

Kenny De Commer VUB (Brussels)

(joint work with J.R. Dzokou Talla) arXiv:2107.04258, arXiv:2112.07476

June 2022 XXXIX Workshop on Geometric Methods in Physics Białystok

Quantization of real semisimple Lie groups

Representation theory

The case of quantum $\mathfrak{sl}(2,\mathbb{R})$

Real Lie algebras

Definition

Let ${\mathfrak g}$ be a (finite dimensional) complex Lie algebra.

A real form on \mathfrak{g} is an anti-linear map $\dagger:\mathfrak{g}\to\mathfrak{g}$ such that

$$[X,Y]^\dagger = [Y^\dagger,X^\dagger]$$

Real Lie algebras

Definition

Let \mathfrak{g} be a (finite dimensional) complex Lie algebra.

A real form on \mathfrak{g} is an anti-linear map $\dagger:\mathfrak{g}\to\mathfrak{g}$ such that

$$[X,Y]^{\dagger} = [Y^{\dagger},X^{\dagger}]$$

Real form (\mathfrak{g}, \dagger)

1

Real Lie algebra $\mathfrak{l} = \{X \in \mathfrak{g} \mid X^{\dagger} = -X\}.$

Real semisimple Lie algebras and Lie groups Cartan duality for semisimple Lie algebras

Let ${\mathfrak g}$ be complex semisimple and ${\mathfrak l}$ a real form. Then

with \mathfrak{u} a compact form of \mathfrak{g} such that

$$*^{\dagger} = ^{\dagger} *$$

Real semisimple Lie algebras and Lie groups Cartan duality for semisimple Lie algebras

Let ${\mathfrak g}$ be complex semisimple and ${\mathfrak l}$ a real form. Then

with \mathfrak{u} a compact form of \mathfrak{g} such that

Then $\sigma = *\dagger : \mathfrak{g} \to \mathfrak{g}$ involutive automorphism:

 $\mathfrak{l} \quad \leftrightarrow \quad \text{compact symmetric pair } \mathfrak{u}^{\sigma} =: \mathfrak{k} \subseteq \mathfrak{u}.$

 $\leftrightarrow \quad \text{complex symmetric pair } \mathfrak{g}^{\sigma} =: \mathfrak{k}^{\mathbb{C}} \subseteq \mathfrak{g}.$

Real semisimple Lie algebras and Lie groups Cartan duality for semisimple Lie groups

Let $\mathfrak{l} \subseteq \mathfrak{g}$ a semisimple real Lie algebra.

Let G connected, simply connected Lie group with $\mathfrak{g} = T_e G$. We define the associated Lie group L of \mathfrak{l} as

$$L = \{g \in G \mid g^{\dagger} = g^{-1}\}, \qquad \mathfrak{l} = T_e L.$$

Warning: *L* need not be connected or simply connected!

Real semisimple Lie algebras and Lie groups Cartan duality for semisimple Lie groups

Let $\mathfrak{l} \subseteq \mathfrak{g}$ a semisimple real Lie algebra.

Let G connected, simply connected Lie group with $\mathfrak{g} = T_e G$. We define the associated Lie group L of \mathfrak{l} as

$$L = \{g \in G \mid g^{\dagger} = g^{-1}\}, \qquad \mathfrak{l} = T_e L.$$

Warning: *L* need not be connected or simply connected! With $U \subseteq G$ integrating \mathfrak{u} , we have the Cartan duality

 $L \leftrightarrow \text{Symmetric space of compact type } U/K, \quad K = U^{\sigma}.$

Warning: *K* is connected with $T_e K = \mathfrak{k}$, but:

- K is not necessarily simply connected!

Examples

Type A: Fix $G = SL(N, \mathbb{C})$ with U = SU(N). Type AI:

$$L = SL(N, \mathbb{R}) \quad \leftrightarrow \quad \sigma(g) = (g^{T})^{-1}$$
$$\leftrightarrow \quad SO(N) \subseteq SU(N)$$
$$\leftrightarrow \quad SU(N) \rightsquigarrow S\Lambda(N).$$

Examples

Type A: Fix $G = SL(N, \mathbb{C})$ with U = SU(N). Type AI:

$$L = SL(N, \mathbb{R}) \quad \leftrightarrow \quad \sigma(g) = (g^{T})^{-1}$$
$$\leftrightarrow \quad SO(N) \subseteq SU(N)$$
$$\leftrightarrow \quad SU(N) \rightharpoonup S\Lambda(N).$$

Type AIII, with N = m + n:

$$L = SU(m, n) \quad \leftrightarrow \quad \sigma = \operatorname{Ad} \begin{pmatrix} I_m & 0\\ 0 & -I_n \end{pmatrix}$$
$$\leftrightarrow \quad S(U(m) \times U(n)) \subseteq SU(N)$$
$$\leftrightarrow \quad SU(N) \rightsquigarrow \operatorname{Gr}(m, \mathbb{C}^n).$$

Quantizing complex semisimple Lie algebras

Fix complex semisimple ${\mathfrak g}$ with ${\mathfrak h}\subseteq {\mathfrak b}\subseteq {\mathfrak g}$ for

- \mathfrak{h} maximal Cartan, $\mathfrak{h} \ni \{H_i\}$,
- \mathfrak{b} Borel, $\mathfrak{b} \ni \{H_i, E_i\}$.

For $q \in \mathbb{C} \setminus \{0, \text{roots of unity}\}$, we can quantize along $(\mathfrak{h}, \mathfrak{b})$:

Quantizing complex semisimple Lie algebras

Fix complex semisimple ${\mathfrak g}$ with ${\mathfrak h}\subseteq {\mathfrak b}\subseteq {\mathfrak g}$ for

- \mathfrak{h} maximal Cartan, $\mathfrak{h} \ni \{H_i\}$,
- \mathfrak{b} Borel, $\mathfrak{b} \ni \{H_i, E_i\}$.

For $q \in \mathbb{C} \setminus \{0, \mathrm{roots} \text{ of unity}\}$, we can quantize along $(\mathfrak{h}, \mathfrak{b})$:

 $\begin{array}{ll} \text{Hopf algebra } (U(\mathfrak{g}), \Delta) & \longrightarrow \\ E_i, F_i, H_i, & \Delta(E_i) = E_i \otimes 1 + 1 \otimes E_i \end{array} \end{array} \xrightarrow{\text{Drinfeld, Jimbo}} & \begin{array}{l} \text{Hopf algebra } (U_q(\mathfrak{g}), \Delta) \\ E_i, F_i, q^{H_i}, & \Delta(E_i) = E_i \otimes 1 + q^{H_i} \otimes E_i \end{array}$ $\begin{array}{l} \text{We can choose compact form with } \mathfrak{h}^* = \mathfrak{h} \text{ and } \mathfrak{b}^* = \mathfrak{b}^-: \end{array}$

$$\begin{array}{rcl} \operatorname{Hopf} & *\operatorname{-algebra}\left(U(\mathfrak{g}),*,\Delta\right) & \longrightarrow & \operatorname{Hopf} & *\operatorname{-algebra}\left(U_q(\mathfrak{g}),*,\Delta\right).\\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\$$

Quantizing complex semisimple Lie algebras

Fix complex semisimple ${\mathfrak g}$ with ${\mathfrak h}\subseteq {\mathfrak b}\subseteq {\mathfrak g}$ for

- \mathfrak{h} maximal Cartan, $\mathfrak{h} \ni \{H_i\}$,
- \mathfrak{b} Borel, $\mathfrak{b} \ni \{H_i, E_i\}$.

For $q \in \mathbb{C} \setminus \{0, \mathrm{roots} \text{ of unity}\}$, we can quantize along $(\mathfrak{h}, \mathfrak{b})$:

 $\begin{array}{ll} \operatorname{Hopf} \operatorname{algebra} \left(U(\mathfrak{g}), \Delta \right) & \longrightarrow \\ E_i, F_i, H_i, \quad \Delta(E_i) = E_i \otimes 1 + 1 \otimes E_i \end{array} \xrightarrow{\operatorname{Drinfeld, Jimbo}} & \begin{array}{ll} \operatorname{Hopf} \operatorname{algebra} \left(U_q(\mathfrak{g}), \Delta \right) \\ E_i, F_i, q^{H_i}, \quad \Delta(E_i) = E_i \otimes 1 + q^{H_i} \otimes E_i \end{array} \\ \end{array}$ $\begin{array}{ll} \operatorname{We \ can \ choose \ compact \ form \ with \ \mathfrak{h}^* = \mathfrak{h} \ \text{and} \ \mathfrak{b}^* = \mathfrak{b}^-: \end{array}$

$$\begin{array}{rcl} \operatorname{Hopf} & \ast\operatorname{-algebra} \left(U(\mathfrak{g}), \ast, \Delta \right) & \longrightarrow & \operatorname{Hopf} & \ast\operatorname{-algebra} \left(\bigcup_q(\mathfrak{g}), \ast, \Delta \right). \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & &$$

We write

$$U_q(\mathfrak{u}) = (U_q(\mathfrak{g}), *).$$

Quantizing real semisimple Lie algebras

How to quantize $\ensuremath{\mathfrak{l}}\xspace?$

Quantizing real semisimple Lie algebras

How to quantize I?

Need to fix position $\mathfrak{l}\subseteq\mathfrak{g}$ with respect to $\mathfrak{h}\subseteq\mathfrak{b}\subseteq\mathfrak{g}!$

Quantizing real semisimple Lie algebras

How to quantize I?

Need to fix position $\mathfrak{l} \subseteq \mathfrak{g}$ with respect to $\mathfrak{h} \subseteq \mathfrak{b} \subseteq \mathfrak{g}!$

First choice: $\mathfrak{h}^{\dagger} = \mathfrak{h}, \mathfrak{b}^{\dagger} = \mathfrak{b}^{-}$ (always possible). Then

 $\nu = *^{\dagger} \Rightarrow \text{Vogan form.}$

Example: standard inclusion $\mathfrak{su}(m, n) \subseteq \mathfrak{sl}(m + n, \mathbb{C})$.

Quantizing real semisimple Lie algebras

How to quantize I?

Need to fix position $\mathfrak{l} \subseteq \mathfrak{g}$ with respect to $\mathfrak{h} \subseteq \mathfrak{b} \subseteq \mathfrak{g}!$

First choice: $\mathfrak{h}^{\dagger} = \mathfrak{h}, \mathfrak{b}^{\dagger} = \mathfrak{b}^{-}$ (always possible). Then

 $\nu = *^{\dagger} \Rightarrow \text{Vogan form.}$

Example: standard inclusion $\mathfrak{su}(m, n) \subseteq \mathfrak{sl}(m + n, \mathbb{C})$. Theorem (Twietmeyer, '92) \exists Hopf *-algebra involution $\nu : U_q(\mathfrak{u}) \rightarrow U_q(\mathfrak{u})$ quantizing ν . In particular, we have the quantization

$$U_q(\mathfrak{l}) = (U_q(\mathfrak{g}), \dagger = * \circ \nu).$$

Quantizing real semisimple Lie algebras

How to quantize I?

Need to fix position $\mathfrak{l} \subseteq \mathfrak{g}$ with respect to $\mathfrak{h} \subseteq \mathfrak{b} \subseteq \mathfrak{g}!$

First choice: $\mathfrak{h}^{\dagger} = \mathfrak{h}, \mathfrak{b}^{\dagger} = \mathfrak{b}^{-}$ (always possible). Then

 $\nu = *^{\dagger} \Rightarrow \text{Vogan form.}$

Example: standard inclusion $\mathfrak{su}(m, n) \subseteq \mathfrak{sl}(m + n, \mathbb{C})$. Theorem (Twietmeyer, '92) \exists Hopf *-algebra involution $\nu : U_q(\mathfrak{u}) \rightarrow U_q(\mathfrak{u})$ quantizing ν . In particular, we have the quantization

$$U_q(\mathfrak{l}) = (U_q(\mathfrak{g}), \dagger = \ast \circ \nu).$$

Concrete form: $\nu(E_i) = \varepsilon_i E_{\tau(i)}$, so $E_i^{\dagger} = \varepsilon_i F_{\tau(i)} q^{H_{\tau(i)}}$.

The *-algebra $U_q(l)$ is easy to define... but has severe drawbacks:

• There is no good way to tensor 'unitary representations'.

Problems

The *-algebra $U_q(l)$ is easy to define... but has severe drawbacks:

- There is no good way to tensor 'unitary representations'.
- (Woronowicz, 91) No good dual 'quantized function algebra' $C_0(L_q)$ with coproduct in the operator algebraic setting.

Problems

The *-algebra $U_{\alpha}(\mathfrak{l})$ is easy to define... but has severe drawbacks:

- There is no good way to tensor 'unitary representations'.
- (Woronowicz, 91) No good dual 'quantized function algebra' $C_0(L_q)$ with coproduct in the operator algebraic setting.

Problems are 'spectral' in nature: For Ω Casimir operator, there are not sufficiently many irreducibles π,π' such that

 $(\pi\otimes\pi')(\Delta(\Omega))$

can *consistently* be extended to a self-adjoint operator.

Problems

The *-algebra $U_a(\mathfrak{l})$ is easy to define... but has severe drawbacks:

- There is no good way to tensor 'unitary representations'.
- (Woronowicz, 91) No good dual 'quantized function algebra' $C_0(L_q)$ with coproduct in the operator algebraic setting.

Problems are 'spectral' in nature: For Ω Casimir operator, there are not sufficiently many irreducibles π,π' such that

 $(\pi\otimes\pi')(\Delta(\Omega))$

can *consistently* be extended to a self-adjoint operator.

In rank 1: Extended quantum SU(1,1) (Koelink-Kustermans '03).

Quantization of real semisimple Lie groups Second quantization approach

Second choice: Position $\mathfrak{l}\subseteq\mathfrak{g}$ with $\mathfrak{b}^\dagger\cap\mathfrak{b}^-$ minimal dimension! Then

 $\theta = *^{\dagger} \Rightarrow \text{Satake form.}$

Example: standard inclusion $\mathfrak{sl}(N,\mathbb{R}) \subseteq \mathfrak{sl}(N,\mathbb{C})$.

Quantization of real semisimple Lie groups Second quantization approach

Second choice: Position $\mathfrak{l}\subseteq\mathfrak{g}$ with $\mathfrak{b}^{\dagger}\cap\mathfrak{b}^{-}$ minimal dimension! Then

 $\theta = *^{\dagger} \Rightarrow \text{Satake form.}$

Example: standard inclusion $\mathfrak{sl}(N,\mathbb{R}) \subseteq \mathfrak{sl}(N,\mathbb{C})$.

Put $\mathfrak{k} = \mathfrak{u}^{\theta} = \mathfrak{u} \cap \mathfrak{l}$.

Theorem (Letzter '99, Kolb '14, DC-Neshveyev-Tuset-Yamashita '19) There exists a left coideal *-subalgebra $U_q(\mathfrak{k}) \subseteq U_q(\mathfrak{u})$:

 $\Delta(U_q(\mathfrak{k})) \subseteq U_q(\mathfrak{u}) \otimes U_q(\mathfrak{k}).$

One can hence quantize the compact symmetric pair $\mathfrak{k} \subseteq \mathfrak{u}!$

Quantization of real semisimple Lie groups Second quantization approach

Second choice: Position $\mathfrak{l}\subseteq\mathfrak{g}$ with $\mathfrak{b}^{\dagger}\cap\mathfrak{b}^{-}$ minimal dimension! Then

 $\theta = *^{\dagger} \Rightarrow \text{Satake form.}$

Example: standard inclusion $\mathfrak{sl}(N,\mathbb{R}) \subseteq \mathfrak{sl}(N,\mathbb{C})$.

Put $\mathfrak{k} = \mathfrak{u}^{\theta} = \mathfrak{u} \cap \mathfrak{l}$.

Theorem (Letzter '99, Kolb '14, DC-Neshveyev-Tuset-Yamashita '19) There exists a left coideal *-subalgebra $U_q(\mathfrak{k}) \subseteq U_q(\mathfrak{u})$:

 $\Delta(U_q(\mathfrak{k})) \subseteq U_q(\mathfrak{u}) \otimes U_q(\mathfrak{k}).$

One can hence quantize the compact symmetric pair $\mathfrak{k} \subseteq \mathfrak{u}!$ What about the full Cartan duality?

Quantization of real semisimple Lie groups Drinfeld duality

For finite-dimensional $U_q(\mathfrak{u})$ -representations, we ask $q^{H_i} \ge 0$. \Rightarrow Hopf *-algebra $\mathcal{O}_q(U)$ of matrix coefficients. In particular, we have a pairing

 τ

$$\tau: \mathcal{O}_q(U) \times U_q(\mathfrak{u}) \to \mathbb{C}, \qquad (f, x) \mapsto \tau(f, x).$$

Quantization of real semisimple Lie groups Drinfeld duality

For finite-dimensional $U_q(\mathfrak{u})$ -representations, we ask $q^{H_i} \ge 0$. \Rightarrow Hopf *-algebra $\mathcal{O}_q(U)$ of matrix coefficients. In particular, we have a pairing

$$\tau: \mathcal{O}_q(U) \times U_q(\mathfrak{u}) \to \mathbb{C}, \qquad (f, x) \mapsto \tau(f, x).$$

Theorem (Drinfeld '87) Let $\mathfrak{g} = \mathfrak{u} \oplus \mathfrak{a} \oplus \mathfrak{n}$ be the Iwasawa decomposition. Then

$$\mathcal{O}_q(U) = U_q(\mathfrak{a} \oplus \mathfrak{n}).$$

Quantization of real semisimple Lie groups Drinfeld doubles

Put $(\mathcal{O}_q(U), \Delta)$ and $(U_q(\mathfrak{u}), \Delta^{\mathrm{op}})$ together via Drinfeld double:

$$xf = \tau(f_{(3)}, x_{(1)})f_{(2)}x_{(2)}\tau(f_{(1)}, S^{-1}(x_{(3)})).$$

This gives Hopf *-algebra $\mathscr{D}(\mathcal{O}_q(U), U_q(\mathfrak{u}), \tau)$.

Quantization of real semisimple Lie groups Drinfeld doubles

Put $(\mathcal{O}_q(U), \Delta)$ and $(U_q(\mathfrak{u}), \Delta^{\mathrm{op}})$ together via Drinfeld double:

$$xf = \tau(f_{(3)}, x_{(1)})f_{(2)}x_{(2)}\tau(f_{(1)}, S^{-1}(x_{(3)})).$$

This gives Hopf *-algebra $\mathscr{D}(\mathcal{O}_q(U), U_q(\mathfrak{u}), \tau)$.

Theorem (Drinfeld '87)

We have

$$\mathscr{D}(\mathcal{O}_q(U), U_q(\mathfrak{u}), \tau) = U_q(\mathfrak{g}_{\mathbb{R}}),$$

with $\mathfrak{g}_{\mathbb{R}}$ the Lie algebra \mathfrak{g} considered as a real Lie algebra.

Quantization of real semisimple Lie groups Quantizing real semisimple Lie groups

Orthogonal to $U_q(\mathfrak{k}) \subseteq U_q(\mathfrak{u})$ we have right coideal *-subalgebra

 $\mathcal{O}_{q}(U) \supseteq \mathcal{O}_{q}(K \setminus U) = \{ f \mid \forall x \in U_{q}(\mathfrak{k}) : \tau(x, f_{(1)})f_{(2)} = \varepsilon(x)f \}.$

Quantization of real semisimple Lie groups Quantizing real semisimple Lie groups

Orthogonal to $U_q(\mathfrak{k}) \subseteq U_q(\mathfrak{u})$ we have right coideal *-subalgebra

 $\mathcal{O}_q(U) \supseteq \mathcal{O}_q(K \setminus U) = \{ f \mid \forall x \in U_q(\mathfrak{k}) : \tau(x, f_{(1)}) f_{(2)} = \varepsilon(x) f \}.$

Theorem (~ Drinfeld '93) Let $l = t \oplus a_0 \oplus n_0$ be the Iwasawa decomposition. Then

 $\mathcal{O}_q(K \setminus U) = U_q(\mathfrak{a}_0 \oplus \mathfrak{n}_0).$

Quantization of real semisimple Lie groups Quantizing real semisimple Lie groups

Orthogonal to $U_q(\mathfrak{k}) \subseteq U_q(\mathfrak{u})$ we have right coideal *-subalgebra

 $\mathcal{O}_q(U) \supseteq \mathcal{O}_q(K \setminus U) = \{ f \mid \forall x \in U_q(\mathfrak{k}) : \tau(x, f_{(1)}) f_{(2)} = \varepsilon(x) f \}.$

Theorem (~ Drinfeld '93) Let $\mathfrak{l} = \mathfrak{k} \oplus \mathfrak{a}_0 \oplus \mathfrak{n}_0$ be the Iwasawa decomposition. Then $\mathcal{O}_{\mathfrak{a}}(K \setminus U) = U_{\mathfrak{a}}(\mathfrak{a}_0 \oplus \mathfrak{n}_0).$

Definition (De Commer-Dzokou Talla '21) We define $U_q(l)$ as the right coideal *-subalgebra

 $U_q(\mathfrak{l}) = \mathscr{D}(\mathcal{O}_q(K \setminus U), U_q(\mathfrak{k}), \tau) \subseteq U_q(\mathfrak{g}_{\mathbb{R}})$

generated by $U_q(\mathfrak{k})$ and $\mathcal{O}_q(K \setminus U)$.

Representation theory Unitary representations

Only consider finite-dimensional $U_q(\mathfrak{k})$ -representations π with

$$\pi \subseteq \pi'_{|U_q(\mathfrak{k})}, \qquad U_q(\mathfrak{u})\text{-representation } \pi'.$$

Set of (fixed representatives) irreducible $U_q(\mathfrak{k})$ -representations:

$$\widehat{K} = \{V_{\tau} \mid \tau \in \widehat{K}\}$$

Representation theory Unitary representations

Only consider finite-dimensional $U_q(\mathfrak{k})$ -representations π with

$$\pi \subseteq \pi'_{|U_q(\mathfrak{k})}, \qquad U_q(\mathfrak{u})\text{-representation } \pi'.$$

Set of (fixed representatives) irreducible $U_q(\mathfrak{k})$ -representations:

$$\widehat{K} = \{V_{\tau} \mid \tau \in \widehat{K}\}$$

Definition

A unitary L_q -representation consists of pre-Hilbert space \mathcal{H}_0 with *-homomorphism $\pi : U_q(\mathfrak{l}) \to \operatorname{End}_*(\mathcal{H}_0)$ such that

$$\mathcal{H}_0 = \bigoplus_{\tau \in \hat{\mathcal{K}}}^{\mathrm{alg}} V_\tau \otimes \mathcal{M}_\tau$$

as $U_q(\mathfrak{k})$ -representations, with 'multiplicity Hilbert spaces' $\mathcal{M}_{ au}$.

As $U_q(\mathfrak{l}) \subseteq U_q(\mathfrak{g}_{\mathbb{R}})$ is only a coideal, no tensor products?

Representation theory Tensor products

As $U_q(\mathfrak{l}) \subseteq U_q(\mathfrak{g}_{\mathbb{R}})$ is only a coideal, no tensor products?

Theorem (DC-Dzokou Talla '21)

The unitary L_q-representations allow an associative tensor product.

Representation theory

Tensor products

As $U_q(\mathfrak{l}) \subseteq U_q(\mathfrak{g}_{\mathbb{R}})$ is only a coideal, no tensor products? Theorem (DC-Dzokou Talla '21)

The unitary L_q -representations allow an associative tensor product. Proof (sketch).

With $A = \mathcal{O}_q(U)$ and $B = \mathcal{O}_q(K \setminus U)$, we have A-module coalgebra

$$\mathcal{O}_{q}(K) = C := A/AB_{+} \qquad B_{+} = \operatorname{Ker}(\varepsilon_{|B}),$$

and

 $U_q(\mathfrak{k})$ -representations \leftrightarrow unitary *C*-comodules.

Now add pre-Hilbert space structure to Takeuchi equivalence

$${}_{B}\operatorname{Mod}^{C}\cong{}_{A}^{C}\operatorname{Mod}^{C}.$$

Let 0 < q < 1.

$$KE = q^2 EK, \qquad KF = q^{-2} FK, \qquad EF - FE = rac{K - K^{-1}}{q - q^{-1}}.$$

Let 0 < q < 1.

$${\it KE}=q^2 {\it EK}, \qquad {\it KF}=q^{-2} {\it FK}, \qquad {\it EF}-{\it FE}=rac{{\it K}-{\it K}^{-1}}{q-q^{-1}}.$$

•
$$\mathscr{A} = \mathcal{O}_q(SU(2))$$
: unitary corepresentation $U = \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix}$.

Let 0 < q < 1.

$$KE = q^2 EK, \qquad KF = q^{-2} FK, \qquad EF - FE = rac{K - K^{-1}}{q - q^{-1}}.$$

•
$$\mathscr{A} = \mathcal{O}_q(SU(2))$$
: unitary corepresentation $U = \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix}$.
• $\mathscr{K} = U_q(\mathfrak{k}) = \mathbb{C}[iB] \subseteq U_q(\mathfrak{su}(2))$ with $iB = q^{-1/2}i(E - FK)$.

Let 0 < q < 1.

$$KE = q^2 EK, \qquad KF = q^{-2} FK, \qquad EF - FE = rac{K - K^{-1}}{q - q^{-1}}.$$

Let 0 < q < 1.

• $\mathscr{U} = U_q(\mathfrak{su}(2))$: generated by $K^{\pm 1}E, F$ with

$$\mathcal{K}\mathcal{E}=q^2\mathcal{E}\mathcal{K},\qquad \mathcal{K}\mathcal{F}=q^{-2}\mathcal{F}\mathcal{K},\qquad \mathcal{E}\mathcal{F}-\mathcal{F}\mathcal{E}=rac{\mathcal{K}-\mathcal{K}^{-1}}{q-q^{-1}}.$$

•
$$\mathscr{A} = \mathcal{O}_q(SU(2))$$
: unitary corepresentation $U = \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix}$.
• $\mathscr{K} = U_q(\mathfrak{k}) = \mathbb{C}[iB] \subseteq U_q(\mathfrak{su}(2))$ with $iB = q^{-1/2}i(E - FK)$.
• $\mathscr{B} = \mathcal{O}_q(S^2) = U_q(\mathfrak{k})^{\perp} \subseteq \mathcal{O}_q(SU(2))$ ('Podleś sphere').

 $\mathcal{D}(\mathscr{A},\mathscr{U}) = U_q(\mathfrak{sl}(2,\mathbb{C})_{\mathbb{R}}) \qquad \qquad \mathcal{D}(\mathscr{B},\mathscr{K}) = U_q(\mathfrak{sl}(2,\mathbb{R})).$

Casimir element

The Podleś sphere *-algebra $\mathcal{O}_q(S^2)$ admits generators X, Y, Z. Then inside $U_q(\mathfrak{sl}(2,\mathbb{R}))$ lives the central Casimir element

$$\Omega = iq^{-1}X + (q - q^{-1})iZB - iqY.$$

Using Ω , the irreducible $SL_q(2, \mathbb{R})$ -representations can be classified.

Irreducible representations of quantum $SL(2,\mathbb{R})$

