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Klein tunneling in graphene
Graphene is a 2D material made of a single-atom layer of carbon. In a tight
binding model of graphene, the dispersion relation, expanded to the second order
in |k |a, with the next to nearest neighbor hopping t

′
is given by

ελk = −3t
′

+ λ~vF k +
9a2

4
t
′
k2 − λ~vF k2a

4
cos(3φk ).

Then, at low energies and adding a potential term, the charge carriers are
modeled by the 2D Dirac equation

(σ · p + V)ψ(x , y) = (−iσ1∂x − iσ2∂y + V(x , y))ψ(x , y) = Eψ(x , y)

where
V(x , y) = σ0V0(x , y) + σ1V1(x , y) + σ2V2(x , y) + σ3V3(x , y).

Our first goal is to construct an electric potential barrier V0(x , y) with
omnidirectional perfect transmission at specific energy (super - Klein tunneling).
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Time-dependent susy transformations
It relies on the operator L that intertwines the operator H0, with an operator H1 that
represents the new quantum system,

LH0 = H1L.

Let us use it with a 1 + 1 Dirac operator H0ψ = (i∂t − iσ2∂z − V0(z, t))ψ = 0.
Susy is based on the choice of two vectors u1, u2 that are solutions of H0uj = 0.
We can use them to compose a matrix u = (u1,u2) that also satisfies

H0u = 0.

Once the matrix u is fixed, the operators L and H1 are

L = ∂z − uzu−1, H1 = H0 − i[σ2,uzu−1].

Given a solution ψ of H0ψ = 0, the spinor φ = Lψ, will be a solution of H1φ = 0.



Wick rotation
Let us have the initial equation in the following form,

Hψ = (i∂t − iσ2∂z − V(z, t))ψ = 0,

where the matrix potential V(z, t) is supposed to be Hermitian.
By using the following change of the coordinates

z = ix , ∂z = −i∂x , t = y , ∂t = ∂y .

then multiplying by σ3 from the left and making the rotation U = ei π4 σ1 , we get the
following 2D stationary equation for zero energy in terms of x and y ,

H̃(x , y) = (−iσ1∂x − iσ2∂y + Ṽ(x , y))ψ̃(x , y) = 0

with the potential term Ṽ(x , y) = Uσ3V(ix , y)U−1.



Wick rotation
A few comments are in order.
I This transformation can render the Dirac operator H̃ non-Hermitian in general.
I The transformation also makes profound changes into the character of the

potential term. With

V(z, t) = σ0V0(z, t) + σ1V1(z, t) + σ2V2(z, t) + σ3V3(z, t).

we get

Ṽ(x , y) = σ0V3(ix , y)− iσ1V2(ix , y) + σ2V0(ix , y)− iσ3V1(ix , y).

In particular, the mass term turns into the electrostatic potential.
I The Wick rotation describes the system at a single energy.



Example: Super-Klein tunneling

c1 = 2, c2 = 1 c1 = 0.2, c2 = 0.1 c1 = 0.04, c2 = 0.02
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Dirac structure beyond the linear approximation
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Figure: Graphene hexagonal lattice with
nearest (t) and next-to-nearest (t ′) hopping
energies.

Graphene’s dispersion relation,
expanded to the second order in |k |a,
with the next to nearest neighbor
hopping t

′
is given by

ελk = −3t
′

+ λ~vF k +
9a2

4
t
′
k2

−λ~vF k2a
4

cos(3φk ).

Our second goal is to investigate the
effect of next-to-the-nearest atom
hopping on Klein tunneling in graphene.



Dirac structure beyond the linear approximation
The Hamiltonian operator becomes:

Ĥ = vF [σ · p̂ − α(σ · p̂)(σ · p̂)] = vF

[
σ · p̂ − αp̂2σ0

]
.

To study Klein tunnelling, we consider free waves scattering on a n − p − n
junction. Thus, an electric static barrier potential V (x) = V0Θ(x)Θ(D − x), where
D is the potential length, is introduced in the GDS resulting in

Ĥ Ψ(r) =
{

vF

[
−i~σ · ∇+ α~2 σ0 ∇2

]
+ V (x)

}
Ψ(r)

= EG Ψ(r).



Dirac structure beyond the linear approximation
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Figure: Left: Transmission probability T vs TG. Center: Probability density in the x − y
plane of the superposition of two plane waves, Φ = Ψ(k0,0) + Ψ(k0, π/3), considering only
the linear regime. Right: ||Φ||2 using the Generalized Dirac structure.



Dirac structure beyond the linear approximation
The dispersion relation for massless particles in many quantum gravity models is
of the form εgrav,p = F (p), where F is usually a polynomial. One particular model
has been extensively studied in which the dispersion relation is given by

εgrav,p = c1p + c2p2,

where c1,2 are some coefficients.
We make a connection between graphene and quantum gravity models by
neglecting the trigonal warping term. The energy becomes

ελp = vF

(
λp − αp2

)
,

where α = 3
2
|t ′ |
t

a
~ > 0. Obviously, this has the same form as εgrav,p with the

connection provided by the mapping c1 → vFλ and c2 → −vFα.



Dirac structure beyond the linear approximation
The mathematical structure of graphene is consistent with the framework of the
generalized uncertainty principle (GUP). In this framework, one postulates the
existence of generalized position and momentum operators X̂ , P̂ that obey a
modified commutation relation:

[X̂i , P̂j ] = i~

[
δij − α

(
δij P̂ +

P̂i P̂j

P̂

)]
.

These relations imply a minimal measurable length (∆x)min ∼ ~α and a maximal
measurable momentum (∆p)min ∼ α−1.
In graphene, the generalized commutation relations is fullfilled by

X̂ = x̂ and P̂ = p̂(1− αp̂),

with [x̂i , p̂j ] = i~δij . The operators X̂ , P̂ can be interpreted as the high-energy
position and momentum, respectively, while x̂ , p̂ are their low-energy counterparts.



Summary
I We presented a technique to obtain a truly 2D electrostatic barrier that

presents the Super-Klein tunneling phenomenon. The incident wave bounces
on the barrier. However, for an specific energy, the interference is such that
the reflected wave gets completely annihilated and the waves incoming from
any direction get perfectly transmitted up to a phase shift.

I We studied the effect of next-to-the-nearest atom hopping on quantum
transport in graphene. The effective quantum dynamics obtained was used to
obtain an emergent generalized Dirac structure, which captured the effects of
discrete topology and which is reminiscent of Lorentz-breaking quantum
gravity models.

I It was proposed that such effects can be tested by measuring transmittance
through n − p − n graphene junctions using a pump-probe experiment.

I Graphene can be used as an analogue for Lorentz violating phenomena,
which remain very elusive in high-energy particle physics experiments.
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