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Real Lie algebras

Definition
Let g be a (finite dimensional) complex Lie algebra.

A real form on g is an anti-linear map T : g — g such that

[X7 Y]T = [YTvxT]

Real form (g, 1)

!
Real Lie algebra [ = {X e g | X' = —=X}.
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Cartan duality for semisimple Lie algebras

Let g be complex semisimple and [ a real form. Then
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Real semisimple Lie algebras and Lie groups
Cartan duality for semisimple Lie algebras

Let g be complex semisimple and [ a real form. Then

/ g \
(< (g,7) u<o (g,
t=I[nu
with u a compact form of g such that
T =T x.
Then o = *} : g — g involutive automorphism:
[ < compact symmetric pair u’ =: £ <

< complex symmetric pair g7 =:



Real semisimple Lie algebras and Lie groups
Cartan duality for semisimple Lie groups

Let [ S g a semisimple real Lie algebra.

Let G connected, simply connected Lie group with g = T.G.
We define the associated Lie group L of [ as

L={geG|g =g}, [=T.L.

Warning: L need not be connected or simply connected!



Real semisimple Lie algebras and Lie groups
Cartan duality for semisimple Lie groups

Let [ S g a semisimple real Lie algebra.

Let G connected, simply connected Lie group with g = T.G.
We define the associated Lie group L of [ as

L={geG|g =g}, [=T.L.

Warning: L need not be connected or simply connected!

With U € G integrating u, we have the Cartan duality
L < Symmetric space of compact type U/K, K = U’.

Warning: K is connected with ToK = ¢, but:
» K is not necessarily simply connected!

» £ in general only reductive, not semisimple!
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Real semisimple Lie algebras and Lie groups

Type A: Fix G = SL(N, C) with U = SU(N).
Type Al:

L=SL(N,R) < o(g)=(g")"

Type Alll, with N = m + n:

L=SU(m,n) < azAd(lg _Ol>

o  S(U(m) x U(n)) < SU(N)
o SU(N) ~ Gr(m,C").
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Quantizing complex semisimple Lie algebras

Fix complex semisimple g with h € b < g for
» b maximal Cartan, h 3 {H;},
» b Borel, b3 {H,', E;}.
For g € C\{0, roots of unity}, we can quantize along (b, b):
Hopf algebra (U(g), A) — Hopf algebra (Ug(g), A) .
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Quantization of real semisimple Lie groups
Quantizing complex semisimple Lie algebras

Fix complex semisimple g with h € b < g for
» b maximal Cartan, h 3 {H;},
» b Borel, b 5 {H;, E;}.
For g € C\{0, roots of unity}, we can quantize along (b, b):

Hopf algebra (U(g), A) — Hopf algebra (Ug(g), A) .

E, F.H, A(E)=E@®l+1@f  Drinfeld, Jimbo E,F,q"i, AE)=E®1+d"®F
We can choose compact form with h* = b and b* = b~

Hopf = -algebra (U(g),*, A) —> Hopf =-algebra (Uq(g), =, A).

E¥ = F EF = Fig"h

We write
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Quantizing real semisimple Lie algebras

How to quantize [?

Need to fix position [ S g with respect to h € b < g!

First choice: h' = b, b = b~ (always possible). Then
v==xf = Vogan form.

Example: standard inclusion su(m, n) < sl(m + n,C).
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In particular, we have the quantization

Ug(D) = (Ug(g), T = # 0w).



Quantization of real semisimple Lie groups

Quantizing real semisimple Lie algebras

How to quantize [?

Need to fix position [ S g with respect to h € b < g!

First choice: h' = b, b = b~ (always possible). Then
v==xf = Vogan form.

Example: standard inclusion su(m, n) < sl(m + n,C).
Theorem (Twietmeyer, '92)
1 Hopf #-algebra involution v : Ug(u) — Ug(u) quantizing v.

In particular, we have the quantization
Ug(l) = (Uq(9), T = = ov).

Concrete form: v(E;) = ¢;E,(j, so EI-T = E,'FT(,-)qHT(i).
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Quantization of real semisimple Lie groups

The =-algebra Ugy([) is easy to define... but has severe drawbacks:
» There is no good way to tensor ‘unitary representations’.

» (Woronowicz, 91) No good dual ‘quantized function algebra’
Co(Lg) with coproduct in the operator algebraic setting.

Problems are ‘spectral’ in nature: For Q Casimir operator, there
are not sufficiently many irreducibles 7, 7’ such that

(r @) (A(Q))

can consistently be extended to a self-adjoint operator.

In rank 1: Extended quantum SU(1,1) (Koelink-Kustermans '03).
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Second choice: Position [ < g with bT A b~ minimal dimension!
Then

0 ==t = Satake form.

Example: standard inclusion sl(N,R) < sl(N,C).
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Quantization of real semisimple Lie groups

Second quantization approach

Second choice: Position [ < g with bT A b~ minimal dimension!
Then

0 ==t = Satake form.
Example: standard inclusion sl(N,R) < sl(N,C).

Putt=u’=unt

Theorem (Letzter '99, Kolb '14, DC-Neshveyev-Tuset-Yamashita ’19)
There exists a left coideal «-subalgebra Ugy(€) < Ug(u):

A(Uq(8)) S Ug(u) ® Uq(8).

One can hence quantize the compact symmetric pair £ < ul
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Quantization of real semisimple Lie groups

Second quantization approach

Second choice: Position [ < g with bT A b~ minimal dimension!
Then

0 ==t = Satake form.
Example: standard inclusion sl(N,R) < sl(N,C).
Putt=u=unl

Theorem (Letzter '99, Kolb '14, DC-Neshveyev-Tuset-Yamashita ’19)
There exists a left coideal «-subalgebra Ugy(€) < Ug(u):

A(Uq(8)) S Ug(u) ® Uq(8).

One can hence quantize the compact symmetric pair £ < ul

What about the full Cartan duality?
10



Quantization of real semisimple Lie groups

Drinfeld duality

For finite-dimensional U, (u)-representations, we ask g > 0.

= Hopf #-algebra Og(U) of matrix coefficients.

In particular, we have a pairing

7:0g(U) x Ug(u) > C, (f,x) — 7(f, x).
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Quantization of real semisimple Lie groups

Drinfeld duality

For finite-dimensional U, (u)-representations, we ask g > 0.

= Hopf #-algebra Og(U) of matrix coefficients.

In particular, we have a pairing

7:0g(U) x Ug(u) > C, (f,x) — 7(f, x).

Theorem (Drinfeld '87)

Let g =u@®a®n be the lwasawa decomposition. Then

0q(U) = Uy(a@n).
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Drinfeld doubles

Put (Oq(U),A) and (Ug(u), A°P) together via Drinfeld double:
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This gives Hopf x-algebra 2(O4(U), Ug(u), 7).
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Quantization of real semisimple Lie groups

Drinfeld doubles

Put (Oq(U),A) and (Ug(u), A°P) together via Drinfeld double:

xf = 7(f3), x1)) fyx2)7(F1), S H(x3)))-

This gives Hopf x-algebra 2(O4(U), Ug(u), 7).
Theorem (Drinfeld '87)

We have
2(0q(U), Ug(u), ) = Uq(gr),

with gr the Lie algebra g considered as a real Lie algebra.

12
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Quantizing real semisimple Lie groups

Orthogonal to U, () < Uq(u) we have right coideal #-subalgebra
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Quantization of real semisimple Lie groups
Quantizing real semisimple Lie groups

Orthogonal to Uq(€) < Ug(u) we have right coideal #-subalgebra
Oq(U) 2 Og(K\U) = {f | Vx € Uq(¥) : 7(x, fr1)) oy = e(x)f}.

Theorem (~ Drinfeld '93)
Let | = €D ag ® ng be the Iwasawa decomposition. Then
Oq(K\U) = Uq(ao (—Bno).
Definition (De Commer-Dzokou Talla '21)
We define Ugy(l) as the right coideal #-subalgebra
Ug(l) = 2(Oq(K\U), Uq(¥),7) S Uq(or)

generated by Uq(t) and Og(K\U).

13



Representation theory
Unitary representations

Only consider finite-dimensional U, (%)-representations 7 with
TC W‘qu(e), Uq(u)-representation .
Set of (fixed representatives) irreducible Ug(£)-representations:

K={V.|TeKk}
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Representation theory
Unitary representations

Only consider finite-dimensional U, (%)-representations 7 with
TC W‘qu(e), Uq(u)-representation .
Set of (fixed representatives) irreducible Ug(£)-representations:

K={V.|TeKk}

Definition
A unitary L,-representation consists of pre-Hilbert space Ho with
s-homomorphism 7 : Ug(l) — End.(Ho) such that

al
Ho= @V, ®M,
TEK

as Ug(€)-representations, with ‘multiplicity Hilbert spaces’ M. »



Representation theory
Tensor products

As Uqy(1) € Uq(gr) is only a coideal, no tensor products?
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Representation theory
Tensor products

As Uq(I) < Uqg(gr) is only a coideal, no tensor products?
Theorem (DC-Dzokou Talla '21)
The unitary Lg-representations allow an associative tensor product.
Proof (sketch).
With A = O4(U) and B = O4(K\U), we have A-module coalgebra
Oq(K) = C:= A/AB;,. By = Ker(ep),

and

Uq(€)-representations <«  unitary C-comodules.

Now add pre-Hilbert space structure to Takeuchi equivalence

gMod€ =~ {Mod€.

15
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» U = Uy(su(2)): generated by KX1E, F with
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» U = Uy(su(2)): generated by KX1E, F with

KE = PEK,  KF =q2FK, EF—FE="_

g—q '’

» o/ = Oq(SU(2)): unitary corepresentation U = (Q _qz )

v o«

» A = Uy(t) = C[iB] € Uy(su(2)) with iB = g~ Y2i(E — FK).
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The case of quantum sl[(2, R)

Let0<g< 1.

» U = Uy(su(2)): generated by KX1E, F with

KE = ¢°EK, KF = g %FK,

EF—FE= 5=
q9-q

» o/ = Oq(SU(2)): unitary corepresentation U = (Q —q*’y

v o«

» B = 04(5?) = Ug(t) < 04(SU(2)) (‘Podles sphere’).

)

» A = Uy(t) = C[iB] € Uy(su(2)) with iB = g~ Y2i(E — FK).

D(A, U ) = Uyg(s1(2,C)p)

D(B, K) = Ug(sl(2,R)).

16



The case of quantum sl[(2, R)

Casimir element

The Podles sphere #-algebra O,(S5?) admits generators X, Y, Z.

Then inside Uq(sl(2,R)) lives the central Casimir element

Q=ig X +(g—qgV)izB-iqY.

Using €, the irreducible SL,(2, R)-representations can be classified.

17



The case of quantum sl[(2, R)
Irreducible representations of quantum SL(2,R)
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