SOLITON EQUATIONS
AND THEIR HOLOMORPHIC SOLUTIONS

VIII School on Geometry and Physics, Bialowieza, June 2019

PLAN OF THE COURSE
Lecture 1. Riemann problem and soliton equations.
Lecture 2. Local holomorphic inverse scattering.

Lecture 3. The Painlevé property.



Aims:

Describe all (1 4 1)-dim soliton equations of parabolic type
and ALL of theit local holomorphic solutions
using a local version of the inverse scattering method.

Discuss most interesting classes of solutions.

Give a CRITERION for solubility of the Cauchy problem
in terms of the scattering data of the initial condition.

Prove the Painlevé property: ALL local holomorphic
solutions are globally meromorphic and monodromy-free
in the spatial variable.



LECTURE 1

RIEMANN PROBLEM AND SOLITON EQUATIONS



1. Examples and history

Korteweg—de Vries, nonlinear Schrodinger and Boussinesq eqs

(1) Up = QUgyy + DU, a,b e C\ {0},
(2) iUy = QUge + bulul?, a,be R\ {0},
(3) Uy = QUgpps + DUUL, + bUZ, a,be C\ {0}

with |u(z,t)|? in (2) understood as u(z,t)u(z,1).



(KdV) Ut = QUgpy + DUUL
describes long waves on shallow water.

The inverse scattering method as discovered

by Gardner, Green, Kruskal, Miura 1967:

when the potential u(z,-) evolves according to (KdV),
the evolution of its scattering data

(spectral characteristsics of L = 02 + u(x,-) on L*(R.))
is linear and can be integrated explicitly!



Explanation (Lax 1968): (KdV) with a =1/4, b= 3/2 is the

compatibility condition for the auxiliary linear problem

(4) Lp =X b, =Py

where L := 92 +u and P := 93 + (3/2)ud, + (3/4)uy,
i.e. equation (KdV) can be written as| L; = [P, L] |.

—> the evolution of the operator L is its conjugaton
by a t-dependent unitary operator on L?(RR})

— the evolution of its spectral characteristics is simple.



(NLS) Uy = QUgy + bulul?
describes propagation of wave packages in nonlinear dispersive media.

Zakharov and Shabat (1971) replaced the scalar second-order
ODE Ly = MY in (4) by a first-order 2 x 2-matrix system:

(5) E,=UEFE, andthen E;=VE

where U(z,t, z) and V(x,t, z) are polynomials of degree 1 and 2
in the spectral parameter z € C related to X in (4) by A = 22,



Hence (NLS) arises from the zero curvature equation
(6) U -V, +[U,V]=0

(the compatibility condition of the auxiliary linear problem (5);
first explicitly written and used in soliton theory by Novikov 1974).

The Boussinesq equation (3) (describing water waves that can
move left or right) was similarly studied by Zakharov (1973):

replace 2 x 2-matrices in (5) or the second-order operator L in (4)
by 3 X 3-matrices or a third-order operator.



2. Zero curvature equations

LEMMA 1. Let Q C C2, be a simply connected domain and
U,V : Q — gl(n,C) holomorphic maps. Then the system

(ALP) E,=UFE, E,=VE
has a holomorphic solution E : Q — GL(n,C) if and only if
(ZCC) U —V,+ U V] =0 everywhere in .

DEFINITION. A (1 + 1)-dimensional soliton equation is the
ZCCU; -V, +[U, V] =0, where U,V : Q x CP} — gl(n,C)
are rational functions of z € CP! such that the expression
Us — V, + [U, V] is independent of z.



Unknown functions are the entries of the gl(n, C)-valued
coefficients of the partial fraction decompositions of U, V.
Some of them can be expressed in terms of the others
from the condition “U; — V, + [U, V] is independent of z".

The type of a soliton equation is determined by the lists
of poles of U and V' counting multiplicities. For example,

(1) the poles of U and V are single, simple and distinct
—> hyperbolic type (PCM, Sine-Gordon);

(2) the poles of U and V are single and coincide —>
parabolic type (Kdv, NLS, Boussinesq).



Structure of soliton equations of parabolic type.

Consider the case when the common pole of U and V is oo,
so U and V are polynomials in 2z, degU =1 and degV =m > 2.
Then there is no loss of generality in assuming that

{ U(x,t,z) =az+ q(z,t),
V(z,t,z) =bz™ +ri(z,t) 2™+ + (2, t),

where a,b € gl(n,C) are diagonal matrices,

a has simple spectrum (all eigenvalues are distinct),
q : 2 — gl(n,C) is holomorphic and off-diagonal,
T1yeeyTm : 2 — gl(n,C) are holomorphic.



Claim: the condition “U; — V, + [U, V] is independent of 2"
determines ry,...,ry, as differential polynomials r; = F(q)
(i.e. polynomials in g and its derviatives with respect to x)
uniquely up to diagonal constants of integration at each step.

The functions F;(q) satisfy the resolvent equation

oo

F,=[U,F]|, where U :=az+q, F::b—i—z
j=1

)

and we have U; — V, + [U, V] = q; — |a, Fin+1(q)]. Hence
ZCC takes the form |q; = [a, Fint1(q)] |

In more detalil,



LEMMA 2. Fix a,b as above and any point x¢o € C and put
O(xo) := {holomorphic gl(n,C)-valued germs q(x) at xo},
O(z0)°¢ := {all off-diagonal q € O(xp)}.

Then for every sequence ci1,ca,--- € gl(n,C) of diagonal
matrices there is a unique sequence of differential polynomials
F; : O(zo) — O(x0), 1=0,1,2,... such that

1) Fo(q) = b for all ¢ € O(xy),

2) F;(0)=c¢; forallj > 1,

3) the formal power series F(q,z) =Y " Fi(q)z77 satisfies

0.F = [az+q,F] for all g € O(z0)°.



Proof is not competely trivial since the resolvent equation

833Dj—1 — [Q7Nj—1]d7
la, Nj| = 0;N;j_1 — ¢, Fj—_1]od

(where j = O, 1,2, ceey F_1 = 0, Dj = (Fj)d; N; = (Fj)od)
determines F;(q) only as integro-differential polynomials in ¢
(since a has simple spectrum, the operator X — [a, X]

is invertible on the space of off-diagonal matrices in gl(n, C)).
Use the equalities 9, F* = [U, F*] = 0, tr F* =0

to get another formula for D;, solving a linear system. []



LEMMA 3. Fix a,b as above. Then
Ui—Vy+|U,V]is independent of z <= r; = F;(¢)(j =1,...,m)

for some sequence c1(t),...,cn(t) of diagonal matrices holomor-
phically depending on t in the projection of €2 to the t-axis.

In this case, the ZCC|Uy — V, + [U, V] =0]| with U = az + ¢
and V = az™ + Fi1(q)z™ ' + -+ F,,(q) takes the form

(Eq,,) ¢ = [a, Frny1(q)],

where q(x,t) is the unknown off-diagonal gl(n, C)-valued germ at
the point (zg,t9) € C?.




Examples. (almost always b =a, ¢c; =c2 =--- = 0)

1) The hierarchy of the heat equation:

(18w

—>  (Eq,,) takes the form

2) The Korteweg—de Vries equation:

(1 8) e (!

u(x,t)

0 ) —
Oy = 0,'u
u(x,t)

0 ) —

—>  (Eqs3) takes the form |u; = ugzz, — 6uuy |.




3) The nonlinear Schrodinger equation:

- (4 ) e (e ") =

—> (Eqz) takes the form |iu; = —uzy — 2ulul?|.

4) The modified Korteweg—de Vries equation (C := (c2)11 — (€2)22):

a=(1(/)2 —?/z)’ Q(x’t):<u<§,t> U(Zg’t)> —

—>  (Eqs) takes the form |u; = uyqe, + (6u2 + Cuy |.




3. Riemann problem and ZS dressing

Riemann problem: Let D, D_ C CP! be disjoint open disks
with D, UD_ = CP!. A continuous function v : I' — GL(n, C)
on the circle I' := D, N D_ is said to be left-factorable
(resp. right-factorable) if there are continuous functions

v+ : D4 — GL(n, C), holomorphic on D4 and satsifying

y=~4v- lon T (resp. |y =~"1y,|onT).

We regard v as data of the Riemann problem, and the pair
(74,7—) as a solution. When a solution exists, it is unique
up to right (resp. left) multiplication by A € GL(n,C).



Zakharov—Shabat dressing method: Let (Uy, V) be a holomorphic
solution of ZCC on Q C C2,, Ey a holomorphic solution of ALP

xt!

on 2, Ey(xg,to) =1, and g : I' — GL(n, C) right-factorable,
where I' = D, N D_ does not pass through the poles of Uy, V5.

For every (z,t) € {2 we pose the Riemann problem of finding
continuous 6+ : D4 — GL(n, C) holomorphic on D with

Eo(z,t,2)g(2)Ey Mz, t,2) = 0"  (x,t,2)04 (2,t,2), z€T.

A solution 6. exists in a neighbourhood of (z,tg) and,

actually, in {2 except maybe a pole along a complex curve.



For uniqueness require 0_(x,t, z9) = I for all (x,t)
and some zg. Then the pair (U, V1) defined by the formulae

<9+)339-|_-1 + 9+U09-|_-1’ z €< E+,

Ui(z,t,z) = _
1 ) {(9_)$9:1+9_U00:1, z€D_

and similarly for Vi(z,t, z) with Uy — V;y and 0, — 0,
is a meromorphic solution of ZCC on 2 with the same
divisors of poles in z for Uy, V; and Uy, V.

Proofs will be given in a more concrete context below.

DEFINITION. The solution (Uy, V1) is said to be obtained by
dressing the solution (Uj, V) by means of g.



A limiting case of dressing for SEPT.

For soliton equations of parabolic type, the divisors of poles
of U and V are oo and moo respectively. Hence it is natural

to shrink the disk D_ = {|z| > R} U {0} to a single point oo
and expand D, = {|z| < R} to the whole plane C as R — +oc.
The dressing function g(z) becomes an element of the set

D := {holom GL(n, C)-valued germs f(z) at oo with f(co) =1}

We will dress the zero solution (Up, Vj) = (0,0) of ZCC or,
equivalently, the solution ¢(z,t) = 0 of equation (Eq,,),
by the invertible holomorphic germ f~1(z) for every f € D.



THEOREM 1. Suppose that a,b,cq,co,- - € gl(n,C) are diago-
nal matrices and a has simple spectrum. Fix an integer m > 2
and a point (zg,tg) € C*. For every f € D let Q(f) be the set of
all (x,t) € C? such that the function

v(z,t,2) := exp{az(z—x0)+(bz™+c12™ - - Aep) (t—to) Y fH(2)

is right-factorable on some (and then any) circle {|z|=R}, Ry <
R < 4o00. Then Q(f) C C? contains a neighbourhood of (zo,to).
For every point (x,t) € Q(f) let (v4(z,t,2),7-(x,t,2)) be the
solution of the Riemann problem

(1) (&, t,2) =72 (2,8, 2)v4 (2,8,2),  Ro <|2| < +oo



with normalization v_(z,t,00) = I. Put

(8) q(x,t) := lim z|y_(z,t,2) — I,al.

Z—r 00

Then q : Q(f) — gl(n,C) is off-diagonal, holomorphic at (xg,to)
and satisfies the soliton equation (Eq,, )

(9) q: = la, Fina1(q)]  in a neighbourhood of (zq,to),

where Fj : O(zg) — O(zo) (j = 0,1,2,...) is the sequence of
differential polynomials determined by the sequence a,b,cy,... by
Lemma 2.

REMARK. In what follows we denote this ¢(z,t) by ¢f(z,?).



Proof. 1) The Riemann problem v = y_'~v, is equivalent
(for every R > Ry) to a linear equation A¢ = 7 on the Banach
space E of all gl(n,C)-valued functions holomorphic for |z| > R,
continuous for |z| > R and vanishing at z = oc.

(Here n := —P~ and A¢ := P(&7), where P is the operator of
taking the negative part of a Laurent series. The solutions v
are recovered by the formulae v_ =1 +¢&, v+ = (I +&)7v.)
The operator A and the vector 1 depend holomorphically on
(z,t) € C?, and A =1d at (z,t) = (z0, o). Hence A is
invertible in a neighbourhood of (zg,%y) and the solution &

is holomorphic there. Thus Q(f) contains a neighbourhood

of (xg,to) and v+ (z,t) are holomorphic there.



2) Claim: the function vﬂqll —az is independent of z and equal
to q(x,t), so that for all (x,t) near (z¢,tp) and all z € C we have

(10)  ~i. =U(z,t,2)yy, where U(x,t,z):=az+ q(z,t).

Indeed, write vy (x,t,2) = v_(2,t,2)Eo(x,t,2) f~"(2) (where
Eo(z,t,2) := exp{az(z — xo) + (027 + 1277 4+ -+ ¢j)(t —to)})
and differentiate with respect to x:

Y+ = (=Bof a(v-Eof )t =
(since f is independent of x) = (v_Ep).(v7_FEy) ' =

(Yoz +v—a2)Eo(v_Eo) ™' = y_oy" ' + 2z y_ay~ .



As Laurent series in z, the left- and right-hand sides of

VaaVg = V-2V 2 eyl

contain only powers > 0 and < 1 respectively. Hence both
are polynomials of degree < 1 in z:

Yy = {27-07" "},

where {-}1 is the “non-negative part” of a Laurent series:

if X =53 _ X,2" then Xy => > X,z

A calculation gives {zy_(x,t, 2)ay='(x,t,2)}+ = az + q(x, 1),
where g(x,t) is defined by (8). This proves (10).



3) Repeating part 2 with x replaced by ¢, we have

(11) fY—l—thI—l — {ZmF(a},t,Z)}+,

where F(QE, t Z) = 7- (QE, t z)<b+clz_1+' ) '+sz_m)7— (QE, t z)_l'
Claim: for every fixed ¢ the function F'(x,t, ) satisfies the resolvent

equation | F,, = [U, F|| near zy, where U(z,t,2) = az + q(z,t). In-
deed, write F'(x,t,2) = vy_(x,t, 2)®(t, 2)y_" (x, t, z), where ®(t, 2)
is diagonal and independent of z. Differentiate F'y_ = v_® with re-
spect to  and multiply by v=!. We get Fj,+Fvy_,v=' = v_, "1,
i.e. Fy = [y_ov~', F]. Here y_,v~' may be replaced by U since
U—v_zv-" =v_azy~' commutes with F' = y_®~_" (the matrices
az and @ are diagonal). This proves that F, = [U, F].




By (the proof of) the uniqueness in Lemma 2, it follows that

(12) F<x7t7 Z) — ZFl(a,b,C/l(t),.”,C;(t))(q><x,t)z_l
=0
for some sequence ¢ (t),c5(t),... of diagonal matrices depending

onlyont. Forall k=1,2,... and all z near co we have

tr(b+ i (t) 2zt +ch(t)z72 +...)F,

tl“F CU,t,z k o |
( ) {tr(b—{—clz_l_|_..._*_cjz—g)k7

(first by the proof of Lemma 2, second by the definition of F' af-
ter (11)). Since all matrices on the right are diagonal, we conclude



that ¢;(t) = ¢; for [ = 1,...,m. Hence the differential polynomials
in (12) coincide with the differential polynomials F; determined by
a,b,c1,... by Lemma2. Thus (11) and (12) yield

(13) T+t = V(xvta z)7—|—7
where V(z,t,2) := Z;'n:() Fr_i(q)(z,t)27.

4) Differentiate (13) with respect to x, (10) with respect to ¢,
equate the results and divide by the invertible matrix v,.. This gives
the ZCC for U,V defined above, that is, by Lemma 3, the soliton
equation (9) for g(x,t). O



(GEOMETRICAL MEANING OF SOLUTIONS OF THE RP.

7+(x7t)

is a parallel frame field with respect to the flat connection

V(g) :=d—U(qg)dz — V(q) dt,

and

Y- (z,1)

E,=UE, E;,=VE, where E =,

Is a gauge transformation of the trivial flat connection

V(0) =d — azdx — bz™ dt to the connection V(q),

dm = {U(q) dz + V(q) dt}m — m{U(0) dx + V(0) dy},

where m =~v_, U(q) = az + q,
V(g) = b2 + Fi(q)z™ " + -+ Fu(q).



LEMMA 4 (NON-UNIQUENESS OF A GERM f € D AS THE
“SCATTERING DATA” OF THE “POTENTIAL” q; € O(z0)°?).
Functions f,g € D determine the same solution qs(x,t) = q,(z,t)
of Eq,,, near (zg,ty) € C* <= the function f~1g € D is diagonal
< qr(x,to) = q4(x,to) near xo € C.

Why should the map f > gs be regarded as the inverse scattering
transform?

Because it is so, under appropriate reduction of non-uniqueness,
whenever the rapidly decaying or finite-gap versions apply.

Non-uniqueness is something useful (see “Addition of a soliton”).



4. Examples of local inverse scattering transforms

A. Upper-triangular case and the Laplace transform.
Let w : [0,+00) — C be a locally integrable function
with |u(z)] < AeP* for all z > 0 and some A, B € R.

The Laplace transform of w is
(LAP) Lu(z) := / e “u(x)dx.
0

The function Lu(z) is holomorphic for ¥z > B and tends to 0 as
Rz — +oo. If Luy = Lus, then u; = wuy. The function Lu(z)
is rational (and vanishes at z = o0) <= u(z) is an exponential



polynomial, that is a finite linear combination of 2¥e®® with integer
k > 0 and complex c.

More generally, Lu(z) is holomorphic in a neighbourhood of oo
(and vanishes at z = 00) <= w is an entire function of exponential
type, i.e. u € O(C!) and there are A, B > 0 such that |u(z)| <
AeBl7l for all z € C. Then the inverse transform u = By is called
the Borel transform and is given by the formula

(BOR) ¢(2) = 2 —  Bp@)=Y ¢por, z€C



LEMMA 5. Fiz a diagonal matriz a = diag(ai1, ass) with o :=
a1 — aze # 0 and put xg = 0, Ey(x,2) := exp(azx). For every
germ f € D we regard the solution qf : Q(f) — gl(2,C) of Eq,,
with b=—c1 =cy = --- =0 as a function of x only. Then:

(A) f is upper-triangular for |z| > Ry <= q¢(x) is upper-
triabgular near xo = 0.

(B) If g € O(xo) is upper-triangular and ¢ = q¢ for some f € D,
then there is a unique upper-triangular f € D such that ¢ = qy
and fi1 = foa = 1. Define C-valued functions p(z) and u(x) by
putting

=5 A7) a@=a@=(7 ).



Then the bijection f < q corresponds to the following relation

between p(z) and u(z):

0 0 k41,.k
: ' QT Pr41
if @(z) = g Z—j, then wu(x) = — g I :
k=0 '

Thus u(x) = —aBy(az), where By is the Borel transform (BOR)
of ¢. In particular, u(z) is an entire function of exponential
type. Conversely, any off-diagonal upper-triangular map q : CL —
gl(n, C) with n = 2 whose only non-zero entry q12(x) is an entrie
function of exponential type, can be written in the form q = qy for

some f € D.



B. Constant potentials.

In the upper-triangular case, the maps f — ¢ and g5 — f appear
to be linear (after natural normalization). This is not the case in
general, already for constant potentials (the simplest case of finite-
gap potentials).

LEMMA 6. Let a € gl(n,C) be a diagonal matriz with simple
spectrum and C € gl(n,C) any off-diagonal matrixz. Then there
is a function f € D such that q¢(z,t9) = C for all x € C*. (The
choice of b,cy, ... is irrelevant).



Proof The matrix a + Cz~1 is holomorphic in z and equals a at
z = 00. Hence, for all z in a neighbourhood of oo, its eigenvalues
are distinct and their eigenspaces depend holomorphically on z. Thus
there is an f € D such that the function

r(z) = 71 (2)(a+ C27 ) f(2)

is diagonal and holomorphic in a neighbouhrood of co. Here the
columns of f(z) form a basis of eigenvectors of a + Cz~1, which
is uniquely determined by the condition that f is holomorphic and
f(o00) = I. Substituting the Laurent expansions

f(2)=T+fiz7'+... and r(z)=rg+r_1z " +...



into the definition ofe r(z), we get 1o = a and r_; = C + |a, f_1].
But the left-hand side of the last equality is diagonal and the right-
hand side is off-diagonal. Hence »_; = 0. Thus the diagonal function
az — zr(z) vanishes at z = co. This means that the function z —
e(22=27(2))% helongs to D for every x € C. Since the matrices azx
and zr(z)x are diagonal, we have

eaz:cf—l(z) _ e(az—zr(z))a}f—l(z) ) f(z)ezr(z)ccf—l(z)

for all x € C and |z| > R. The first factor on the right belongs to
D, and the second is equal to e(**+)%  Thus the Riemann problem
with zp = 0 and t = ¢ty is solved for all z € C, and its solution
involves v, (z,to, z) = el®*+C) |t follows that qs(z,t) = C. O



C. Blaschkle factors and addition of a soliton.
For any a,3 € C and any projection P : C* — C" (i.e. a linear
operator with P? = P) we put

ﬁ_aP:uP—i—(I—P), u::u(z):z:g.

For any vector subspaces A, B of C"* with A& B = C" there is
a unique projection P such that A = im P and B = ker P. It is
called the projection onto A along B. When A, B are regarded as
“coordinate axes” in C", the operator B,sp(2) multiplies all vectors
of the first axis by u(2) and leaves all vectors of the second axis fixed.
The functions B,gp(2) are called Blaschke factors.

BaBP(Z) =1+



LEMMA 7. Suppose that E : C — GL(n,C) is an entire func-
tion, a, 8 € C and P : C* — C" 1is the projection onto A C C"
along B C C*. Then E(z)Bojﬁlp(z) is right-factorable <= the

subspaces E(a)A and E(B)B are transversal:
E(a)AN E(B)B = {0}.

If this condition holds, then the solution (E1, f1) of the Riemann
problem EB;;P = fr 1B, is given by the formula

J1 (z) — BQBQ(Z)?

where Q is the projection to E(a)A along E(B)B.



Let g¢(x,t) be obtained from f € D by Theorem 1. Given any
a, 3 € C and any transversal subspaces A, B C C", we put h :=
B.sgpf, where P is the projector to A along B and say that the
solution gn(z,t) of Eq,, is obtained from the solution g¢(x,t) by
adding a soliton. We claim that

(AS) Qh<x7t) :qu(CE,t)—I—(ﬁ—a)[Pf<CE’,t),a],

where Py(z,t) is the projector to fyi(:v,t,oz)A along fyi(x,t,ﬂ)B.
Indeed, suppose that the subspaces yi(x,t,a)A and 7_{(:(:,15,6)3
are transversal for some point (z,t) € Q(f). Put Ey(z,t,z2) =
exp{az(z — zo) + (027 + 12?71+ -+ ¢;)(t — to)}. By Lemma?7,



the expression

Eo(z,t,2)h~ 1 (2) = Ey(z, t, z)f_l(z)B(;ﬁlp(z) —

= (v) M, t, )l (2,8, 2) B p(2)

takes the form (vf)_l(x,t,z)B;ng(x n(2)E1(2,t,2) for some in-

vertible entire function Ey(z,t,-). Hence (z,t) € Q(h) and

fyﬁ (CE’, t Z) — BaBPf (x,t) (Z)fyi (:E7 t Z)

for all z near co. Comparing the Laurent coefficients for |z| > Ry,
we obtain (AS).



