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I

Classical descriptions

of light



Light as waves

When asked, most physicists probably say that the basic solutions
MW’s equations in free space are monochromatic waves:(
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Waves and wave packets

The basic solutions of MW’s equations are plane travelling waves
with wave numbers k and polarisations λ.



An alternative way of solving wave equations

According to d’Alembert’s principle, any local wave packet
which moves at the speed of light solves MW’s equations:(
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The general solutions of MW’s equations

Wave packets (WPs) of any shape are solutions of MW’s equations,
if they travel at the speed of light in one of two possible directions.

Speed of light, c

x

Wave
packet

This includes highly-localised WPs
which remain localised!



A comparison of the basic solutions

x-space solutions:

x ∈ (−∞,∞)
λ = H,V
s = ±1

k-space solutions:

k ∈ (−∞,∞)
λ = H,V

no s

There seems to be a degeneracy
in the classical wave description
of light.

Questions:

• What happens, if we quantise light directly in position space?
• Is there a local theory for photons?
• What are the implications of such a theory?



II

Suppose there is

a single-photon wave function.



Single-photon WPs

Situation 1:
a right-moving WP

c

x-a a0

Situation 2:
a left-moving WP

a

c

x-a 0

• If both WPs have the same shape, then

ψ1(x, 0) = ψ2(x+ 2a, 0) eiϕ .



Single-photon WPs

Situation 1:
a right-moving WP

c

x-a a0

Situation 2:
a left-moving WP

c

x-a a0

• If both WPs have the same shape, then

ψ1(x, 0) = ψ2(x+ 2a, 0) eiϕ .

• After a time t = a/c, the WPs become indistinguishable and

ψ1(x, t) = ψ2(x, t) e
iϕ .



An additional degree of freedom is needed

Situation 1:

c

x-a a0

Situation 2:

c

x-a a0

Problem: The dynamics is only unitary, if

〈ψ1(t)|ψ2(t)〉 = 〈ψ1(0)|U†(t, 0)U(t, 0)|ψ2(0)〉
= 〈ψ1(0)|ψ2(0)〉 = 0 .

If want to model WPs of any shape which move without dispersion,
the states |ψ1(t)〉 and |ψ2(t)〉 need to belong to different Hilbert space.
In the following, we label them by s = ±1.



Dynamics in k-space

s = −1: left-moving WPs
s = +1: right-moving WPs

Speed of light, c

x

Wave
packet

ψsλ(x, t) = ψsλ(x− sct, 0)



Dynamics in k-space

s = −1: left-moving WPs
s = +1: right-moving WPs

Speed of light, c

x

Wave
packet

ψsλ(x, t) = ψsλ(x− sct, 0)

⇒
∫ ∞
−∞

dk ψ̃sλ(k, t) e
±ikx =

∫ ∞
−∞

dk ψ̃sλ(k, 0) e
±ik(x−sct)

⇒ ψ̃sλ(k, t) = ψ̃sλ(k, 0) e
∓isckt

We need a field Hamiltonian with positive and negative eigenvalues.



III

A local relativistic quantisation

of the EM field

Southall, Hodgson, Purdy and Beige, Locally acting mirror Hamiltonians, J. Mod. Opt. 68, 647 (2021).

Hodgson, Southall, Purdy and Beige, Quantising one-dimensional electromagnetic fields in position space, arXiv:2104.04499.



Local field excitations

Suppose the quantised EM field is made up of
Bosons Localised in Position (BLiPs).

s = ±1 : direction of propagation
λ = H,V : polarisation

x ∈ (−∞,∞) : position

Speed of light, c

x

Wave
packet

BLiPs travel at the speed of light.



Consistency with special relativity

Relativity tells us that we need to treat space and time equally.
We need to quantise the EM field in 1+1 dimension.

• Relevant parameters:

s, λ, x and t −→ asλ(x, t)

• Relevant state vectors:

The possible state vectors |ψ〉 of the
quantised EM field are obtained by
applying a†sλ(x, t) operators to the
vacuum state |0〉.



Bosonic commutator relations

A single excitation (BLiP) state:

|1sλ(x, t)〉 = a†sλ(x, t)|0〉

These states are only pairwise
orthogonal if we assume that

〈1sλ(x, t)|1s′λ′(x′, t)〉 = 〈0|asλ(x, t)a†s′λ′(x′, t′)|0〉
=

[
asλ(x, t), a

†
s′λ′(x

′, t)
]

= δs,s′ δλ,λ′ δ(x− x′) .



A Hamiltonian constraint

The dynamics of light poses a constraint on the operators asλ(x, t).

• All states belonging to the
same worldline are the same.

• This equations resembles the
Wheeler-DeWitt equation or a
Dirac-like equation of light.

asλ(x, t) = asλ(x− sct, 0) ⇔
(

d

dx
+ sc

d

dt

)
asλ(x, t) = 0



The corresponding Hamiltonian

This dynamics is generated by a Hamiltonian:

ȧsλ(x, t) = − i

~
[asλ(x, t), Hdyn]

Hdyn =
1

2π

∑
s=±1

∑
λ=1,2

∫ ∞
−∞

dx

∫ ∞
−∞

dx′
∫ ∞
−∞

dk ~ck eisk(x
′−x)

× a†sλ(x′, t)asλ(x, t) .

Speed of light, c

x

Wave
packet



Beyond the usual Schrödinger equation

The energy observable Henergy has only positive eigenvalues,
while Hdyn has positive and negative eigenvalues.

Henergy =

∫ ∞
−∞

dx
A

2

[
εE(x, t)2 +

1

µ
B(x, t)2

]
6= Hdyn

Hdyn and Henergy

are no longer the same.



The basic building blocks of light

There are different ways of decomposing
light into basic bosonic excitations:

1. Monochromatic waves:
These correspond to standing or
travelling waves.

2. Localised wave packets:
BLiPs = Bosons Localised in Position

Waves and BLiPs can be superposed
to obtain wave packets of finite energy,
so-called photons.



IV

Electric and magnetic

field observables

Southall, Hodgson, Purdy and Beige, Locally acting mirror Hamiltonians, J. Mod. Opt. 68, 647 (2021).

Hodgson, Southall, Purdy and Beige, Quantising one-dimensional EM fields in position space, arXiv:2104.04499.



Electric and magnetic field observables

Consistency with MW’s equations applies when

E(x, t) =
∑
s=±1

R
(
asH(x, t)y + asV(x, t) z

)
+H.c.

B(x, t) = −s
c

∑
s=±1

R
(
asV(x, t)y − asH(x, t) z

)
+H.c.

R: regularisation operator;
needed to impose properties,
cannot depend on x and t



The energy of a monochromatic photon

• Suppose one atom with energy ~ω0 emits exactly one photon.

• Due to resonance, the photon resembles a monochromatic ω0-wave.

• Energy conservation implies that the photon has the energy ~ω0.



Photon annihilation operators

We link momentum and position space annihilation operators
via Fourier transforms,

asλ(x, t) =
1√
2π

∫ ∞
−∞

dk eiskx asλ(k, t)

asλ(k, t) =
1√
2π

∫ ∞
−∞

dx e−iskx asλ(x, t) .

For k ∈ (−∞,∞), these transformations are reversible and[
asλ(x, t), a

†
sλ(x

′, t)
]
= δ(x− x′) ⇔

[
asλ(k, t), a

†
sλ(k

′, t)
]
= δ(k − k′) .



Field observables in momentum space

Henergy =

∫ ∞
−∞

dx
A

2

[
εE(x, t)2 +

1

µ
B(x, t)2

]
=

∫ ∞
−∞

dk ~c|k| a†sλ(k, t)asλ(k, t)

⇒ Esλ(x, t) ∝
∫ ∞
−∞

dk
√
|k| asλ(k, t) + H.c. ,

Bsλ(x, t) ∝
s

c

∫ ∞
−∞

dk
√
|k| asλ(k, t) + H.c.

. . . which are Lorentz covariant

(In momentum space, R multiplies operators
with a factor proportional to

√
|k|.)



Field observables in position space

⇒ Esλ(x, t) =

∫ ∞
−∞

dx′ g(x, x′) asλ(x
′, t) + H.c. ,

Bsλ(x, t) =
s

c

∫ ∞
−∞

dx′ g(x, x′) asλ(x
′, t) + H.c.

with g(x, x′) ∝
∫ ∞
−∞

dk

(
2|k|
π

)1/2

eik(x−x
′)

= −|x− x′|−3/2



A physical picture of BLiPs

x
x0

E(x) sc

Comments:

• The fields of a local BLiP state at x0 can be felt everywhere.

• Localised fields can only be created by a non-local source.



The dynamical Hamiltonian

In the Heisenberg picture, we find that

asλ(x, t) = asλ(x− sct, 0)
⇒ asλ(k, t) = e−ickt asλ(k, 0) .

In the momentum representation, Hdyn simplifies
to the usual harmonic oscillator Hamiltonian

Hdyn =
∑
s=±1

∑
λ=1,2

∫ ∞
−∞

dk ~ck a†sλ(k, t)asλ(k, t) .

= Henergy if we set asλ(k, t) ≡ 0 for k < 0



V

Applications:

Light reflection by mirrors

Southall, Hodgson, Purdy and Beige, Locally acting mirror Hamiltonians, J. Mod. Opt. 68, 647 (2021).



Light reflection by mirrors

Modelling light reflection using waves is not very intuitive.
In classical ED, we describe light scattering in position space.



The mirror image method

A mirror changes the amplitude and direction
of any incoming BLiP excitations.



Light scattering by mirrors

We can now describe two-sided semi-transparent mirrors
with a locally acting mirror Hamiltonian.

Southall, Hodgson, Purdy and Beige, Locally acting mirror Hamiltonians, J. Mod. Opt. 68, 647 (2021).



The dynamics of BLiPs inside an optical cavity

a b

Inside an optical cavity, many different
BLiP excitations travel back and force
between both mirrors.



VI

Applications:

The Casimir effect

Hodgson, Burgess, Altaie, Beige and Purdy, An intuitive picture of the Casimir effect, arXiv:2203.14385 (2022).



Experimental setup

• Already in 1948, Casimir predicted an
attractive force between two metallic
mirrors for small distances d.

• This effect can be understood as a
consequence of boundary condi-
tions imposed by the mirrors and is
attributed to vacuum fluctuations.

• Obtaining a finite force requires
regularisation procedures.



The electric field inside the cavity

Suppose X restricts the Hilbert
space to BLiP excitations at
positions x ∈ (−D/2, D/2).

E
(in)
sλ (x, t)

=

∞∑
n=−∞

X
(
E

(free)
sλ (x+ 2nD, t)

−E(free)
−sλ (−x+ (2n− 1)D, t)

)
BLiPs inside the cavity cannot create fields outside
and vice versa.



The electric field inside the cavity

4

ba

c d

Figure 2: a. Because of the regularisation operator R in Eq. (6), local blip excitations contribute to local electric and magnetic
field expectation values everywhere along the x axis (cf. Eq. (8)). b. Since a blip on one side of a highly reflecting mirror
cannot contribute to the field expectation value on the other side, its field contribution must be folded back on itself. This
e↵ect alters the electric and magnetic field observables in the presence of a mirror. c. In the presence of two highly reflecting
mirrors, blips outside the cavity cannot contribute to field expectation values on the inside. Moreover, the field contributions
of blips on the inside need to be folded as in the case of one mirror. Now, however, the field contributions must be folded
infinitely many times (cf. Eq. (18) in Methods). d. Comparing two cavities of di↵erent sizes, we see that the behaviour of the
field contribution is now dependent on the cavity width.

as illustrated in Fig. 2(a), local blip excitations con-
tribute to electric and magnetic field expectation values
everywhere along the x axis. The commutator between
as�(x0, t) and E(x, t), for example, vanishes rapidly as
the distance |x � x0| increases, making this non-local ef-
fect small. However, it is not negligible and, as we shall
see below, the non-locality of electric and magnetic field
observables constitutes the origin of the Casimir e↵ect.

B. Optical cavities and the Casimir e↵ect

When placed between the mirrors of an optical cav-
ity, blips are continually reflected back and forth. As
illustrated in Fig. 1(b), they move on closed trajectories
and travel through the same location x many times. Al-
though the blips change direction when met with either
of the mirrors, between the cavity walls they propagate
freely. Therefore, blips can be used to describe the EM
field both in the absence and in the presence of an optical
cavity. However, in order to capture their changed beha-
viour, we must replace the free space equation of motion
in Eq. (1) by an alternative constraint. The dynamics
of blips approaching the cavity walls can be described,
for example, by a locally acting mirror Hamiltonian [23].
Another possibility to obtain blip operators which move
along folded worldlines is to take inspiration from the
mirror image method of classical electrodynamics [30]
and to map the dynamics of blips onto analogous free

space scenarios.
By adopting a local description, it is tempting to as-

sume that the field expectation values of blips that are
not in contact with the cavity do not depend on the pres-
ence or absence of highly reflecting mirrors at a spatially
removed location. However the local electric and mag-
netic field observables E(x, t) and B(x, t) are not the
same inside an optical cavity and in free space. As we
have seen above (cf. Fig. 2(a)), in free space, local blip
excitations contribute to field expectation values every-
where along the x axis. When constructing field observ-
ables in the presence of an optical cavity, we must take
into account that its mirrors shield the inside of the cav-
ity from light sources on the outside. We must therefore
ensure that blips on the outside of the cavity do not con-
tribute to electric and magnetic fields inside (Fig. 2(b)).
Analogously, we must ensure that blips on the inside no
longer contribute to fields on the outside.

Here we are especially interested in highly reflecting
mirrors with an amplitude reflection rate r = �1 with
no light entering the cavity from the outside and no leak-
age of light out of the resonator. We then hypothesise
that the free space field amplitude contributions of local
blips at positions x with x 2 (�D/2, D/2) to local field
observables beyond the cavity mirrors are reflected back
where they contribute only to local field observables on
the inside. More concretely, as illustrated in Figs. 2(b)-
(d), when in contact with one of the mirror surfaces at
positions x = ±D/2, the field amplitudes of as�(x, t)



The zero point energy of the EM field

H
(in)
ZPE =

~c
4π

∞∑
n,m=−∞

∫ D/2

−D/2
dx

∫ D/2

−D/2
dx′

[
|(x+ x′ + (2n− 1)D)(x+ x′ + (2m− 1)D)|−3/2

+ |(x− x′ + 2nD)(x− x′ + 2mD)|−3/2
]

= − ~c
2πD

∞∑
m=−∞

1

m2
⇒ FCasimir = −

dHZPE

dD
= −π~c

6D2

The Casimir effect is due to interference effects of evanescent fields
belonging to opposite sides of the cavity.



VII

Final remarks



The main message of this talk
Locally-acting mirror Hamiltonians 3
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Figure 1. [Colour online] In this paper, we e↵ectively double the usual Hilbert space

of the quantised one-dimensional EM field and identify its energy quanta by their

direction of motion s = ±1, their polarisation � = H, V and their frequency ! = ck

which can be both positive and negative. Using this notation, the corresponding

classical wave number of a photon equals sk.

Hamiltonians for two-sided semi-transparent mirrors without the introduction of

specialised photon modes. We then show that these Hamiltonians reproduce the well-

known classical dynamics of incoming wave packets. For example, they can result in

a complete conversion of incoming into outgoing wave packets without altering the

dynamics of outgoing wave packets. However, our mirror Hamiltonians can also be used

to model more complex quantum behaviour.

Energy quanta with negative frequencies have already been used previously by

other authors (cf. e.g. Refs. [14, 26, 27, 28, 29, 30]). For example, it has been shown

that ignoring negative frequency photons when modelling the interaction between atoms

and photons can result in a violation of Einstein causality [26, 27]. Moreover, a recent

experiment by Rubino et al. [29], which scatters wave packets by a rapidly moving mirror

potential and measures the wavelength of the reflected light, already confirms that some

physical e↵ects can only be modelled correctly if both positive and negative frequency

photons are taken into account.

There are five sections in this paper. In Section 2 we describe the quantised EM

field in terms of highly-localised field excitations. Section 3 studies the relation between

these highly-localised field excitations and the basic energy quanta of the EM field. In

Section 4 we use the annihilation operators of highly-localised field excitations and their

dual operators to construct a locally-acting Hamiltonian for light scattering by semi-

transparent mirrors. Finally, we summarise our findings in Section 5. Some calculations

are confined to appendices.

2. Highly-localised field excitations in free space

For simplicity, in this paper, we only consider light propagating in one direction,

i.e. along the x-axis. In the following, as�(x, t) denotes the annihilation operator of

a highly-localised field excitation of the quantised EM field at position x and at a time

The standard description of the
quantised EM field in quantum
optics is incomplete.



Comments

We quantised the EM field for light moving in 1D in position space.
No-go theorems have been overcome by considering the positive and
the negative-frequency solutions of MW’s equations.

Our approach can be used to derive
Casimir forces without regularisation
(up to a factor 2).



Recommended references:

1 Locally acting mirror Hamiltonians,
Southall, Hodgson, Purdy and Beige, J. Mod. Opt. 68, 647 (2021).

2 Quantising one-dimensional electromagnetic fields in position space,
Hodgson, Southall, Purdy and Beige, arXiv:2104.04499 (2022).

3 An intuitive picture of the Casimir effect,
Hodgson, Burgess, Altaie, Beige and Purdy, arXiv:2203.14385 (2022).

———
4 A physically-motivated quantisation of the electromagnetic field,

Bennett, Barlow and Beige, Eur. J. Phys. 37, 014001 (2016).
5 Time and Quantum Clocks: a review of recent developments,

Altaie, Beige and Hodgson, Front. Phys. 10, 897305 (2022).

See also related work by M. Hawton, R. J. Cook, J. Sipe, I. Bialynicky-Birula,
Smith and Raymer and others.


