SOLITON EQUATIONS AND THEIR HOLOMORPHIC SOLUTIONS

VIII School on Geometry and Physics, Białowieza, June 2019

PLAN OF THE COURSE

Lecture 1. Riemann problem and soliton equations.

Lecture 2. Local holomorphic inverse scattering.

Lecture 3. The Painlevé property.

Aims:

Describe all (1 + 1)-dim soliton equations of parabolic type and ALL of theit local holomorphic solutions using a local version of the inverse scattering method.

Discuss most interesting classes of solutions.

Give a CRITERION for solubility of the Cauchy problem in terms of the scattering data of the initial condition.

Prove the Painlevé property: ALL local holomorphic solutions are globally meromorphic and monodromy-free in the spatial variable.

LECTURE 1

RIEMANN PROBLEM AND SOLITON EQUATIONS

1. Examples and history

Korteweg-de Vries, nonlinear Schrödinger and Boussinesq eqs

(1)
$$u_t = au_{xxx} + buu_x, \quad a, b \in \mathbb{C} \setminus \{0\},\$$

(2)
$$iu_t = au_{xx} + bu|u|^2, \qquad a, b \in \mathbb{R} \setminus \{0\},$$

(3)
$$u_{tt} = au_{xxxx} + buu_{xx} + bu_x^2, \qquad a, b \in \mathbb{C} \setminus \{0\}$$

with $|u(x,t)|^2$ in (2) understood as $u(x,t)\overline{u(\overline{x},\overline{t})}$.

(KdV)
$$u_t = au_{xxx} + buu_x$$

describes long waves on shallow water.

The inverse scattering method as discovered by Gardner, Green, Kruskal, Miura 1967: when the potential $u(x, \cdot)$ evolves according to (KdV), the evolution of its scattering data (spectral characteristsics of $L = \partial_x^2 + u(x, \cdot)$ on $L^2(\mathbb{R}^1_x)$) is linear and can be integrated explicitly! Explanation (Lax 1968): (KdV) with a = 1/4, b = 3/2 is the compatibility condition for the **auxiliary linear problem**

(4)
$$L\psi = \lambda\psi, \qquad \psi_t = P\psi$$

where $L := \partial_x^2 + u$ and $P := \partial_x^3 + (3/2)u\partial_x + (3/4)u_x$, i.e. equation (KdV) can be written as $L_t = [P, L]$. \implies the evolution of the operator L is its conjugaton by a *t*-dependent unitary operator on $L^2(\mathbb{R}^1_x)$ \implies the evolution of its spectral characteristics is simple.

(NLS)
$$iu_t = au_{xx} + bu|u|^2$$

describes propagation of wave packages in nonlinear dispersive media.

Zakharov and Shabat (1971) replaced the scalar second-order ODE $L\psi = \lambda\psi$ in (4) by a first-order 2×2 -matrix system:

(5)
$$E_x = UE$$
, and then $E_t = VE$

where U(x, t, z) and V(x, t, z) are polynomials of degree 1 and 2 in the spectral parameter $z \in \mathbb{C}$ related to λ in (4) by $\lambda = z^2$. Hence (NLS) arises from the zero curvature equation

(6)
$$U_t - V_x + [U, V] = 0$$

(the compatibility condition of the auxiliary linear problem (5); first explicitly written and used in soliton theory by Novikov 1974).

The Boussinesq equation (3) (describing water waves that can move left or right) was similarly studied by Zakharov (1973): replace 2×2 -matrices in (5) or the second-order operator L in (4) by 3×3 -matrices or a third-order operator.

2. Zero curvature equations

LEMMA 1. Let $\Omega \subset \mathbb{C}^2_{xt}$ be a simply connected domain and $U, V : \Omega \to \operatorname{gl}(n, \mathbb{C})$ holomorphic maps. Then the system (ALP) $E_x = UE, \quad E_t = VE$ has a holomorphic solution $E : \Omega \to \operatorname{GL}(n, \mathbb{C})$ if and only if (ZCC) $U_t - V_x + [U, V] = 0$ everywhere in Ω .

DEFINITION. A (1+1)-dimensional soliton equation is the ZCC $U_t - V_x + [U, V] = 0$, where $U, V : \Omega \times \mathbb{C}P_z^1 \to \mathrm{gl}(n, \mathbb{C})$ are rational functions of $z \in \mathbb{C}P^1$ such that the expression $U_t - V_x + [U, V]$ is independent of z.

Unknown functions are the entries of the $gl(n, \mathbb{C})$ -valued coefficients of the partial fraction decompositions of U, V. Some of them can be expressed in terms of the others from the condition " $U_t - V_x + [U, V]$ is independent of z".

The type of a soliton equation is determined by the lists of poles of U and V counting multiplicities. For example,

(1) the poles of U and V are single, simple and distinct \implies hyperbolic type (PCM, Sine-Gordon);

(2) the poles of U and V are single and coincide \implies **parabolic type** (Kdv, NLS, Boussinesq).

Structure of soliton equations of parabolic type.

Consider the case when the common pole of U and V is ∞ , so U and V are polynomials in z, deg U = 1 and deg $V = m \ge 2$. Then there is no loss of generality in assuming that

$$\begin{cases} U(x,t,z) = az + q(x,t), \\ V(x,t,z) = bz^m + r_1(x,t)z^{m-1} + \dots + r_m(x,t), \end{cases}$$

where $a, b \in gl(n, \mathbb{C})$ are diagonal matrices, a has simple spectrum (all eigenvalues are distinct), $q: \Omega \to gl(n, \mathbb{C})$ is holomorphic and off-diagonal, $r_1, \ldots, r_m: \Omega \to gl(n, \mathbb{C})$ are holomorphic. Claim: the condition " $U_t - V_x + [U, V]$ is independent of z" determines r_1, \ldots, r_m as **differential polynomials** $r_j = F_j(q)$ (i.e. polynomials in q and its derviatives with respect to x) uniquely up to diagonal constants of integration at each step.

The functions $F_j(q)$ satisfy the resolvent equation

$$\boxed{F_x = [U, F]}, \quad \text{where} \quad U := az + q, \quad F := b + \sum_{j=1}^{\infty} \frac{F_j(q)}{z^j}$$

and we have $U_t - V_x + [U, V] = q_t - [a, F_{m+1}(q)].$ Hence
ZCC takes the form $\boxed{q_t = [a, F_{m+1}(q)]}.$

In more detail,

LEMMA 2. Fix a, b as above and any point $x_0 \in \mathbb{C}$ and put $\mathcal{O}(x_0) := \{ holomorphic \ gl(n, \mathbb{C}) \text{-valued germs } q(x) \text{ at } x_0 \},$ $\mathcal{O}(x_0)^{od} := \{ all \text{ off-diagonal } q \in \mathcal{O}(x_0) \}.$

Then for every sequence $c_1, c_2, \dots \in gl(n, \mathbb{C})$ of diagonal matrices there is a unique sequence of differential polynomials $F_j: \mathcal{O}(x_0) \to \mathcal{O}(x_0), j = 0, 1, 2, \dots$ such that

- 1) $F_0(q) \equiv b$ for all $q \in \mathcal{O}(x_0)$,
- 2) $F_j(0) \equiv c_j$ for all $j \ge 1$,
- 3) the formal power series $F(q,z) := \sum_{j=0}^{\infty} F_j(q) z^{-j}$ satisfies

$$\partial_x F = [az + q, F] \quad for \ all \ q \in \mathcal{O}(x_0)^{od}.$$

Proof is not competely trivial since the resolvent equation

$$\partial_x D_{j-1} = [q, N_{j-1}]_d,$$

 $[a, N_j] = \partial_x N_{j-1} - [q, F_{j-1}]_{od}$

(where $j = 0, 1, 2, \ldots, F_{-1} := 0, D_j := (F_j)_d, N_j := (F_j)_{od}$) determines $F_j(q)$ only as integro-differential polynomials in q(since a has simple spectrum, the operator $X \mapsto [a, X]$ is invertible on the space of off-diagonal matrices in $gl(n, \mathbb{C})$). Use the equalities $\partial_x F^k = [U, F^k] \Longrightarrow \partial_x \operatorname{tr} F^k = 0$ to get another formula for D_j , solving a linear system. \Box LEMMA 3. Fix a, b as above. Then

 $U_t - V_x + [U, V]$ is independent of $z \iff r_j = F_j(q)(j = 1, ..., m)$

for some sequence $c_1(t), \ldots, c_m(t)$ of diagonal matrices holomorphically depending on t in the projection of Ω to the t-axis.

In this case, the ZCC $U_t - V_x + [U, V] = 0$ with U = az + qand $V = az^m + F_1(q)z^{m-1} + \dots + F_m(q)$ takes the form

(Eq_m)
$$q_t = [a, F_{m+1}(q)],$$

where q(x,t) is the unknown off-diagonal $gl(n, \mathbb{C})$ -valued germ at the point $(x_0, t_0) \in \mathbb{C}^2$. **Examples.** (almost always b = a, $c_1 = c_2 = \cdots = 0$) 1) The hierarchy of the heat equation:

2) The Korteweg-de Vries equation:

3) The nonlinear Schrödinger equation:

$$a = \begin{pmatrix} -i/2 & 0 \\ 0 & i/2 \end{pmatrix}, \quad q(x,t) = \begin{pmatrix} 0 & u(x,t) \\ -\overline{u(\overline{x},\overline{t})} & 0 \end{pmatrix} \implies$$
$$\implies (\mathrm{Eq}_2) \quad \text{takes the form} \quad \boxed{iu_t = -u_{xx} - 2u|u|^2}.$$

4) The modified Korteweg-de Vries equation $(C := (c_2)_{11} - (c_2)_{22})$:

3. Riemann problem and ZS dressing

Riemann problem: Let $D_+, D_- \subset \mathbb{C}P_z^1$ be disjoint open disks with $\overline{D}_+ \cup \overline{D}_- = \mathbb{C}P^1$. A continuous function $\gamma : \Gamma \to \operatorname{GL}(n, \mathbb{C})$ on the circle $\Gamma := \overline{D}_+ \cap \overline{D}_-$ is said to be left-factorable (resp. right-factorable) if there are continuous functions $\gamma_{\pm} : \overline{D}_{\pm} \to \operatorname{GL}(n, \mathbb{C})$, holomorphic on D_{\pm} and satsifying $\gamma = \gamma_+ \gamma_-^{-1}$ on Γ (resp. $\gamma = \gamma_-^{-1} \gamma_+$ on Γ).

We regard γ as data of the Riemann problem, and the pair (γ_+, γ_-) as a solution. When a solution exists, it is unique up to right (resp. left) multiplication by $A \in GL(n, \mathbb{C})$.

Zakharov-Shabat dressing method: Let (U_0, V_0) be a holomorphic solution of ZCC on $\Omega \subset \mathbb{C}^2_{xt}$, E_0 a holomorphic solution of ALP on Ω , $E_0(x_0, t_0) = I$, and $g: \Gamma \to \operatorname{GL}(n, \mathbb{C})$ right-factorable, where $\Gamma = \overline{D}_+ \cap \overline{D}_-$ does not pass through the poles of U_0, V_0 .

For every $(x,t) \in \Omega$ we pose the Riemann problem of finding continuous $\theta_{\pm} : \overline{D}_{\pm} \to \operatorname{GL}(n, \mathbb{C})$ holomorphic on D_{\pm} with

$$E_0(x,t,z)g(z)E_0^{-1}(x,t,z) = \theta_{-}^{-1}(x,t,z)\theta_{+}(x,t,z), \quad z \in \Gamma.$$

A solution θ_{\pm} exists in a neighbourhood of (x_0, t_0) and, actually, in Ω except maybe a pole along a complex curve. For uniqueness require $\theta_{-}(x, t, z_0) = I$ for all (x, t)and some z_0 . Then the pair (U_1, V_1) defined by the formulae

$$U_1(x,t,z) = \begin{cases} (\theta_+)_x \theta_+^{-1} + \theta_+ U_0 \theta_+^{-1}, & z \in \overline{D}_+, \\ (\theta_-)_x \theta_-^{-1} + \theta_- U_0 \theta_-^{-1}, & z \in \overline{D}_- \end{cases}$$

and similarly for $V_1(x, t, z)$ with $U_0 \longrightarrow V_0$ and $\partial_x \longrightarrow \partial_t$ is a meromorphic solution of ZCC on Ω with the same **divisors of poles in** z for U_1, V_1 and U_0, V_0 . Proofs will be given in a more concrete context below.

DEFINITION. The solution (U_1, V_1) is said to be obtained by dressing the solution (U_0, V_0) by means of g.

A limiting case of dressing for SEPT.

For soliton equations of parabolic type, the divisors of poles of U and V are ∞ and $m\infty$ respectively. Hence it is natural to shrink the disk $D_{-} = \{|z| > R\} \cup \{\infty\}$ to a single point ∞ and expand $D_{+} = \{|z| < R\}$ to the whole plane \mathbb{C} as $R \to +\infty$. The dressing function g(z) becomes an element of the set

 $\mathcal{D} := \{ \text{holom } \operatorname{GL}(n, \mathbb{C}) \text{-valued germs } f(z) \text{ at } \infty \text{ with } f(\infty) = I \}$

We will dress the zero solution $(U_0, V_0) = (0, 0)$ of ZCC or, equivalently, the solution $q(x, t) \equiv 0$ of equation (Eq_m) , by the invertible holomorphic germ $f^{-1}(z)$ for every $f \in \mathcal{D}$. THEOREM 1. Suppose that $a, b, c_1, c_2, \dots \in gl(n, \mathbb{C})$ are diagonal matrices and a has simple spectrum. Fix an integer $m \geq 2$ and a point $(x_0, t_0) \in \mathbb{C}^2$. For every $f \in \mathcal{D}$ let $\Omega(f)$ be the set of all $(x, t) \in \mathbb{C}^2$ such that the function

$$\gamma(x,t,z) := \exp\{az(x-x_0) + (bz^m + c_1 z^{m-1} + \dots + c_m)(t-t_0)\}f^{-1}(z)$$

is right-factorable on some (and then any) circle $\{|z|=R\}, R_0 < R < +\infty$. Then $\Omega(f) \subset \mathbb{C}^2$ contains a neighbourhood of (x_0, t_0) . For every point $(x,t) \in \Omega(f)$ let $(\gamma_+(x,t,z), \gamma_-(x,t,z))$ be the solution of the Riemann problem

(7)
$$\gamma(x,t,z) = \gamma_{-}^{-1}(x,t,z)\gamma_{+}(x,t,z), \quad R_{0} < |z| < +\infty$$

with normalization $\gamma_{-}(x, t, \infty) = I$. Put

(8)
$$q(x,t) := \lim_{z \to \infty} z[\gamma_-(x,t,z) - I,a].$$

Then $q: \Omega(f) \to gl(n, \mathbb{C})$ is off-diagonal, holomorphic at (x_0, t_0) and satisfies the soliton equation (Eq_m)

(9)
$$q_t = [a, F_{m+1}(q)]$$
 in a neighbourhood of (x_0, t_0) ,

where $F_j : \mathcal{O}(x_0) \to \mathcal{O}(x_0)$ (j = 0, 1, 2, ...) is the sequence of differential polynomials determined by the sequence $a, b, c_1, ...$ by Lemma 2.

REMARK. In what follows we denote this q(x,t) by $q_f(x,t)$.

Proof. 1) The Riemann problem $\gamma = \gamma_{-}^{-1} \gamma_{+}$ is equivalent (for every $R \geq R_{0}$) to a linear equation $A\xi = \eta$ on the Banach space E of all $gl(n, \mathbb{C})$ -valued functions holomorphic for |z| > R, continuous for $|z| \geq R$ and vanishing at $z = \infty$. (Here $\eta := -P\gamma$ and $A\xi := P(\xi\gamma)$, where P is the operator of taking the negative part of a Laurent series. The solutions γ_{\pm} are recovered by the formulae $\gamma_{-} = I + \xi$, $\gamma_{+} = (I + \xi)\gamma_{-}$) The operator A and the vector η depend holomorphically on $(x,t) \in \mathbb{C}^{2}$, and A = Id at $(x,t) = (x_{0},t_{0})$. Hence A is invertible in a neighbourhood of (x_{0},t_{0}) and the solution ξ is holomorphic there. Thus $\Omega(f)$ contains a neighbourhood of (x_{0},t_{0}) and $\gamma_{\pm}(x,t)$ are holomorphic there. 2) Claim: the function $\gamma_{+x}\gamma_{+}^{-1} - az$ is independent of z and equal to q(x,t), so that for all (x,t) near (x_0,t_0) and all $z \in \mathbb{C}$ we have

(10)
$$\gamma_{+x} = U(x, t, z)\gamma_{+}$$
, where $U(x, t, z) := az + q(x, t)$.

Indeed, write $\gamma_+(x,t,z) = \gamma_-(x,t,z)E_0(x,t,z)f^{-1}(z)$ (where $E_0(x,t,z) := \exp\{az(x-x_0) + (bz^j + c_1z^{j-1} + \cdots + c_j)(t-t_0)\}$) and differentiate with respect to x:

$$\gamma_{+x}\gamma_{+}^{-1} = (\gamma_{-}E_{0}f^{-1})_{x}(\gamma_{-}E_{0}f^{-1})^{-1} =$$
(since f is independent of x) = $(\gamma_{-}E_{0})_{x}(\gamma_{-}E_{0})^{-1} =$
 $(\gamma_{-x} + \gamma_{-}az)E_{0}(\gamma_{-}E_{0})^{-1} = \gamma_{-x}\gamma_{-}^{-1} + z \cdot \gamma_{-}a\gamma_{-}^{-1}.$

As Laurent series in z, the left- and right-hand sides of

$$\gamma_{+x}\gamma_{+}^{-1} = \gamma_{-x}\gamma_{-}^{-1} + z \cdot \gamma_{-}a\gamma_{-}^{-1}$$

contain only powers ≥ 0 and ≤ 1 respectively. Hence both are polynomials of degree ≤ 1 in z:

$$\gamma_{+x}\gamma_{+}^{-1} = \{z\gamma_{-}a\gamma_{-}^{-1}\}_{+},$$

where $\{\cdot\}_+$ is the "non-negative part" of a Laurent series: if $X = \sum_{n=-\infty}^{\infty} X_n z^n$, then $X_+ = \sum_{n=0}^{\infty} X_n z^n$. A calculation gives $\{z\gamma_-(x,t,z)a\gamma_-^{-1}(x,t,z)\}_+ = az + q(x,t)$, where q(x,t) is defined by (8). This proves (10). 3) Repeating part 2 with x replaced by t, we have

(11)
$$\gamma_{+t}\gamma_{+}^{-1} = \{z^m F(x,t,z)\}_+,$$

where $F(x, t, z) := \gamma_-(x, t, z)(b+c_1z^{-1}+\cdots+c_mz^{-m})\gamma_-(x, t, z)^{-1}$. Claim: for every fixed t the function F(x, t, z) satisfies the resolvent equation $F_x = [U, F]$ near x_0 , where U(x, t, z) = az + q(x, t). Indeed, write $F(x, t, z) = \gamma_-(x, t, z)\Phi(t, z)\gamma_-^{-1}(x, t, z)$, where $\Phi(t, z)$ is diagonal and independent of x. Differentiate $F\gamma_- = \gamma_-\Phi$ with respect to x and multiply by γ_-^{-1} . We get $F_x + F\gamma_{-x}\gamma_-^{-1} = \gamma_{-x}\Phi\gamma_-^{-1}$, i.e. $F_x = [\gamma_{-x}\gamma_-^{-1}, F]$. Here $\gamma_{-x}\gamma_-^{-1}$ may be replaced by U since $U - \gamma_{-x}\gamma_-^{-1} = \gamma_-az\gamma_-^{-1}$ commutes with $F = \gamma_-\Phi\gamma_-^{-1}$ (the matrices az and Φ are diagonal). This proves that $F_x = [U, F]$. By (the proof of) the uniqueness in Lemma 2, it follows that

(12)
$$F(x,t,z) = \sum_{l=0}^{\infty} F_l^{(a,b,c_1'(t),\dots,c_l'(t))}(q)(x,t)z^{-l}$$

for some sequence $c_1'(t), c_2'(t), \ldots$ of diagonal matrices depending only on t. For all $k = 1, 2, \ldots$ and all z near ∞ we have

$$\operatorname{tr} F(x,t,z)^{k} = \begin{cases} \operatorname{tr}(b+c_{1}'(t)z^{-1}+c_{2}'(t)z^{-2}+\dots)^{k}, \\ \operatorname{tr}(b+c_{1}z^{-1}+\dots+c_{j}z^{-j})^{k}, \end{cases}$$

(first by the proof of Lemma 2, second by the definition of F after (11)). Since all matrices on the right are diagonal, we conclude

that $c'_l(t) \equiv c_l$ for $l = 1, \ldots, m$. Hence the differential polynomials in (12) coincide with the differential polynomials F_l determined by a, b, c_1, \ldots by Lemma 2. Thus (11) and (12) yield

(13)
$$\gamma_{+t} = V(x, t, z)\gamma_+,$$

where $V(x, t, z) := \sum_{j=0}^{m} F_{m-j}(q)(x, t) z^{j}$.

4) Differentiate (13) with respect to x, (10) with respect to t, equate the results and divide by the invertible matrix γ_+ . This gives the ZCC for U, V defined above, that is, by Lemma 3, the soliton equation (9) for q(x, t). \Box

GEOMETRICAL MEANING OF SOLUTIONS OF THE RP. $\gamma_+(x,t)$ is a parallel frame field with respect to the flat connection $\nabla(q) := d - U(q) dx - V(q) dt$,

$$E_x = UE, \quad E_t = VE, \quad \text{where } E = \gamma_+,$$

and $\gamma_{-}(x,t)$ is a gauge transformation of the trivial flat connection $\nabla(0) = d - az \, dx - bz^m \, dt$ to the connection $\nabla(q)$,

$$dm = \{ U(q) \, dx + V(q) \, dt \} m - m \{ U(0) \, dx + V(0) \, dy \},\$$

where $m = \gamma_{-}, U(q) = az + q,$ $V(q) = bz^{m} + F_{1}(q)z^{m-1} + \dots + F_{m}(q).$ LEMMA 4 (NON-UNIQUENESS OF A GERM $f \in \mathcal{D}$ AS THE "SCATTERING DATA" OF THE "POTENTIAL" $q_f \in \mathcal{O}(x_0)^{od}$). Functions $f, g \in \mathcal{D}$ determine the same solution $q_f(x, t) = q_g(x, t)$ of Eq_m near $(x_0, t_0) \in \mathbb{C}^2 \iff$ the function $f^{-1}g \in \mathcal{D}$ is diagonal $\iff q_f(x, t_0) = q_g(x, t_0)$ near $x_0 \in \mathbb{C}$.

Why should the map $f \mapsto q_f$ be regarded as the inverse scattering transform?

Because it is so, under appropriate reduction of non-uniqueness, whenever the rapidly decaying or finite-gap versions apply.

Non-uniqueness is something useful (see "Addition of a soliton").

4. Examples of local inverse scattering transforms

A. Upper-triangular case and the Laplace transform. Let $u : [0, +\infty) \to \mathbb{C}$ be a locally integrable function with $|u(x)| \leq Ae^{Bx}$ for all $x \geq 0$ and some $A, B \in \mathbb{R}$. The Laplace transform of u is

(LAP)
$$Lu(z) := \int_0^\infty e^{-zx} u(x) dx.$$

The function Lu(z) is holomorphic for $\Re z > B$ and tends to 0 as $\Re z \to +\infty$. If $Lu_1 = Lu_2$, then $u_1 = u_2$. The function Lu(z) is rational (and vanishes at $z = \infty$) $\iff u(x)$ is an exponential

polynomial, that is a finite linear combination of $x^k e^{cx}$ with integer $k \ge 0$ and complex c.

More generally, Lu(z) is holomorphic in a neighbourhood of ∞ (and vanishes at $z = \infty$) $\iff u$ is an entire function of exponential type, i.e. $u \in \mathcal{O}(\mathbb{C}^1)$ and there are A, B > 0 such that $|u(x)| \leq Ae^{B|x|}$ for all $x \in \mathbb{C}$. Then the inverse transform $u = B\varphi$ is called the *Borel transform* and is given by the formula

(BOR)
$$\varphi(z) = \sum_{j=1}^{\infty} \frac{\varphi_j}{z^j} \implies B\varphi(x) = \sum_{k=0}^{\infty} \varphi_{k+1} \frac{x^k}{k!}, \quad x \in \mathbb{C}.$$

LEMMA 5. Fix a diagonal matrix $a = \text{diag}(a_{11}, a_{22})$ with $\alpha := a_{11} - a_{22} \neq 0$ and put $x_0 = 0$, $E_0(x, z) := \exp(azx)$. For every germ $f \in \mathcal{D}$ we regard the solution $q_f : \Omega(f) \to \text{gl}(2, \mathbb{C})$ of Eq_m with $b = c_1 = c_2 = \cdots = 0$ as a function of x only. Then:

(A) f is upper-triangular for $|z| > R_0 \iff q_f(x)$ is uppertriabgular near $x_0 = 0$.

(B) If $q \in O(x_0)$ is upper-triangular and $q = q_f$ for some $f \in D$, then there is a unique upper-triangular $f \in D$ such that $q = q_f$ and $f_{11} = f_{22} \equiv 1$. Define \mathbb{C} -valued functions $\varphi(z)$ and u(x) by putting

$$f(z) = \begin{pmatrix} 1 & \varphi(z) \\ 0 & 1 \end{pmatrix}, \quad q(x) = q_f(x) = \begin{pmatrix} 0 & u(x) \\ 0 & 0 \end{pmatrix}$$

Then the bijection $f \leftrightarrow q$ corresponds to the following relation between $\varphi(z)$ and u(x):

if
$$\varphi(z) = \sum_{j=1}^{\infty} \frac{\varphi_j}{z^j}$$
, then $u(x) = -\sum_{k=0}^{\infty} \frac{\alpha^{k+1} x^k \varphi_{k+1}}{k!}$.

Thus $u(x) = -\alpha B\varphi(\alpha x)$, where $B\varphi$ is the Borel transform (BOR) of φ . In particular, u(x) is an entire function of exponential type. Conversely, any off-diagonal upper-triangular map $q : \mathbb{C}_x^1 \to$ $gl(n, \mathbb{C})$ with n = 2 whose only non-zero entry $q_{12}(x)$ is an entrie function of exponential type, can be written in the form $q = q_f$ for some $f \in \mathcal{D}$.

B. Constant potentials.

In the upper-triangular case, the maps $f \mapsto q_f$ and $q_f \mapsto f$ appear to be linear (after natural normalization). This is not the case in general, already for constant potentials (the simplest case of finitegap potentials).

LEMMA 6. Let $a \in gl(n, \mathbb{C})$ be a diagonal matrix with simple spectrum and $C \in gl(n, \mathbb{C})$ any off-diagonal matrix. Then there is a function $f \in \mathcal{D}$ such that $q_f(x, t_0) = C$ for all $x \in \mathbb{C}^1$. (The choice of b, c_1, \ldots is irrelevant). **Proof** The matrix $a + Cz^{-1}$ is holomorphic in z and equals a at $z = \infty$. Hence, for all z in a neighbourhood of ∞ , its eigenvalues are distinct and their eigenspaces depend holomorphically on z. Thus there is an $f \in \mathcal{D}$ such that the function

$$r(z) := f^{-1}(z)(a + Cz^{-1})f(z)$$

is diagonal and holomorphic in a neighbouhrood of ∞ . Here the columns of f(z) form a basis of eigenvectors of $a + Cz^{-1}$, which is uniquely determined by the condition that f is holomorphic and $f(\infty) = I$. Substituting the Laurent expansions

$$f(z) = I + f_1 z^{-1} + \dots$$
 and $r(z) = r_0 + r_{-1} z^{-1} + \dots$

into the definition of r(z), we get $r_0 = a$ and $r_{-1} = C + [a, f_{-1}]$. But the left-hand side of the last equality is diagonal and the righthand side is off-diagonal. Hence $r_{-1} = 0$. Thus the diagonal function az - zr(z) vanishes at $z = \infty$. This means that the function $z \mapsto e^{(az-zr(z))x}$ belongs to \mathcal{D} for every $x \in \mathbb{C}$. Since the matrices azxand zr(z)x are diagonal, we have

$$e^{azx}f^{-1}(z) = e^{(az-zr(z))x}f^{-1}(z) \cdot f(z)e^{zr(z)x}f^{-1}(z)$$

for all $x \in \mathbb{C}$ and |z| > R. The first factor on the right belongs to \mathcal{D} , and the second is equal to $e^{(az+C)x}$. Thus the Riemann problem with $x_0 = 0$ and $t = t_0$ is solved for all $x \in \mathbb{C}$, and its solution involves $\gamma_+(x, t_0, z) = e^{(az+C)x}$. It follows that $q_f(x, t_0) \equiv C$. \Box

C. Blaschkle factors and addition of a soliton. For any $\alpha, \beta \in \mathbb{C}$ and any projection $P : \mathbb{C}^n \to \mathbb{C}^n$ (i.e. a linear operator with $P^2 = P$) we put

$$B_{\alpha\beta P}(z) := I + \frac{\beta - \alpha}{z - \beta} P = \mu P + (I - P), \qquad \mu := \mu(z) = \frac{z - \alpha}{z - \beta}.$$

For any vector subspaces A, B of \mathbb{C}^n with $A \oplus B = \mathbb{C}^n$ there is a unique projection P such that $A = \operatorname{im} P$ and $B = \ker P$. It is called the *projection onto* A along B. When A, B are regarded as "coordinate axes" in \mathbb{C}^n , the operator $B_{\alpha\beta P}(z)$ multiplies all vectors of the first axis by $\mu(z)$ and leaves all vectors of the second axis fixed. The functions $B_{\alpha\beta P}(z)$ are called *Blaschke factors*. LEMMA 7. Suppose that $E : \mathbb{C} \to \operatorname{GL}(n, \mathbb{C})$ is an entire function, $\alpha, \beta \in \mathbb{C}$ and $P : \mathbb{C}^n \to \mathbb{C}^n$ is the projection onto $A \subset \mathbb{C}^n$ along $B \subset \mathbb{C}^n$. Then $E(z)B_{\alpha\beta P}^{-1}(z)$ is right-factorable \iff the subspaces $E(\alpha)A$ and $E(\beta)B$ are transversal:

 $E(\alpha)A \cap E(\beta)B = \{0\}.$

If this condition holds, then the solution (E_1, f_1) of the Riemann problem $EB_{\alpha\beta P}^{-1} = f_1^{-1}E_1$ is given by the formula

 $f_1(z) = B_{\alpha\beta Q}(z),$

where Q is the projection to $E(\alpha)A$ along $E(\beta)B$.

Let $q_f(x,t)$ be obtained from $f \in \mathcal{D}$ by Theorem 1. Given any $\alpha, \beta \in \mathbb{C}$ and any transversal subspaces $A, B \subset \mathbb{C}^n$, we put $h := B_{\alpha\beta P}f$, where P is the projector to A along B and say that the solution $q_h(x,t)$ of Eq_m is obtained from the solution $q_f(x,t)$ by adding a soliton. We claim that

(AS)
$$q_h(x,t) = q_f(x,t) + (\beta - \alpha)[P_f(x,t), a],$$

where $P_f(x,t)$ is the projector to $\gamma^f_+(x,t,\alpha)A$ along $\gamma^f_+(x,t,\beta)B$. Indeed, suppose that the subspaces $\gamma^f_+(x,t,\alpha)A$ and $\gamma^f_+(x,t,\beta)B$ are transversal for some point $(x,t) \in \Omega(f)$. Put $E_0(x,t,z) := \exp\{az(x-x_0) + (bz^j + c_1z^{j-1} + \cdots + c_j)(t-t_0)\}$. By Lemma 7, the expression

$$E_0(x,t,z)h^{-1}(z) = E_0(x,t,z)f^{-1}(z)B^{-1}_{\alpha\beta P}(z) =$$

= $(\gamma^f_-)^{-1}(x,t,z)\gamma^f_+(x,t,z)B^{-1}_{\alpha\beta P}(z)$

takes the form $(\gamma_{-}^{f})^{-1}(x,t,z)B_{\alpha\beta P_{f}(x,t)}^{-1}(z)E_{1}(x,t,z)$ for some invertible entire function $E_{1}(x,t,\cdot)$. Hence $(x,t) \in \Omega(h)$ and

$$\gamma^h_{-}(x,t,z) = B_{\alpha\beta P_f(x,t)}(z)\gamma^f_{-}(x,t,z)$$

for all z near ∞ . Comparing the Laurent coefficients for $|z| > R_0$, we obtain (AS).