =



0 −λy3 λy2 0 −x3 x2
λy3 0 −λy1 x3 0 −x1
−λy2 λy1 0 −x2 x1 0

0 −x3 x2 0 −y3 y2
x3 0 −x1 y3 0 −y1
−x2 x1 0 −y2 y1 0

 .

In this case, we recognize the Lie-Poisson structure of
so(4) ∼= T so(3). The Casimir functions now are given by the
formulas

c1(X + Y ) + c1(X − Y ) = 2
(
x21 + x22 + x23 + y21 + y22 + y23

)
,

c1(X + Y )− c1(X − Y ) = 4 (x1y1 + x2y2 + x3y3) .
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There is an additional Poisson tensor

π̃S,TM (X,Y ) =

(
λπ1(Y ) Sπ1(X)

π1(X)S π1(SY )

)
=

=



0 −λy3 λy2 0 −s1x3 s1x2
λy3 0 −λy1 s2x3 0 −s2x1
−λy2 λy1 0 −s3x2 s3x1 0

0 −s2x3 s3x2 0 −s3y3 s2y2
s1x3 0 −s3x1 s3y3 0 −s1y1
−s1x2 s2x1 0 −s2y2 s1y1 0

 .

Furthermore, the Poisson structures πC , π̃TM and πC , π̃S,TM are
pairwise compatible. If we take as the Hamiltonian c1 for {·, ·}C
then we obtain the equations of the Clebsch system

d~x

dt
= {c1, ~x}π̃S,TM = 2λ~x× ~y,

d~y

dt
= {c1, ~y}π̃S,TM = 2 (S~x)× ~x.
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Classical R-matrix

One of the important tools of the integrable systems theory is the
so-called classical R-matrix. Given a Lie algebra (g, [·, ·]), a linear
operator R : g −→ g is called a classical R-matrix if the R–bracket

[X,Y ]R =
1

2
([R(X), Y ] + [X,R(Y )])

is a Lie bracket. The Lie algebra g equipped with two Lie brackets:
[·, ·] and R-bracket [·, ·]R is called a double Lie algebra. A certain
class of R-matrices can be obtained from the modified Yang-Baxter
equation

R([R(X), Y ] + [X,R(Y )])− [R(X), R(Y )] = c[X,Y ].
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Lie algebroids with a Poisson structure

Let (A, [·, ·]A, aA) be a Lie algebroid and assume that
π ∈ Γ

(∧2A
)
satisfies [π, π]A = 0. Then (A, π) is called a Lie

algebroid with a Poisson structure.
Let us define

[α, β]π = £π]αβ −£π]βα− d (π(α, β)) ,

for α, β ∈ Γ (A∗), where £ denotes the Lie derivation defined by

£Xα(Y ) = aA(X)α(Y )− α ([X,Y ]A) ,

for X,Y ∈ Γ(A) and π] : A∗ −→ A is defined by π]α(·) = π(α, ·),
and set aA∗ = aA ◦ π].
Then (A∗, [·, ·]π, aA∗) is a Lie algebroid.
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Substitution π = X ∧ Y

We rewrite

[α, β]π = £π]αβ −£π]βα− d (π(α, β)) ,

for π of the form π = X ∧ Y

[α, β]π =β(Y )£Xα− α(Y )£Xβ − (β(X)£Y α− α(X)£Y β)

=[α, β]X,Y − [α, β]Y,X .

General situation
[α, β]X,Y + λ [α, β]Y,X .
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On some constructions of Lie algebroids on the
cotangent bundle of a manifold

It is well known that if M is a manifold then TM is the tangent
algebroid of M , with the identity map as the anchor map and the
standard commutator of vector fields. However, we will use these
fields and give the construction of another algebroid structures.

Theorem
Suppose that M is a manifold and X,Y ∈ Γ(TM) are vector fields
such that [X,Y ] = cY , c ∈ R. Then (T ∗M, [·, ·]X,Y , aX,Y ) is a Lie
algebroid, where the Lie bracket and the anchor map are given by

[α, β]X,Y = β(Y )£Xα− α(Y )£Xβ,

aX,Y (α) = −α(Y )X,

where α, β ∈ Γ(T ∗M).
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The Poisson structure on the tangent bundle TM

In local coordinates (x,y) when X =
∑N

i=1 v
i(x) ∂

∂xi
and

Y =
∑N

i=1w
i(x) ∂

∂xi
the Poisson tensor is given by formula

πX,Y=

 0 v(x)w>(x)

−w(x)v>(x)
∑N

s=1

(
∂v

∂xs
(x)w>(x)− w(x)

(
∂v

∂xs
(x)

)>)
ys

,
where v> = (v1, . . . , vN ) and w> = (w1, . . . , wN ).
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On some constructions of Lie algebroids on the
cotangent bundle of a manifold

In addition, we will get a similar structure by swapping vector fields
X,Y . Moreover, if we take a linear combination of these
structures, we will again obtain a Poisson structure. The same
thing also happens on the level of the Lie algebroid.

Theorem
Let X,Y ∈ Γ(TM) be such that [X,Y ] = 0, then a structure(
T ∗M, [·, ·]λX,Y , aλX,Y

)
is a Lie algebroid, where the Lie bracket and

the anchor map are given by

[α, β]λX,Y = [α, β]X,Y + λ[α, β]Y,X

= β(Y )£Xα− α(Y )£Xβ + λ (β(X)£Y α− α(X)£Y β) ,

aλX,Y (α) = aX,Y (α) + λaY,X(α) = −α(Y )X − λα(X)Y

and λ is a real parameter.
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Remark

In the case when λ = −1, the assumption of [X,Y ] = 0 can be
weakened. It is sufficient to assume that [X,Y ] = bX + cY , where
b, c ∈ R.
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The Poisson structure on the tangent bundle TM

This structure also leads to the Poisson bracket. In the local
coordinates expression of the Poisson structure is the following
tensor

πλX,Y (x,y) =
0 v(x)w>(x) + λw(x)v>(x)

−w(x)v>(x)
∑N

s=1

(
∂v

∂xs
(x)w>(x)− w(x)

(
∂v

∂xs
(x)

)>
−λv(x)w>(x) + λ

(
∂w

∂xs
(x)v>(x)− v(x)

(
∂w

∂xs
(x)

)>))
ys

.

In this construction, the block vw> + λwv> is symmetric for λ = 1
in contrast to the construction of the Poisson bracket from the
algebroid bracket of differential forms. Moreover, this block is
antisymmetric for λ = −1 and it is also a Poisson tensor on
manifolds M . In this case it is a complete lift of π = X ∧ Y .
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Example

Let us consider again the Lie algebra so(3) of skew-symmetric
matrices. Thus on so(3) we have the linear Poisson structure

π(X) = −x3 ∂

∂x1
∧ ∂

∂x2
+ x2

∂

∂x1
∧ ∂

∂x3
− x1 ∂

∂x2
∧ ∂

∂x3
.

Observe that defining the vector fields

X = x2
∂

∂x1
− x1 ∂

∂x2
, Y =

∂

∂x3
, U = −x3 ∂

∂x1
, W =

∂

∂x2
.

we can split the above Poisson tensor into two terms
π(X) = X ∧ Y + U ∧W .
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Example

We obtain the following splitting

X ∧ Y + U ∧W

uuss )) ++
XC ∧ Y V

&&

−Y C ∧XV

��

UC ∧WV

��

−WC ∧ UV

xx
(X ∧ Y )C

((

(U ∧W )C

vv
(X ∧ Y + U ∧W )C
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The particular case of above construction A = g

Because a Lie algebra g can be thought of as a Lie algebroid over a
point, so we have the opportunity to construct a Lie bracket on the
dual space g∗ of g.

Corollary

If (g, [·, ·]) is a Lie algebra and X,Y ∈ g such that [X,Y ] = cY (or
[X,Y ] = 0) are fixed, then (g∗, [·, ·]X,Y ) is a Lie algebra, where

[α, β]X,Y = α(Y )ad∗Xβ − β(Y )ad∗Xα,

(or
(
g∗, [·, ·]λX,Y

)
is a Lie algebra, where the commutator is

constructed as follows

[α, β]λX,Y = α(Y )ad∗Xβ−β(Y )ad∗Xα+λ (α(X)ad∗Y β − β(X)ad∗Y α) , )

for α, β ∈ g∗
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Note that when λ = −1 the bracket can be rewritten as

[α, β]−1X,Y = −α(X)ad∗Y β + α(Y )〉ad∗Xβ

+β(X)ad∗Y α− β(Y )ad∗Xα = [α, β]r.

It is a formula for the r-bracket or classical r-matrix. If r = Y ∧X
the assumptions of corollary can be weakened. In this case we
obtain a Lie bracket if r satisfies the Yang-Baxter equation or some
of its modifications (modified Yang-Baxter equation). It means that
r] : g∗ −→ g given by r](α)(β) = r(α, β) satisfies the condition

〈α|[r](β), r](ad∗Zγ)]〉+〈β|[r](ad∗Zγ), r](α)]〉+〈ad∗Zγ|[r](α), r](β)]〉 = 0

for all α, β, γ ∈ g∗ and Z ∈ g. Then we can think about the
formula as a generalization of the notion of classical r-matrices by
introducing a parameter λ ∈ R.
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Generalization of the concept of classical r-matrix

Ultimately this concept can be extended to the level of arbitrary
r ∈ g⊗ g. If we define mappings r, r : g∗ −→ g such that
r(α) = r(α, ·), r(α) = r(·, α) then we obtain the following
generalization:

Theorem
Assume that the map r satisfies the condition

〈α|[r(γ), r(β)]〉+ 〈β|[r(α), r(γ)]〉

+〈γ|[r(α), r(β)]〉 = 0,

for all α, β, γ ∈ g∗. Then

[α, β]r = ad∗r(α)β − ad
∗
r(β)α

is a Lie bracket on g∗.
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Poisson manifold (M, {·, ·})

Definition
A Poisson manifold (M, {·, ·}) is a smooth manifold M (equipped
with a Poisson structure) with a fixed bilinear and antisymmetric
mapping {·, ·} : C∞(M)× C∞(M)→ C∞(M), which satisfies
Jacobi identity and Leibniz rule

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0,

{f, gh} = {f, g}h+ g{f, h},

where f, g, h ∈ C∞(M).

Poisson bracket can be written in terms of Poisson tensor
(π ∈ Γ∞

(∧2 TM
)
such that [π, π]SN = 0) as follows

{f, g} = π(df, dg).
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Poisson tensor, Hamilton’s equations

In the local coordinates x1, x2, . . . , xN on M

{f, g} =

N∑
i,j=1

πij(x)
∂f

∂xi

∂g

∂xj
.

Components of Poisson tensor are given by the formula

πij(x) = {xi, xj}
and satisfy

πij = −πji,
∂πij
∂xs

πsk + ∂πki
∂xs

πsj +
∂πjk
∂xs

πsi = 0.
Choosing the function H as a Hamiltonian we can define a
dynamics on M using Hamilton’s equations

dxi
dt

= {xi, H}, i = 1, 2, . . . , N,

dx

dt
= π∇H,
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Lifting of a bi-Hamiltonian structure from M to
TM

Corollary

Let (M,π1, π2) be a bi-Hamiltonian manifold and let
x = (x1, . . . , xN ) be a system of local coordinates on M . Then the
Poisson tensor πTM,λ related to (M,π1, π2) takes form

πTM,λ(x,y) =

 0 π1(x)

π1(x)
∑N

s=1

∂π1
∂xs

(x)ys + λπ2(x)

 ,

in the system of local coordinates (x,y) = (x1, . . . , xN , y1, . . . , yN )
on TM .
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Lifting of Casimir functions from M to TM

Theorem
Let c1, . . . , cr, where r = dimM − rankπ, be Casimir functions for
the Poisson structure π1 and functions fi, i = 1, . . . , r, satisfy the
conditions {fi, xj}1 = {xj , ci}2, for j = 1, · · · , n, then the
functions

ci ◦ q and c̃i =
N∑
s=1

∂ci
∂xs

(x)ys + λfi(x), i = 1, . . . r,

are the Casimir functions for the Poisson tensor πTM,λ.
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Lifting of functions in involution from M to TM

Theorem

Let functions {Hi}ki=1 be in involution with respect to the Poisson
brackets given by π1 and π2 and let functions gi, i = 1, . . . , k,
satisfy the conditions {Hi(x), gj(x)}1 = {Hj(x), gi(x)}1, for
i, j = 1, . . . , k. Then the functions

Hi ◦ q∗M and H̃i =

N∑
s=1

∂Hi

∂xs
(x)ys + λgi(x), i = 1, . . . r,

are in involution with respect to the Poisson tensor πTM,λ.

Corollary

If the functions {Hi} are in involution with respect to the Poisson

tensor π then the functions {Hi ◦ q, H̃i =
∑N

s=1

∂Hi

∂xs
(x)ys} are in

involution with respect to the Poisson tensor πTM,λ.
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Toda lattice — bi-Hamiltonian system

The Hamiltonian

H =
∑
i∈Z

(
1

2
p2i + eqi−1−qi

)
.

Hamilton’s equations{
q̇i = {qi, H} = pi
ṗi = {pi, H} = eqi−1−qi − eqi−qi+1

.

Under Flaschka’s transformation

ai =
1

2
e
(qi−1−qi)

2 , bi = −1

2
pi−1

the system transforms to

dai
dt

= ai (bi+1 − bi) ,

dbi
dt

= 2
(
a2i − a2i−1

)
.
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The Toda lattice is equivalent to the Lax equation

dL

dt
= [A,L],

where
Lfi = aifi+1 + bifi + ai−1fi−1,

Afi = aifi+1 − ai−1fi−1
are linear operators in the Hilbert space of square summable
sequences l2(Z).
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The Toda lattice is a bi-Hamiltonian system. There exist another
Poisson bracket, which we denote by π2, and another function H1,
which will play the role of the Hamiltonian for the π2 bracket, such
that π1 + π2 is Poisson tensor and π1∇H = π2∇H1

(H =
∑

i

(
2b2i + 4a2i

)
). The Poisson tensor π1 is given by the

relations
8{ai, bi}1 = −ai, 8{ai, bi+1}1 = ai.

For the Toda lattice the π2 bracket (which appeared in a paper of
M. Adler) is quadratic in the variables bi,ai and it is given by the
relations

{ai, ai+1}2 =
1

2
aiai+1, {ai, bi}2 = −aibi,

{ai, bi+1}2 = aibi+1, {bi, bi+1}2 = 2a2i

and all other brackets are zero.
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Example: Extended Toda Lattice

Functions Hk = TrLk are the functions in involutions with respect
to the both brackets. The above functions for k = 1, 2, 3 have the
expressions

H1 = trL =
∑
i∈Z

bi, H2 = 2H = trL2 =
∑
i∈Z

(
b2i + 2a2i

)
,

H3 = trL3 =
∑
i∈Z

(
b3i + 3a2i bi + 3a2i bi+1

)
, . . .

Now deformed tangent Poisson structure πTM,λ in local coordinates
ai, bi, ni,mi, i ∈ Z, is given by the relation

{ai,mi}TM,λ = −1

4
ai, {ai,mi+1}TM,λ =

1

4
ai,

{bi, ni}TM,λ =
1

4
ai, {bi+1, ni}TM,λ = −1

4
ai,

{ni, ni+1}TM,λ =
λ

2
aiai+1, {ni,mi}TM,λ = −1

4
ni − λaibi,

{ni,mi+1}TM,λ =
1

4
ni + λaibi+1, {mi,mi+1}TM,λ = 2λa2i .
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From the last theorem we transform the functions Hk = TrLk into
the functions Hk ◦ q∗M = TrLk ◦ q∗M and

H̃k =
∑

s∈Z

(
∂Hk

∂as
ns +

∂Hk

∂bs
ms

)
, i.e.

H1 =
∑
i∈Z

bi, H̃1 =
∑
i∈Z

mi,

H2 =
∑
i∈Z

(
b2i + 2a2i

)
, H̃2 =

∑
i∈Z

(2bimi + 4aini) ,

H3 =
∑
i∈Z

(
b3i + 3a2i bi + 3a2i bi+1

)
, H̃3 =

∑
i∈Z

(
3b2imi + 3a2imi + 3a2imi+1+

+6aibini + 6aibi+1ni) ,

. . . . . .
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Now if we take as the Hamiltonian

H = αH2 + βH̃2 =
∑
i∈Z

(
αb2i + 2αa2i + 2βbimi + 4βaini

)
then Hamilton’s equations are in the form

dai
dt

=
1

2
βai (bi+1 − bi) ,

dbi
dt

= β
(
a2i − a2i−1

)
,

dni
dt

=
1

2
αai (bi+1 − bi) +

1

2
βai (mi+1 −mi) +

1

2
βni (bi+1 − bi) +

+ 2βλai
(
a2i+1 − a2i−1 − b2i + b2i+1

)
,

dmi

dt
= α

(
a2i − a2i−1

)
+ 2β (aini − ai−1ni−1) +

+ 4βλ
(
a2i bi+1 + a2i bi − a2i−1bi − a2i−1bi−1

)
.

We can interpret this integrable system as an extension of the Toda
lattice. If we put α = λ = 0, β = 2 and we take ni = mi = 0 then
we observe that we reduce it to Toda lattice.
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Example

On R3 with coordinates (x1, x2, x3) we consider the linear Poisson
structure given by following Poisson tensor

π1(x1, x2, x3) = x1
∂

∂x2
∧ ∂

∂x3

associated to Lie algebra A3,1. The second Poisson tensor is related
to Euclidean Lie algebra A3,6 = e(2)
([e1, e3] = −e2, [e2, e3] = e1) and defined by

π2(x1, x2, x3) = −x2
∂

∂x1
∧ ∂

∂x3
+ x1

∂

∂x2
∧ ∂

∂x3
.

In this case, the Casimir c1 for π1 and Casimir d1 for π2 assume the
following form

c1(x1, x2, x3) = x1, d1(x1, x2, x3) = x21 + x22.
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We get linear Poisson structure on TR3 ∼= R6 given by

πTM,λ(x,y) =



0 0 0 0 0 0
0 0 0 0 0 x1
0 0 0 0 −x1 0

0 0 0 0 0 −λx2
0 0 x1 0 0 y1 + λx1
0 −x1 0 λx2 −(y1 + λx1) 0

 ,

where (x1, x2, x3, y1, y2, y3) are coordinates on R6.
For λ 6= 0, we recognize the Lie-Poisson structure related to the Lie
algebra A6,17. The Casimir functions are given by the formulas

c1(x1, x2, x3, y1, y2, y3) = x1, c̃1(x1, x2, x3, y1, y2, y3) = y1+λ
x22
2x1

.

For λ = 0, we obtain the Lie-Poisson structure of A6,4. Moreover
the Casimirs are given by

c1(x1, x2, x3, y1, y2, y3) = x1, c̃1(x1, x2, x3, y1, y2, y3) = y1.
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The case of a linear Poisson structure

In the case of a linear Poisson structure, when M = g∗ is the dual
to Lie algebra g, we have additionally a Lie-Poisson structure on
TM .

Theorem
Let (g∗, π1, π2) be a bi-Hamiltonian manifold. If at least one of the
following conditions is satisfied

1 λ = 0;
2 µ = ε = 0;
3 µ = 0 and κ = 1

then we can construct the following Poisson structure on Tg∗:

π̃Tg∗,λ(x,y) =

(
επ1(x) + µπ1(y) κπ1(x)

κπ1(x) κπ1(y) + λπ2(x)− λεπ2(y)

)
.
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We write the elements of the Lie algebra Tg = g× g that generate
the Lie-Poisson structures on Tg∗, as pairs (X,Y ), where
X,Y ∈ g. The commutators related to the above Lie-Poisson
structures have the form

[(X1, Y1), (X2, Y2)]TM =([X1, Y2]1 + [Y1, X2]1 + λ[Y1, Y2]2, [Y1, Y2]1),

[(X1, Y1), (X2, Y2)]Tg∗ =([X1, Y2]1 + [Y1, X2]1 + λ[Y1, Y2]2 + ε[X1, X2]1,

[Y1, Y2]1 − λε[Y1, Y2]2).

It is easy to see that these commutators are compatible, i.e. their
linear combination α[·, ·]1 + β[·, ·]2 is again a Lie bracket. They
generate a Lie bundle.
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Some special case of this Lie bundle was considered by Bolsinov
and Fedorov. They restricted their considerations to the case
g = so(n), where the first commutator [·, ·]1 is a standard
commutator and the second commutator [·, ·]2 has the form

[X1, X2]2 = X1SX2 −X2SX1,

where S is a symmetric matrix. This Lie bundle is related to the
Steklov–Lyapunov cases.
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Example

If we take Euclidean Lie algebra A3,6 = e(2), then in above
construction we obtain the following Poisson structure on TA3,6

(ε = λ = 0)

πTg∗,λ(x,y) =



0 0 −µy2 0 0 0
0 0 µy1 0 0 0
µy2 −µy1 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

We recognize the Lie-Poisson structure related to direct sum
A5,1 ⊕ 〈y3〉.
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