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Real semisimple Lie algebras and Lie groups

Real Lie algebras

Definition
Let g be a (finite dimensional) complex Lie algebra.

A real form on g is an anti-linear map : : gÑ g such that

rX ,Y s: � rY :,X :s

Real form pg, :q

Ù

Real Lie algebra l � tX P g | X : � �X u.
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Real semisimple Lie algebras and Lie groups

Cartan duality for semisimple Lie algebras

Let g be complex semisimple and l a real form. Then

g88

xx

gg

''
lØ pg, :q

ff

&&

uØ pg, �q
77

ww
k � lX u

with u a compact form of g such that

�: � : � .

Then σ � �: : gÑ g involutive automorphism:

l Ø compact symmetric pair uσ �: k � u.

Ø complex symmetric pair gσ �: kC � g.
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Real semisimple Lie algebras and Lie groups

Cartan duality for semisimple Lie groups

Let l � g a semisimple real Lie algebra.

Let G connected, simply connected Lie group with g � TeG .
We define the associated Lie group L of l as

L � tg P G | g : � g�1u, l � TeL.

Warning: L need not be connected or simply connected!

With U � G integrating u, we have the Cartan duality

L Ø Symmetric space of compact type U{K , K � Uσ.

Warning: K is connected with TeK � k, but:

� K is not necessarily simply connected!

� k in general only reductive, not semisimple!
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Real semisimple Lie algebras and Lie groups

Examples

Type A: Fix G � SLpN,Cq with U � SUpNq.

Type AI :

L � SLpN,Rq Ø σpgq � pgT q�1

Ø SOpNq � SUpNq

Ø SUpNqñ SΛpNq.

Type AIII , with N � m � n:

L � SUpm, nq Ø σ � Ad

�
Im 0
0 �In



Ø SpUpmq � Upnqq � SUpNq

Ø SUpNqñ Grpm,Cnq.
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Quantization of real semisimple Lie groups

Quantizing complex semisimple Lie algebras

Fix complex semisimple g with h � b � g for

� h maximal Cartan, h Q tHiu,

� b Borel, b Q tHi ,Eiu.

For q P Czt0, roots of unityu, we can quantize along ph, bq:

Hopf algebra pUpgq,∆q
Ei , Fi ,Hi , ∆pEi q � Ei b 1 � 1 b Ei

ÝÑ
Drinfeld, Jimbo

Hopf algebra pUqpgq,∆q
Ei , Fi , q

Hi , ∆pEi q � Ei b 1 � qHi b Ei

.

We can choose compact form with h� � h and b� � b�:

Hopf � -algebra pUpgq, �,∆q
E�i � Fi

ÝÑ Hopf � -algebra pUqpgq, �,∆q
E�i � Fi q

Hi

.

We write
Uqpuq � pUqpgq, �q.
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Quantization of real semisimple Lie groups

Quantizing real semisimple Lie algebras

How to quantize l?

Need to fix position l � g with respect to h � b � g!

First choice: h: � h, b: � b� (always possible). Then

ν � �: ñ Vogan form.

Example: standard inclusion supm, nq � slpm � n,Cq.

Theorem (Twietmeyer, ’92)

D Hopf �-algebra involution ν : Uqpuq Ñ Uqpuq quantizing ν.

In particular, we have the quantization

Uqplq � pUqpgq, : � � � νq.

Concrete form: νpEi q � εiEτpiq, so E :
i � εiFτpiqq

Hτpiq .
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Quantization of real semisimple Lie groups

Problems

The �-algebra Uqplq is easy to define... but has severe drawbacks:

� There is no good way to tensor ‘unitary representations’.

� (Woronowicz, 91) No good dual ‘quantized function algebra’
C0pLqq with coproduct in the operator algebraic setting.

Problems are ‘spectral’ in nature: For Ω Casimir operator, there
are not sufficiently many irreducibles π, π1 such that

pπ b π1qp∆pΩqq

can consistently be extended to a self-adjoint operator.

In rank 1: Extended quantum SUp1, 1q (Koelink-Kustermans ’03).
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Quantization of real semisimple Lie groups

Second quantization approach

Second choice: Position l � g with b: X b� minimal dimension!
Then

θ � �: ñ Satake form.

Example: standard inclusion slpN,Rq � slpN,Cq.

Put k � uθ � uX l.

Theorem (Letzter ’99, Kolb ’14, DC-Neshveyev-Tuset-Yamashita ’19)

There exists a left coideal �-subalgebra Uqpkq � Uqpuq:

∆pUqpkqq � Uqpuq b Uqpkq.

One can hence quantize the compact symmetric pair k � u!

What about the full Cartan duality?
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Quantization of real semisimple Lie groups

Drinfeld duality

For finite-dimensional Uqpuq-representations, we ask qHi ¥ 0.

ñ Hopf �-algebra OqpUq of matrix coefficients.

In particular, we have a pairing

τ : OqpUq � Uqpuq Ñ C, pf , xq ÞÑ τpf , xq.

Theorem (Drinfeld ’87)

Let g � u` a` n be the Iwasawa decomposition. Then

OqpUq � Uqpa` nq.
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Quantization of real semisimple Lie groups

Drinfeld doubles

Put pOqpUq,∆q and pUqpuq,∆opq together via Drinfeld double:

xf � τpfp3q, xp1qqfp2qxp2qτpfp1q,S
�1pxp3qqq.

This gives Hopf �-algebra DpOqpUq,Uqpuq, τq.

Theorem (Drinfeld ’87)

We have
DpOqpUq,Uqpuq, τq � UqpgRq,

with gR the Lie algebra g considered as a real Lie algebra.
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Quantization of real semisimple Lie groups

Quantizing real semisimple Lie groups

Orthogonal to Uqpkq � Uqpuq we have right coideal �-subalgebra

OqpUq � OqpKzUq � tf | @x P Uqpkq : τpx , fp1qqfp2q � εpxqf u.

Theorem (� Drinfeld ’93)

Let l � k` a0 ` n0 be the Iwasawa decomposition. Then

OqpKzUq � Uqpa0 ` n0q.

Definition (De Commer-Dzokou Talla ’21)

We define Uqplq as the right coideal �-subalgebra

Uqplq � DpOqpKzUq,Uqpkq, τq � UqpgRq

generated by Uqpkq and OqpKzUq.
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Representation theory

Unitary representations

Only consider finite-dimensional Uqpkq-representations π with

π � π1|Uqpkq
, Uqpuq-representation π1.

Set of (fixed representatives) irreducible Uqpkq-representations:

pK � tVτ | τ P pKu

Definition
A unitary Lq-representation consists of pre-Hilbert space H0 with
�-homomorphism π : Uqplq Ñ End�pH0q such that

H0 �
alg
`
τP pK

Vτ bMτ

as Uqpkq-representations, with ‘multiplicity Hilbert spaces’ Mτ .



14

Representation theory

Unitary representations

Only consider finite-dimensional Uqpkq-representations π with

π � π1|Uqpkq
, Uqpuq-representation π1.

Set of (fixed representatives) irreducible Uqpkq-representations:

pK � tVτ | τ P pKu
Definition
A unitary Lq-representation consists of pre-Hilbert space H0 with
�-homomorphism π : Uqplq Ñ End�pH0q such that

H0 �
alg
`
τP pK

Vτ bMτ

as Uqpkq-representations, with ‘multiplicity Hilbert spaces’ Mτ .



15

Representation theory

Tensor products

As Uqplq � UqpgRq is only a coideal, no tensor products?

Theorem (DC-Dzokou Talla ’21)

The unitary Lq-representations allow an associative tensor product.

Proof (sketch).

With A � OqpUq and B � OqpKzUq, we have A-module coalgebra

OqpK q � C :� A{AB� B� � Kerpε|Bq,

and

Uqpkq-representations Ø unitary C -comodules.

Now add pre-Hilbert space structure to Takeuchi equivalence

BModC � C
AModC .
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The case of quantum slp2,Rq

Example

Let 0   q   1.

� U � Uqpsup2qq: generated by K�1E ,F with

KE � q2EK , KF � q�2FK , EF � FE �
K � K�1

q � q�1
.

� A � OqpSUp2qq: unitary corepresentation U �

�
α �qγ�

γ α�



.

� K � Uqpkq � CriBs � Uqpsup2qq with iB � q�1{2ipE � FK q.

� B � OqpS
2q � Uqpkq

K � OqpSUp2qq (‘Podleś sphere’).

DpA ,U q � Uqpslp2,CqRq DpB,K q � Uqpslp2,Rqq.
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The case of quantum slp2,Rq

Casimir element

The Podleś sphere �-algebra OqpS
2q admits generators X ,Y ,Z .

Then inside Uqpslp2,Rqq lives the central Casimir element

Ω � iq�1X � pq � q�1qiZB � iqY .

Using Ω, the irreducible SLqp2,Rq-representations can be classified.
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The case of quantum slp2,Rq

Irreducible representations of quantum SLp2,Rq
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