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Bogdan Mielnik and Geodesics

He studied geodesics of the Schwarzschild metric in 1961, as part of his PhD
adviced by Jerzy Plebañski. This pioneer work is cited in Gravitation by MTW.
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Gab = Rab −
1

2
gabR = 8πTab,

Spacetime with two Killing vectors, ∂τ , ∂σ,
Stationary and axisymmetric (including spherical symmetry)

gµν =


gtt(r) 0 0 0
0 grr(r) 0 0
0 0 gθθ(r) = r2 0
0 0 0 gφφ(r, θ) = r2 sin2 θ

 ,

ds2 = gabdx
adxb = −f (r)dt2 + f (r)−1dr2 + r2

(
dθ2 + sin2 θdφ2

)
,

f (r) = 1− 2M

r
,
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Bogdan Mielnik drawings

These are the potential curves of the radial motion of a test particle near a Sch-
warzschild BH. He was an artist illustrating his ideas (not the best example).
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Geodesics in curved spacetimes
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Jerzy’s solutions of Einstein Equations

During the 70’s Jerzy worked (among other things) on finding exact solutions
of Einstein-Maxwell Equations. He derived the most general solution of type
D metrics with 7 parameters, particular examples are Schwarzschild and Kerr
metrics.
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Test particle trajectories

The parametric curve: t(τ ), x(τ ), y(τ ), z(τ ), that is solution of

d2xα

dτ 2
+ Γα

βγ

(
dxβ

dτ

)(
dxγ

dτ

)
= 0, ẍα + Γα

βγẋ
βẋγ = 0,

These are 4 EQUATIONS; the eq. for t(τ ) is given by

ẗ + Γt
ttṫ

2 + Γt
xxẋ

2 + Γt
yyẏ

2 + Γt
zzż

2 +

2
{
Γt
xtẋṫ + Γt

ytẏṫ + Γt
ztżṫ + Γt

xyẋẏ + Γt
xzẋż + Γt

yzẏż
}
= 0,

and so on for x(τ ), y(τ ) and z(τ ). And remember that

Γa
bc =

1

2
gad(∂bgdc + ∂cgdb − ∂dgbc),
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We need symmetries to solve the set of geodesic equations
Two cyclic coordinates t, φ, i.e. gµν(r, θ).
⇒ spacetime with two Killing vectors, ∂t, ∂φ, stationary and axisymmetric,
Conserved quantities:
Stationarity =⇒ pt = E
axialsymm. =⇒ pφ = L
Besides the conservation of the mass particle µ ,

gαβp
αpβ + µ2 = 0, pα = µuα = µ

dxα

dτ
,

gtt(p
t)2 + gφφ(p

φ)2 + grr(p
r)2 + gθθ(p

θ)2 = −µ2,

(1)

Schwarzschild case:

ṙ2 = E2 −
(
1− 2M

r

)(
µ2 +

L2

r2

)
, θ =

π

2
,

τ =

∫
dτ =

∫
dr√

E2 −
(
1− 2M

r

) (
µ2 + L2

r2

),
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Petrov Type D metrics

Algebraic symmetries of the Weyl tensor,

1

2
Cab

mnχ
mn = λχab,

The multiplicity of the eigenbivectors indicates an algebraic symmetry of the
Weyl tensor.
The eigenbivectors are associated with the null vectors called Principal Null
Directions (PND);
The Petrov classification are the six possible types of degeneracy of the PND.
I: 4 different PND; II: 1 double and two simple PND; D: two double PND
III; IIII; O, Weyl= 0, conformally flat space.
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The stationary and axisymmetric type D metric

g = Ω2

[
Σ

P(x)
dx2 +

P(x)

Σ
(dτ + y2dφ)2 +

Σ

Q(y)
dy2 − Q(y)

Σ
(dτ − x2dφ)2

]
,

Ω = 1− xy, Σ = x2 + y2

in a null tetrad {e1, e2, e3, e4} we align (e3, e4) with the PND
To couple with an electromagnetic field

T em
ab =

1

4π
(gcdFacFbd +

1

4
gabFcdF

cd),

you should align the eigenvectors of Fab with e3, e4;
then the only nonvanishing componentes of Fab are
F12 = E and F34 = B
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The geodesic eqs. in a stationary and axisymmetric type D metric

g = Ω2

[
Σ

P(x)
dx2 +

P(x)

Σ
(dτ + y2dφ)2 +

Σ

Q(y)
dy2 − Q(y)

Σ
(dτ − x2dφ)2

]
,

Ω = 1− xy, Σ = x2 + y2

The geodesic eqs. for the coordinates x and y,

P(x)

(
dU

dx

)2

+
1

P(x)

[
x2cτ − xg + cσ

]
+ x2µ2 = C0,

Q(y)

(
dV

dy

)2

− 1

Q(y)

[
y2cτ − ye− cσ

]
+ y2µ2 = −C0,

(2)

being C0 the separation constant, related to the conservation of the total angular
momentum (BH + test particle)
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Hidden symmetries

Not in the spacetime but in the phase space.
EXAMPLE: A rotating BH, Kerr metric characterized by two parameters:
BH mass, m, and BH angular momentum, J = am,

ds2 = −∆

Σ
(dt− a sin2 θdφ)2 +

sin2

Σ
[(r2 + a2)dφ− adt]2 +

Σ

∆
dr2 + Σdθ2,

∆ = r2 + a2 − 2mr, Σ = r2 + a2 cos2 θ,

B. Carter (1968) found that Kerr metric admits a fourth constant of motion, that
allows to integrate the FOUR coordinates, t(τ ), x(τ ), y(τ ), z(τ )
This fourth constant of motion is related to the existence of the KT, Qbc, that
satisfies: ∇(aQbc) = 0,
it is a kind of generalization of the Killing vector, ∇(aKb) = 0, and the CON-
SERVED QUANTITY is given by the contraction of the KT with the test parti-
cle 4-momentum

Qabpapb = C, gabpapb = −µ2,

C = p2θ + cos2 θ

[
a2(µ2 − E2) +

(
Lz

sin θ

)2
]
,

KT is a symmetric tensor
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The PD metric (7-parameter) admits the conformal generalization of the
Killing-Yano tensor (KYT) [Kubiznak, PRD 2007],

∇µKαβ = ∇[µKαβ] + 2gµ[αξβ],

ξβ =
1

3
∇µK

µ
β,

ξβ = 0 then the CKYT is either a KY or a KT; If K is the CKYT of g then
Ω3K is the CKYT of Ω2g
The (C)KYT implies the (C)KT,

∇(µQαβ) = g(µαQβ),

Qαβ = KαsKβ
s,

Associated to the KT is the conserved quantity, Qαβp
αpβ = C. The metric itself

is a KT, and the conserved quantity is the test particle mass
gαβp

αpβ = −µ2.
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The KT of the stationary and axisymmetric type D metric

g = Ω2

[
Σdx2

P(x)
+

P(x)

Σ
(dτ + y2dφ)2 +

Σdy2

Q(y)
− Q(y)

Σ
(dτ − x2dφ)2

]
,

Ω = 1− xy, Σ = x2 + y2

can also be obtained multiplying the antisymmetric Killing-Yano tensor,

k = Ω3
[
ωxdy ∧ (dτ − ωx2dφ) + ydx ∧ (ωdτ + y2dφ)

]
(3)

h = ∗k is also a KY tensor; k and h are CKYT for the Plebañski metric.
The KT is given by Qab = YacY

c
b with Y = k or Y = h

KT are as well responsible for the separability in typeD spaces of several eqs.
like H-J, KG, Dirac,...
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Conserved Quantities

For massless particle (µ = 0), with conformal factor Ω = 1− νxy
The geodesic equations integrate

ṗ2 = −CP
∆2

− (Ep2ω)2

∆2
,

q̇2 =
CQ
∆2

− (Eq2 − Lzω)
2

∆2
,

∆ = Ω2Σ, Ω = 1− αpq,

(Qk)µνẋ
µẋν = −C,

(Qh)µνẋ
µẋν = −C,

(Qhk)µνẋ
µẋν = 0,
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Conserved Quantities

For massive particle, without conformal factor Ω = 1
The geodesic equations integrate

ṗ2 =
P
Σ2

(
C + µ2p2ω2

)
− (Ep2ω)2

Σ2
,

q̇2 =
Q
Σ2

(
C − µ2q2

)
− (Eq2 − Lzω)

2

Σ2
,

Σ = p2 + q2,

(Qk)µνẋ
µẋν = −C,

(Qh)µνẋ
µẋν = −C − µ2(x2ω2 − y2),

(4)
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CONCLUSION:
We confirm that the conserved quantity in the type D metric (PD) can be derived
from the contraction of the KT with the 4-momentum of the test particle.

THANK YOU FOR ATTENDING!


