## Pedal coordinates, Dipole drive orbits

 and other force problemsBiałystok 24. 6. 2022 Petr Blaschke

## Tennis racket problem



## Tennis racket problem

Find a curve of a given length fixed on both ends that sweeps maximal volume when rotated around the $x$-axis.


## Tennis racket problem

Find a curve of a given length fixed on both ends that sweeps maximal volume when rotated around the $x$-axis.


## Tennis racket problem

Find a curve of a given length fixed on both ends that sweeps maximal volume when rotated around the $x$-axis.


Beltrami identity:

$$
\pi y^{2}+\lambda \sqrt{1+y^{\prime 2}}-\lambda \frac{y^{\prime 2}}{\sqrt{1+y^{\prime 2}}}=C
$$



Beltrami identity:

$$
\pi y^{2}+\lambda \sqrt{1+y^{\prime 2}}-\lambda \frac{y^{\prime 2}}{\sqrt{1+y^{\prime 2}}}=C
$$

$$
\sqrt{\frac{\lambda-C}{\pi}} F\left(y \sqrt{\frac{\pi}{C+\lambda}}, k\right)-\sqrt{\frac{\lambda-C}{\pi}} E\left(y \sqrt{\frac{\pi}{C+\lambda}}, k\right)+C y=x-d
$$

$$
y(-1)=y(1)=0, \quad \int_{-1}^{1} \sqrt{1+y^{\prime 2}} \mathrm{~d} x=l
$$

Beltrami identity:

$$
\pi y^{2}+\lambda \sqrt{1+y^{\prime 2}}-\lambda \frac{y^{\prime 2}}{\sqrt{1+y^{\prime 2}}}=C
$$

$$
\sqrt{\frac{\lambda-C}{\pi}} F\left(y \sqrt{\frac{\pi}{C+\lambda}}, k\right)-\sqrt{\frac{\lambda-C}{\pi}} E\left(y \sqrt{\frac{\pi}{C+\lambda}}, k\right)+C y=x-d
$$

Euler-Lagrange equation:

$$
\frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}=\frac{2 \pi}{\lambda} y .
$$

Beltrami identity:

$$
\pi y^{2}+\lambda \sqrt{1+y^{\prime 2}}-\lambda \frac{y^{\prime 2}}{\sqrt{1+y^{\prime 2}}}=C
$$

$$
\sqrt{\frac{\lambda-C}{\pi}} F\left(y \sqrt{\frac{\pi}{C+\lambda}}, k\right)-\sqrt{\frac{\lambda-C}{\pi}} E\left(y \sqrt{\frac{\pi}{C+\lambda}}, k\right)+C y=x-d
$$

Euler-Lagrange equation:
$\kappa \propto y$

$$
\frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}=\frac{2 \pi}{\lambda} y .
$$

Beltrami identity:

$$
\sqrt{\frac{\lambda-C}{\pi}} F\left(y \sqrt{\frac{\pi}{C+\lambda}}, k\right)-\sqrt{ }
$$

Euler-Lagrange equation:

$$
\kappa \propto y
$$



Tennis r:





## Pedal <br> coordinates

## Coordinates



## Line



## Line

$$
a x+b y+c=0 .
$$

0

Line

$$
a x+b y+c=0 .
$$

$$
r=-\frac{c}{a \cos \varphi+b \sin \varphi}
$$

0

## Line

$$
a x+b y+c=0 .
$$

$$
r=-\frac{c}{a \cos \varphi+b \sin \varphi}
$$

$$
p=\alpha
$$

## Circle



## Circle




## Point

0

$$
r=1 a|a|, \quad x=a_{1}, \quad y=a_{2}
$$

## Involute of a circle



## Involute of a circle



$$
x=R(\cos \alpha+\alpha \sin \alpha), \quad y=R(\sin \alpha-\alpha \cos \alpha) .
$$

$$
r=\frac{R}{\cos \alpha}, \quad \varphi=\tan \alpha-\alpha
$$

$$
p_{c}=R .
$$

Witch of Agnesi


## Witch of Agnesi

## Witch of Agnesi

$$
y=\frac{1}{1+x^{2}}
$$

$$
r\left(r^{2}+1\right) \sin \varphi-r^{3} \sin ^{3} \varphi=1
$$

$$
1 / 36 \frac{C^{2}}{p^{2}}+1 / 3 \frac{p^{2}-2 r^{2}+2}{p^{2}}+4 \frac{r^{4}+4 p^{2}-2 r^{2}+1}{p^{2} C^{2}}+192 \frac{r^{2}\left(r^{2}+1\right)^{2}(p-r)(p+r)}{p^{2} C^{3} B}-8 \frac{\left(r^{2}+1\right)^{2}(p-r)(p+r)}{p^{2} C B}
$$

$$
-1152 \frac{\left(r^{2}+1\right)^{3}(r-1)(r+1)(p-r)(p+r)}{p^{2} C^{5} B}-576 \frac{r^{2}\left(r^{2}+1\right)^{4}(p-r)(p+r)}{p^{2} C^{4} B^{2}}-82944 \frac{r^{2}\left(r^{2}+1\right)^{6}(p-r)(p+r)}{p^{2} C^{8} B^{2}}
$$

$$
+13824 \frac{r^{2}\left(r^{2}+1\right)^{5}(p-r)(p+r)}{p^{2} C^{6} B^{2}}=0
$$

$$
C:=\sqrt[3]{12 B-108}, \quad B:=\sqrt{-12 r^{6}-36 r^{4}-36 r^{2}+69}
$$

## Transformations of curves




## Trancfnrmatinnc $\cap f$ curvac

$$
\begin{array}{lll}
x & \rightarrow & x-\frac{\dot{x} x+\dot{y} y}{x^{2}+y^{2}} \dot{x} \\
y & \rightarrow & y-\frac{\dot{x} x+\dot{y} y}{x^{2}+y^{2}} \dot{y} .
\end{array}
$$



## Trancfnrmatinne of curvac



## Trancfnrmatinne of curvac

$$
\begin{aligned}
& f\left(p, r, p_{c}\right)=0 \quad \xrightarrow{S_{\alpha}} \quad f\left(\alpha p, \alpha r, \alpha p_{c}\right)=0, \\
& f\left(p, r, p_{c}\right)=0 \quad \xrightarrow{P} \quad f\left(r, \frac{r^{2}}{p}, \frac{r}{p} p_{c}\right)=0, \\
& f\left(p, r, p_{c}\right)=0 \quad \xrightarrow{I_{R}} \quad f\left(\frac{R p}{r^{2}}, \frac{R}{r}, \frac{R}{r^{2}} p_{c}\right)=0, \\
& f\left(p, r^{2}, p_{c}\right)=0 \quad \xrightarrow{E_{c}} \quad f\left(p-c, r^{2}-2 p c+c^{2}, p_{c}\right)=0, \\
& f\left(\frac{1}{p^{2}}, r ; \frac{r^{2}}{p^{2}}\right)=0 \quad \xrightarrow{J_{\alpha}} \quad f\left(r^{2-2 \alpha}\left(\frac{\alpha^{2}}{p^{2}}+\frac{1-\alpha^{2}}{r^{2}}\right), r^{\alpha} ; \alpha^{2} \frac{r^{2}}{p^{2}}+\alpha^{2}-1\right)=0, \\
& f\left(\frac{1}{p^{2}}, r\right)=0 \quad \xrightarrow{H_{k_{k}}} \quad f\left(\frac{k^{2}}{p^{2}}-\frac{k^{2}-1}{r^{2}}, r\right)=0, \\
& \frac{\left(L-G\left(r^{2}\right)\right)^{2}}{p^{2}}=F\left(r^{2}\right)+c \quad \xrightarrow{R_{\omega}} \quad \frac{\left(L-G\left(r^{2}\right)+\omega r^{2}\right)^{2}}{p^{2}}=F\left(r^{2}\right)+\omega^{2} r^{2}-2 G \omega+c+2 \omega L,
\end{aligned}
$$

## Evolute



## Evolute



## Evolute

Proposition 2. The evolute $E(\gamma)$ of a curve $\gamma$ which satisfies

$$
f\left(p_{c}, p_{c} p_{c}^{\prime},\left(p_{c} p_{c}^{\prime}\right)^{\prime} p_{c}, \ldots,\left(p_{c} \partial_{p}\right)^{n} p\right)=0
$$

where $n>1$, satisfies

$$
f\left(p, p_{c}, p_{c} p_{c}^{\prime},\left(p_{c} p_{c}^{\prime}\right)^{\prime} p_{c}, \ldots,\left(p_{c} \partial_{p}\right)^{n-1} p\right)=0
$$

In other words

$$
f\left(p_{c}, p_{c} p_{c}^{\prime}, \ldots,\left(p_{c} \partial_{p}\right)^{n} p\right)=0, \quad \xrightarrow{E} \quad f\left(p, p_{c}, p_{c} p_{c}^{\prime}, \ldots,\left(p_{c} \partial_{p}\right)^{n-1} p\right)=0 .
$$



## Contrapedal



## Contrapedal



Corollary 2.

$$
f\left(p_{c}, p_{c} p_{c}^{\prime}, \ldots,\left(p_{c} \partial_{p}\right)^{n} p\right)=0, \quad P_{\mathrm{c}}:=P E \quad P\left(f\left(p, p_{c}, p_{c} p_{c}^{\prime}, \ldots,\left(p_{c} \partial_{p}\right)^{n-1} p\right)=0\right),
$$

or using Proposition 1:

$$
f\left(p_{c}, p_{c} p_{c}^{\prime}, \ldots,\left(p_{c} \partial_{p}\right)^{n} p\right)=0 \quad \xrightarrow{P_{c}} \quad f\left(r,\left|r_{\varphi}^{\prime}\right|, r_{\varphi}^{\prime \prime}, \ldots, r_{\varphi}^{(n-1)}\right)=0 .
$$

Equivalently, we can say:

$$
f\left(\left|r_{\varphi}^{\prime}\right|, r_{\varphi}^{\prime \prime}, \ldots, r_{\varphi}^{(n)}\right)=0 \quad \xrightarrow{P E P^{-1}} \quad f\left(r,\left|r_{\varphi}^{\prime}\right|, r_{\varphi}^{\prime \prime}, \ldots, r_{\varphi}^{(n-1)}\right)=0 .
$$



Catacaustic


## Catacaustic



## Force problems



## Force problems

$$
\begin{aligned}
& \ddot{x}=F^{\prime}\left(x^{2}+y^{2}\right) x-2 G^{\prime}\left(x^{2}+y^{2}\right) \dot{y} \\
& \ddot{y}=F^{\prime}\left(x^{2}+y^{2}\right) y+2 G^{\prime}\left(x^{2}+y^{2}\right) \dot{x} .
\end{aligned}
$$



## Force problems

$$
\begin{aligned}
& \ddot{x}=F^{\prime}\left(x^{2}+y^{2}\right) x-2 G^{\prime}\left(x^{2}+y^{2}\right) \dot{y} \\
& \ddot{y}=F^{\prime}\left(x^{2}+y^{2}\right) y+2 G^{\prime}\left(x^{2}+y^{2}\right) \dot{x} .
\end{aligned}
$$

$$
r r^{\prime \prime}-2 r^{\prime 2}+2 G^{\prime}\left(r^{2}\right) r^{\prime 2}-r^{2}+\frac{2 r^{4} G^{\prime}\left(r^{2}\right)}{\left(G\left(r^{2}\right)+L\right)}=\frac{F^{\prime}\left(r^{2}\right) r^{6}}{(G+L)^{2}}
$$

## Force problems

$$
\begin{aligned}
& \ddot{x}=F^{\prime}\left(x^{2}+y^{2}\right) x-2 G^{\prime}\left(x^{2}+y^{2}\right) \dot{y} \\
& \ddot{y}=F^{\prime}\left(x^{2}+y^{2}\right) y+2 G^{\prime}\left(x^{2}+y^{2}\right) \dot{x}
\end{aligned}
$$

$$
r r^{\prime \prime}-2 r^{\prime 2}+2 G^{\prime}\left(r^{2}\right) r^{\prime 2}-r^{2}+\frac{2 r^{4} G^{\prime}\left(r^{2}\right)}{\left(G\left(r^{2}\right)+L\right)}=\frac{F^{\prime}\left(r^{2}\right) r^{6}}{(G+L)^{2}}
$$

$$
\frac{\left(L-G\left(r^{2}\right)\right)^{2}}{p^{2}}=F\left(r^{2}\right)+c
$$

## Force problems generalized

$$
\begin{array}{llrl}
\mathrm{x}:=(x, y), & \mathrm{x}^{\perp}:=(-y, x), & \mathrm{x} \cdot \mathrm{y}^{\perp}=-\mathrm{x}^{\perp} \cdot \mathrm{y}, \quad\left(\mathrm{x}^{\perp}\right)^{\perp}=-\mathrm{x} . \\
p:=\frac{\mathrm{x}^{\perp} \cdot \dot{\mathrm{x}}}{|\dot{\mathrm{x}}|}, & p_{c}:=\frac{\mathrm{x} \cdot \dot{\mathrm{x}}}{|\dot{\mathrm{x}}|}, & \kappa:=\frac{\dot{\mathrm{x}}^{\perp} \cdot \ddot{\mathrm{x}}}{|\dot{\mathrm{x}}|^{3}} \\
\ddot{\mathrm{x}}=\frac{\partial_{t}(|\dot{\mathrm{x}}|)}{p_{c}} \mathrm{x}+\frac{\partial_{t}(|\dot{\mathrm{x}}| p)}{p_{c}|\dot{\mathrm{x}}|} \dot{\mathrm{x}}^{\perp}, & \mathrm{x}^{\perp}=\frac{p}{p_{c}} \mathrm{x}+\frac{r^{2}}{p_{c}|\dot{\mathrm{x}}|} \dot{\mathrm{x}}^{\perp}, & \dot{\mathrm{x}}=\frac{|\dot{\mathrm{x}}|}{p_{c}} \mathrm{x}+\frac{p}{p_{c}} \dot{\mathrm{x}}^{\perp} .
\end{array}
$$

## Force problems generalized

$$
\begin{array}{llr}
\ddot{\mathrm{x}}=f \mathrm{x}+g \dot{\mathrm{x}}^{\perp}, & \frac{\left(\int g r \mathrm{~d} r\right)^{2}}{p^{2}}=2 \int f r \mathrm{~d} r, \\
\mathrm{x}:=(x, y), & \mathrm{x}^{\perp}:=(-y, x), & \mathrm{x} \cdot \mathrm{y}^{\perp}=-\mathrm{x}^{\perp} \cdot \mathrm{y}, \\
p:=\frac{\mathrm{x}^{\perp} \cdot \dot{\mathrm{x}}}{|\dot{\mathrm{x}}|}, & p_{c}:=\frac{\mathrm{x} \cdot \dot{\mathrm{x}}}{|\dot{\mathrm{x}}|}, & \kappa:=\frac{\dot{\mathrm{x}}^{\perp} \cdot \ddot{\mathrm{x}}}{|\dot{\mathrm{x}}|^{3}} \\
\ddot{\mathrm{x}}=\frac{\partial_{t}(|\dot{\mathrm{x}}|)}{p_{c}} \mathrm{x}+\frac{\partial_{t}(|\dot{\mathrm{x}}| p)}{p_{c}|\dot{\mathrm{x}}|} \dot{\mathrm{x}}^{\perp}, & \mathrm{x}^{\perp}=\frac{p}{p_{c}} \mathrm{x}+\frac{r^{2}}{p_{c}|\dot{\mathrm{x}}|} \dot{\mathrm{x}}^{\perp}, & \dot{\mathrm{x}}=\frac{|\dot{\mathrm{x}}|}{p_{c}} \mathrm{x}+\frac{p}{p_{c}} \dot{\mathrm{x}}^{\perp} .
\end{array}
$$

## Force problems generalized

$$
\begin{array}{llr}
\ddot{\mathrm{x}}=f \mathrm{x}+g \dot{\mathrm{x}}^{\perp}, & \frac{\left(\int g r \mathrm{~d} r\right)^{2}}{p^{2}}=2 \int f r \mathrm{~d} r, \\
\mathrm{x}:=(x, y), & \mathrm{x}^{\perp}:=(-y, x), & \mathrm{x} \cdot \mathrm{y}^{\perp}=-\mathrm{x}^{\perp} \cdot \mathrm{y}, \\
p:=\frac{\mathrm{x}^{\perp} \cdot \dot{\mathrm{x}}}{|\dot{\mathrm{x}}|}, & p_{c}:=\frac{\mathrm{x} \cdot \dot{\mathrm{x}}}{|\dot{\mathrm{x}}|}, & \kappa:=\frac{\dot{\mathrm{x}}^{\perp} \cdot \ddot{\mathrm{x}}}{\mid \dot{\mathrm{x}})^{3}} \\
\ddot{\mathrm{x}}=\frac{\partial_{t}(|\dot{\mathrm{x}}|)}{p_{c}} \mathrm{x}+\frac{\partial_{t}(|\dot{\mathrm{x}}| p)}{p_{c}|\dot{\mathrm{x}}|} \dot{\mathrm{x}}^{\perp}, & \mathrm{x}^{\perp}=\frac{p}{p_{c}} \mathrm{x}+\frac{r^{2}}{p_{c}|\dot{\mathrm{x}}|} \dot{\mathrm{x}}^{\perp}, & \dot{\mathrm{x}}=\frac{|\dot{\mathrm{x}}|}{p_{c}} \mathrm{x}+\frac{p}{p_{c}} \dot{\mathrm{x}}^{\perp} .
\end{array}
$$

$$
\ddot{\mathrm{x}}=f \frac{\mathrm{x}}{|\dot{\mathrm{x}}|^{\alpha}}+g \frac{\dot{\mathrm{x}}^{\perp}}{|\dot{\mathrm{x}}|^{\beta}}, \quad\left(\frac{(1+\beta) \int g p^{\beta} r \mathrm{~d} r}{p^{1+\beta}}\right)^{2+\alpha}=\left((2+\alpha) \int f r \mathrm{~d} r\right)^{1+\beta}, \quad \begin{aligned}
& \alpha \neq-2 \\
& \beta \neq-1
\end{aligned}
$$

Calculus of variation

Proposition 1. Any extremal curve of the functional:

$$
\mathcal{L}[r]:=\int_{s_{0}}^{s_{1}} f(r) \mathrm{d} s
$$

Proposition 1. Any extremal curve of the functional:

$$
\mathcal{L}[r]:=\int_{s_{0}}^{s_{1}} f(r) \mathrm{d} s
$$

where

$$
\mathrm{d} s:=\sqrt{r_{\varphi}^{\prime 2}+r^{2}} \mathrm{~d} \varphi=\sqrt{1+{y_{x}^{\prime}}^{2}} \mathrm{~d} x
$$

is the arc-length measure, has pedal equation

Proposition 1. Any extremal curve of the functional:

$$
\mathcal{L}[r]:=\int_{s_{0}}^{s_{1}} f(r) \mathrm{d} s
$$

where

$$
\mathrm{d} s:=\sqrt{r_{\varphi}^{\prime 2}+r^{2}} \mathrm{~d} \varphi=\sqrt{1+{y_{x}^{\prime}}^{2}} \mathrm{~d} x
$$

is the arc-length measure, has pedal equation

$$
\begin{equation*}
\frac{L}{p}=f(r), \tag{13}
\end{equation*}
$$

Proposition 1. Any extremal curve of the functional:

$$
r\lceil r\rceil \cdot \int_{f(r) d e}^{s_{1}}
$$

REMARK 3. The constant $L$ is actually a conserved quantity associated to the rotational symmetry of $\mathcal{L}$. The pedal equation (13) is, in fact, a conservation law.
where

$$
\mathrm{d} s:=\sqrt{{r_{\varphi}^{\prime}}_{\varphi}^{2}+r^{2}} \mathrm{~d} \varphi=\sqrt{1+y_{x}^{\prime 2}} \mathrm{~d} x
$$

is the arc-length measure, has pedal equation

$$
\begin{equation*}
\frac{L}{p}=f(r), \tag{13}
\end{equation*}
$$

Proposition 1. Any extremal curve of the functional:

$$
\Gamma\lceil r\rceil \cdot \int_{f(r) d e}^{s_{1}}
$$

REMARK 3. The constant $L$ is actually a conserved quantity associated to the rotational symmetry of $\mathcal{L}$. The pedal equation (13) is, in fact, a conservation law.
where
is the arc-length 1

$$
\mathcal{L}[r]:=\int_{\varphi_{0}}^{\varphi_{1}} f\left(r, r_{\varphi}^{\prime}, r_{\varphi}^{\prime \prime}, \ldots, r_{\varphi}^{(n)}\right) \mathrm{d} \varphi
$$

$$
=\sqrt{1+y_{x}^{\prime 2}} \mathrm{~d} x
$$

(13)

## Brachistochone

$$
\mathrm{d} t=\frac{\mathrm{d} s}{|\dot{\mathbf{x}}|} \text {, histochone }
$$

$$
\mathrm{d} t=\frac{\mathrm{d} s}{|\dot{\mathbf{x}}|} \text {, histochone }
$$

$$
E=\frac{1}{2}|\dot{\mathbf{x}}|^{2}+U
$$

$$
\mathrm{d} t=\frac{\mathrm{d} s}{|\dot{\mathrm{x}}|} \text {, } \text { histochone }
$$

$$
E=\frac{1}{2}|\dot{\mathbf{x}}|^{2}+U
$$

$$
|\dot{\mathrm{x}}|=\sqrt{2 E-2 U}
$$



$$
\mathrm{d} t=\frac{\mathrm{d} s}{|\dot{\mathrm{x}}|} \text {, } \text {, histochone }
$$

$$
E=\frac{1}{2}|\dot{\mathbf{x}}|^{2}+U,
$$

$$
|\dot{\mathrm{x}}|=\sqrt{2 E-2 U}
$$

$$
\mathcal{L}:=\int_{t_{0}}^{t_{1}} \mathrm{~d} t=\int_{s_{0}}^{s_{1}} \frac{1}{\sqrt{2 E-2 U}} \mathrm{~d} s .
$$

$$
\mathrm{d} t=\frac{\mathrm{d} s}{|\dot{\mathrm{x}}|} \text {, histochone }
$$

$$
E=\frac{1}{2}|\dot{\mathbf{x}}|^{2}+U,
$$

$$
|\dot{\mathrm{x}}|=\sqrt{2 E-2 U}
$$

$$
\mathcal{L}:=\int_{t_{0}}^{t_{1}} \mathrm{~d} t=\int_{s_{0}}^{s_{1}} \frac{1}{\sqrt{2 E-2 U}} \mathrm{~d} s
$$

$$
U=-g y \text {, }
$$

$$
\mathrm{d} t=\frac{\mathrm{d} s}{|\dot{\mathrm{x}}|} \text {, histochone }
$$



$$
\sqrt{2 E-2 U} .
$$



## Gravity train

## Gravity train



## Gravity train

$$
\mathcal{L}:=\int_{t_{0}}^{t_{1}} \mathrm{~d} t=\int_{s_{0}}^{s_{1}} \frac{1}{\sqrt{2 E-2 U}} \mathrm{~d} s
$$



## Gravity train

$$
\mathcal{L}:=\int_{t_{0}}^{t_{1}} \mathrm{~d} t=\int_{s_{0}}^{s_{1}} \frac{1}{\sqrt{2 E-2 U}} \mathrm{~d} s
$$



## Gravity train

$$
\mathcal{L}:=\int_{t_{0}}^{t_{1}} \mathrm{~d} t=\int_{s_{0}}^{s_{1}} \frac{1}{\sqrt{2 E-2 U}} \mathrm{~d} s
$$



## Gravity train

$$
\mathcal{L}:=\int_{t_{0}}^{t_{1}} \mathrm{~d} t=\int_{s_{0}}^{s_{1}} \frac{1}{\sqrt{2 E-2 U}} \mathrm{~d} s
$$



## Gravity train

$$
\mathcal{L}:=\int_{t_{0}}^{t_{1}} \mathrm{~d} t=\int_{s_{0}}^{s_{1}} \frac{1}{\sqrt{2 E-2 U}} \mathrm{~d}
$$

$$
f \propto \frac{1}{\sqrt{R^{2}-r^{2}}} .
$$

$$
\frac{L}{p}=\frac{1}{\sqrt{R^{2}-r^{2}}},
$$



Central Brachistochone

## Central Brachistochone



## Central Brachistochone



## $T=-\frac{M}{r}$

## Central Brachistochone

$$
\mathcal{L}:=\int_{t_{0}}^{t_{1}} \mathrm{~d} t=\int_{s_{0}}^{s_{1}} \frac{1}{\sqrt{2 E-2 U}} \mathrm{~d} s
$$

## $T=-\frac{M}{r}$

$$
\mathcal{L}=\int_{s_{0}}^{s_{1}} \frac{1}{\sqrt{\frac{2 M}{r}-\frac{2 M}{r_{0}}}} \mathrm{~d} s,
$$

## Central Brachistochone

$$
\mathcal{L}:=\int_{t_{0}}^{t_{1}} \mathrm{~d} t=\int_{s_{0}}^{s_{1}} \frac{1}{\sqrt{2 E-2 U}} \mathrm{~d} s
$$

## $U=-\frac{M}{r}$

$$
\frac{L}{p}=\frac{1}{\sqrt{\frac{2 M}{r}-\frac{2 M}{r_{0}}}}
$$

## Central Brachistochone

$$
\mathcal{L}:=\int_{t_{0}}^{t_{1}} \mathrm{~d} t=\int_{s_{0}}^{s_{1}} \frac{1}{\sqrt{2 E-2 U}} \mathrm{~d} s
$$

## $U=-\frac{M}{r}$

$$
\frac{L}{p}=\frac{1}{\sqrt{\frac{2 M}{r}-\frac{2 M}{r_{0}}}}
$$

$$
\left(\frac{L}{p}\right)^{-2}=\frac{2 M}{r}-\frac{2 M}{r_{0}}
$$

## Central Brachistochone

$$
\mathcal{L}:=\int_{t_{0}}^{t_{1}} \mathrm{~d} t=\int_{s_{0}}^{s_{1}} \frac{1}{\sqrt{2 E-2 U}} \mathrm{~d} s .
$$

## $U=-\frac{M}{r}$

$$
\frac{L}{p}=\frac{1}{\sqrt{\frac{2 M}{r}-\frac{2 M}{r_{0}}}}
$$

$$
\begin{aligned}
& \mathcal{L}= \int_{s_{0}}^{s_{1}} \frac{1}{\sqrt{\frac{2 M}{r}-\frac{2 M}{r_{0}}}} \mathrm{~d} s, \\
& \ddot{\mathrm{x}}=\frac{M|\dot{x}|^{4}}{2 r^{3}} \mathbf{x} .
\end{aligned}
$$

$$
\left(\frac{L}{p}\right)^{-2}=\frac{2 M}{r}-\frac{2 M}{r_{0}},
$$

## Catenary



## Catenary




. Central Catenary


- Central Catenary

$$
\mathcal{L}:=\int_{s_{0}}^{s_{1}}\left(\frac{M}{r}+\lambda\right) \mathrm{d} s
$$

$$
U=-\frac{M}{r}
$$

$$
\frac{L}{p}=\frac{M}{r}+\lambda
$$

- Central Catenary

$$
\mathcal{L}:=\int_{s_{0}}^{s_{1}}\left(\frac{M}{r}+\lambda\right) \mathrm{d} s
$$

$\frac{L}{p}=\frac{M}{r}+\lambda$.

$$
U=-\frac{M}{r}
$$

$$
\ddot{\mathrm{x}}=-\frac{M|\dot{\mathrm{x}}|}{r^{3}} \mathrm{x}
$$

- Central Catenary

$$
\mathcal{L}:=\int_{s_{0}}^{s_{1}}\left(\frac{M}{r}+\lambda\right) \mathrm{d} s
$$

$$
U=-\frac{M}{r}
$$

$$
\begin{gathered}
\frac{L}{p}=\frac{M}{r}+\lambda \\
C r^{-\frac{3}{2}}=\cos \left(\frac{3}{2} \varphi\right)
\end{gathered}
$$

$$
\ddot{\mathrm{x}}=-\frac{M|\dot{\mathrm{x}}|}{r^{3}} \mathbf{x}
$$

$$
\mathcal{L}:=\int_{s_{0}}^{s_{1}}\left(\frac{M}{r}+\lambda\right) \mathrm{d} s
$$

$$
\frac{L}{p}=\frac{M}{r}+\lambda
$$

$U=-\frac{M}{r}$

$$
\ddot{\mathrm{x}}=-\frac{M|\dot{\mathrm{x}}|}{r^{3}} \mathrm{x}
$$

for $L^{2} \geq M^{2}$ Central catenary is $\sqrt{1-\frac{M^{2}}{L^{2}}}$-harmonic of a hyperbola!


$$
-\frac{M}{r}
$$


for $L^{2} \geq M^{2}$ Central catenary is $\sqrt{1-\frac{M^{2}}{L^{2}}}$-harmonic of a hyperbola!

Dipole drive by Robert Zubrin


Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.

Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.


Orbits of Dipole drive pointing in direction perpendicular to motion.


## Complementary system. <br> $A \quad p^{+} \quad e^{-}$



## Complementary system.

$$
\ddot{\mathbf{x}}=-\frac{M}{r^{3}} \mathbf{x}-\frac{\sigma M p}{r^{3}} \frac{\dot{\mathbf{x}}^{\perp}}{|\dot{\mathbf{x}}|} .
$$

$$
\cdot_{.^{p^{-}}}
$$

## Complementary system.

$$
\ddot{\mathbf{x}}=-\frac{M}{r^{3}} \mathbf{x}-\frac{\sigma M p}{r^{3}} \frac{\dot{\mathbf{x}}^{\perp}}{|\dot{\mathbf{x}}|} . \quad \ddot{\mathbf{x}}=-\frac{M}{r^{3}} \mathbf{x}+\frac{\sigma M p_{c}}{r^{3}} \frac{\dot{\mathbf{x}}}{|\dot{\mathbf{x}}|}
$$

## Complementary system.

$$
\ddot{\mathbf{x}}=-\frac{M}{r^{3}} \mathbf{x}-\frac{\sigma M p}{r^{3}} \frac{\dot{\mathbf{x}}^{\perp}}{|\dot{\mathbf{x}}|} . \quad \ddot{\mathbf{x}}=-\frac{M}{r^{3}} \mathbf{x}+\frac{\sigma M p_{c}}{r^{3}} \frac{\dot{\mathbf{x}}}{|\dot{\mathbf{x}}|}
$$

$$
\frac{L^{2}}{p^{2}}=\left(\frac{2 M}{r}+c\right)^{1-\sigma}
$$

## Complementary system.

$$
\ddot{\mathbf{x}}=-\frac{M}{r^{3}} \mathbf{x}-\frac{\sigma M p}{r^{3}} \frac{\dot{\mathbf{x}}^{\perp}}{|\dot{\mathbf{x}}|} . \quad \ddot{\mathbf{x}}=-\frac{M}{r^{3}} \mathbf{x}+\frac{\sigma M p_{c}}{r^{3}} \frac{\dot{\mathbf{x}}}{|\dot{\mathbf{x}}|}
$$

$$
-\frac{L^{2}}{p^{2}}=\left(\frac{2 M}{r}+c\right)^{1-\sigma} \cdot \frac{L^{2}}{p^{2}}=\left(\frac{2 M(1-\sigma)}{r}+c\right)^{\frac{1}{1-\sigma}} .
$$



Connections. $\sigma=-1 \| \quad A \quad e^{p^{+}} \quad . \quad e^{-}$


Connections. $\|\sigma=-1\| \quad A \quad .^{p^{+}} \quad .^{e^{-}}$

$$
\begin{aligned}
& \ddot{\mathbf{x}}=-\frac{M}{r^{3}} \mathbf{x}+\frac{M p}{r^{3}} \frac{\dot{\mathbf{x}}^{\perp}}{|\dot{\mathbf{x}}|} \\
& \ddot{\mathbf{x}}=-\frac{2 M}{r^{3}} \mathbf{x}+\frac{M p_{c}}{2 r^{3}} \frac{\dot{\mathbf{x}}}{|\dot{\mathbf{x}}|} \\
& \ddot{\mathbf{x}}=-\frac{M}{r^{3}}|\dot{\mathbf{x}}| \mathbf{x}
\end{aligned}
$$

Connections. $\sigma \sigma=-1 \| \quad A \quad{ }^{p^{+}} \quad . e^{e^{-}}$

$$
\begin{aligned}
& \ddot{\mathbf{x}}=-\frac{M}{r^{3}} \mathbf{x}+\frac{M p}{r^{3}} \frac{\dot{\mathbf{x}}^{\perp}}{|\dot{\mathbf{x}}|} \\
& \ddot{\mathbf{x}}=-\frac{2 M}{r^{3}} \mathbf{x}+\frac{M p_{c}}{2 r^{3}} \frac{\dot{\mathbf{x}}}{|\dot{\mathbf{x}}|},
\end{aligned}
$$


$\ddot{\mathbf{x}}=-\frac{M}{r^{3}}|\dot{\mathbf{x}}| \mathbf{x} . \quad$ Same orbits in Pedal coordinates!


Pedal coordinates, solar sail orbits, Dipole drive and other force problems

Petr Blaschke
P. Blaschke: Pedal coordinates, solar sail orbits, Dipole drive and other force problems, Journal of Mathematical Analysis and Applications, Volume 506, Issue 1, 2022, 125537, ISSN 0022-247X, https://doi.org/10.1016/j.jmaa.2021.125537.

|  | Contents lists available at ScienceDirect |  |
| :---: | :---: | :---: |
|  | Journal of Mathematical Analysis and Applications | 1 |
| ELSEVIER | www.elsevier.com/locate/jmaa | - |

Pedal coordinates, solar sail orbits, Dipole drive and other force problems

# Pedal coordinates, dark Kepler, and other force problems 

Petr Blaschke ${ }^{\text {a) }}$<br>Mathematical Institute, Silesian University in Opava, Na Rybnicku 1, Opava 74601, Czech Republic

## THANK YOU

