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Abstract. We develop a local version of the inverse scattering method for
studying soliton equations of parabolic type (this includes, for example,
Korteweg–de Vries, nonlinear Schrödinger, and Boussinesq equations,
but not sine-Gordon). The potentials are germs of holomorphic matrix-
valued functions, without any boundary conditions. The scattering data
are matrix-valued formal power series in the spectral parameter. We give
a precise description of all possible scattering data and exact criteria for
solubility of the local holomorphic Cauchy problem for a soliton equation
of parabolic type in terms of the scattering data of the initial conditions.
As an application, we prove the strongest possible version of the Painlevé
property for such equations: every local holomorphic solution admits a
global meromorphic extension with respect to the space variable.
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1. Introduction

The first general result in the theory of partial differential equations was the
Cauchy–Kowalevsky theorem [1,2]. We need only the following simple version
of it. Let P be a holomorphic function of x, t in a neighborhood of a given
point (x0, t0) ∈ C2 and a polynomial in the other variables. Then the Cauchy
problem

∂mt u = P (x, t, {∂kx∂ltu}k+l≤m,(k,l)6=(0,m));

∂jt u(x, t0) = ϕj(x), 0 ≤ j ≤ m− 1,

This paper has been written with the financial support of the Russian Foundation for Basic
Research (grants no. 13-01-12417, 14-01-00709, 13-01-00622).



2 A. V. Domrin

has a unique local holomorphic solution u(x, t) in a neighborhood of (x0, t0)
for all holomorphic germs ϕ0, ϕ1, . . . , ϕm−1 ∈ O(x0). To explain the neces-
sity of the conditions k + l ≤ m and (k, l) 6= (0,m), Kowalevsky [2] estab-
lished the following theorem on forced analytic extension for solutions of the
heat equation. Each solution u ∈ O(D) of the equation ut = uxx on an
arbitrary bidisk D = {(x, t) ∈ C2 | |x − x0| < ε1, |t − t0| < ε2} admits an
analytic continuation to a solution ũ ∈ O(S) of the same equation on the
strip S = {(x, t) ∈ C2 | |t− t0| < ε2}. In other words, every local holomorphic
solution u(x, t) extends to an entire function of x for each admissible value
of t. Subsequent works of Salekhov [3], Kiselman [4] and Zerner [5] showed
that the same assertion holds for all local holomorphic solutions u(x, t) of all
equations in the following larger classes:

∂pt u = ∂mx u+

m−1∑
j=0

cj∂
j
xu, (1)

∂mx u =
∑

k+l<m

ckl∂
k
x∂

l
tu, (2)

∂mx u =
∑

k+l<m

akl(x, t)∂
k
x∂

l
tu, (3)

where m ≥ 2 and p, 1 ≤ p < m are integers, cj , ckl ∈ C are constant
coefficients, and the functions akl ∈ O({(x, t) ∈ C2 | |t−t0| < δ}) are assumed
to be entire functions of x and holomorphic germs in t at the point t0 ∈ C.
Modern exposition of the results about analytic extension of holomorphic
solutions of linear partial differential equations is given in Hörmander’s well-
known monograph [6, § 9.4], and papers of Henkin [7] and Rigat [8].

Up to now, all attempts to generalize these results and approaches to
nonlinear equations and systems led only to partial and sporadic results (see,
for example, [9, 10] and references therein). One can mention the extensive
recent studies of the dissipative smoothing phenomenon (the regularizing
effect of dispersive evolutionary equations of mathematical physics), which
produce results looking very similar to the forced analytic extension (see
various approaches in [11, 12] and references therein). However, the solution
u(x, t) in these results must always satisfy certain global restrictions as a
function of x for t = t0 ∈ R, and the conclusion about analytic extension
to a neighborhood of the real axis R1

x ⊂ C1
x is derived only for real t > t0.

There are several exceptions from this rule [13,14], but neither of them gives
any information about analytic extension of arbitrary local solutions that are
holomorphic in x and t.

It was a long-standing challenge to obtain such information at least in
the case of soliton equations1, where it is referred to as “rigorous Painlevé
analysis”. As Kruskal et al. put it [15, p. 195], “To date there is no proof that
the Korteweg–de Vries equation possesses the Painlevé property. The main
problem lies in a lack of methods for obtaining the global analytic description

1Of parabolic type since the hyperbolic case is trivial by the Cauchy–Kowalevsky theorem.
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of a locally defined solution in the space of several complex variables.” In what
follows we present such a method (which was suggested in [16, 17]) and use
it to give a definitive answer to the question of analytic continuation of all
local solutions (see Theorem 1 below).

Before doing this, we briefly explain the notion of a soliton equation
starting with the most popular examples:

ut = auxxx + buux, a, b ∈ C \ {0}, (4)

utt = auxxxx + buuxx + bu2x, a, b ∈ C \ {0}, (5)

iut = auxx + bu|u|2, a, b ∈ R \ {0}. (6)

In (6), |u|2 is understood as u(x, t)u(x, t). The inverse scattering method
first appeared as a tool for solving the Korteweg–de Vries equation (4) (with
real a, b), which describes long waves on shallow water. It was noted in the
pioneering paper of Gardner, Green, Kruskal and Miura [18] that if the po-
tential u(x, t) evolves according to (4), then the evolution of its scattering
data (certain spectral characteristics of the operator L = ∂2x + u(x, t) on
the Hilbert space L2(R1

x)) turns out to be linear and “explicitly integrable”,
which enables one to construct examples of solutions and study the properties
of all solutions in certain classes. An explanation of the unexpected success
of this approach was given by Lax [19], who showed that the equation (4) (to
be definite, with a = 1/4, b = 3/2) is a necessary and sufficient condition for
solubility of the auxiliary linear problem

Lψ = λψ, ψt = Pψ (7)

for the operators L := ∂2x + u and P := ∂3x + (3/2)u∂x + (3/4)ux. In other
words, (4) may be written in the form Lt = [P,L]. Since P is skew-Hermitian,
it follows that the evolution of L consists in its conjugation by a t-dependent
unitary operator on L2(R1

x). This conjugation clearly preserves the spectrum,
and then it is no surprise that the more refined spectral charateristics (scat-
tering data) also evolve in a simple and tractable way.

The nonlinear Schrödinger equation (6) describes the evolution of a
slowly varying dispersive wave envelope in nonlinear media and arises in
optics, hydrodynamics and plasma physics. It was first studied in terms of
the inverse scattering method by Zakharov and Shabat [20], who modified (7)
replacing the scalar second-order differential equation Lψ = λψ by a matrix
first-order 2 × 2-system of differential equations with subsequent reduction
(that is, a choice of matrices of special algebraic structure: in the present
case, skew-Hermitian). The auxiliary linear problem takes the form

Ex = UE, Et = V E (8)

for some matrix-valued polynomials U(x, t, z) and V (x, t, z) of degrees 1
and 2, respectively in the spectral parameter z ∈ C (which is related to
the parameter λ in (7) by the formula λ = zn in case of n × n-matrices).
Hence the equation (6) turned out to be written, although implicitly, as a
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reduction of the zero curvature equation

Ut − Vx + [U, V ] = 0, (9)

which plays a fundamental role in our approach. The first explicit presenta-
tion of soliton equations as reductions of zero curvature equations and first
corollaries of this presentation are due to Novikov [21].

Finally, the Boussinesq equation (5) describes water waves (like the Kor-
teweg–de Vries equation) but admits wave motion in any direction (unlike the
Korteweg–de Vries equation). It was studied in terms of the inverse scattering
method by Zakharov (1973) and turned out to be the first physically relevant
example where the 2 × 2-matrices in (8) or second-order operators L in (7)
should be replaced by 3× 3-matrices or third-order operators.

Thus all equations (4)–(6) are reductions of (9), where U and V are
polynomials in z, the degree of U is equal to 1 and the degree of V is equal
to m ≥ 2. Taking this property for the definition2 of a soliton equation of
parabolic type, we shall give a complete answer to the question about analytic
continuation of local holomorphic solutions of such equations. The situation
appears to be almost the same as for the linear equations (1)–(3) with the only
difference: the solutions now extend to globally meromorphic (not necessarily
entire) functions of x.

Theorem 1. For each of equations (4)–(6), every local holomorphic solution
u(x, t) in a bidisk D = {(x, t) ∈ C2||x − x0| < ε1, |t − t0| < ε2} (with
real centre (x0, t0) ∈ R2 in case (6)) admits an analytic continuation to a
meromorphic function ũ(x, t) in the strip S = {(x, t) ∈ C2 | |t− t0| < ε2}.

It follows from the Cauchy–Kowalevsky theorem (with x as a time vari-
able) that Theorem 1 is unimprovable: for each of equations (4)–(6) one can
find a solution u whose extension ũ admits no further extension (holomor-
phic or meromorphic) beyond the strip S. In other words, the envelope of
meromorphy of any local holomorphic (or meromorphic) solutions covers the
whole complex line in the x-direction and may be arbitrary (any prescribed
Riemann surface over the t-axis) in the t-direction.

To prove Theorem 1, we develop a local version of the inverse scattering
method for soliton equations of parabolic type (this method was previously
used only for equations of hyperbolic type, where the results and techniques
are quite different; see [22, Ch. I] or [23, Part II, Ch. I, §§ 6–8]). The po-
tentials are holomorphic germs without any boundary conditions. When one
additionally imposes rapidly decaying or quasiperiodic (finite-gap) bound-
ary conditions, the local version becomes naturally isomorphic to the cor-
responding standard version of the inverse scattering method. This may be
regarded as a step towards solving another old puzzle: give a unified treat-
ment of finite-gap solutions and rapidly decaying solutions (in the words of
Bennequin [24, pp. 35–36], “. . . comment marier les solutions géometriques,
attachées aux courbes algebriques [. . . ] avec les diffusons qui viennent du

2This definition will be sharpened in § 2.
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scattering-inverse (solutions L2 de KdV par exemple)?”). Many other appli-
cations of the local inverse scattering approach are yet to be developed.

Structure of the paper. In § 2 we recall the construction of some holo-
morphic solutions of zero curvature equations using a very simple version of
the Riemann problem. It serves to motivate our approach and describe the
algebraic structure of zero curvature equations. Then § 3 introduces the main
definitions and results of the local inverse scattering method. We give only
the barest sketches of proofs (along with references to their full versions) but
preserve all motivations and accurate statements in the hope to present the
logical structure of the theory clearly and comprehensively. In § 4 we formally
deduce Theorem 1 from the results of § 3. Thus our exposition is organized
as a proof of Theorem 1 and all other results should be regarded as lemmas.
However, we call some of them theorems in view of their importance.

2. The Riemann problem and zero curvature equations

We start with the zero curvature equations (9), where U(x, t, z), V (x, t, z)
are gl(n,C)-valued3 rational functions of an auxiliary parameter z with coef-
ficients depending on the space and time variables x, t. Here the poles of U, V
must be fixed in advance and independent of x, t, and the coefficients of a ra-
tional function are defined as the coefficients of its partial fraction expansion
or, equivalently, as the coefficients of the principal parts of its Laurent expan-
sions at all poles. A holomorphic solution of (9) on a domain Ω ⊂ C2

xt is a
pair of rational gl(n,C)-valued functions U, V of z with prescribed positions
and multiplicities of poles such that all coefficients of U, V are defined and
holomorphic on Ω and all coefficients of the rational function Ut−Vx+[U, V ]
of z are identically equal to 0 on Ω. Equation (9) with a fixed z (different
from the poles of U and V ) holds on a simply connected domain Ω ⊂ C2

xt

if and only if the auxiliary linear system (8) with the same value of z has a
holomorphic solution E : Ω→ GL(n,C). Note that this solution is unique up
to right multiplication by an invertible matrix (possibly depending on z).

Our approach uses the Riemann problem (see, for example, in [25,
Ch. III] or [23, Part I, Ch. II and Part II, Ch. I, §§ 6–8]) on factorization of
matrix-valued functions on a circle, or rather a generalization of this prob-
lem to the case of divergent series of Gevrey type (see the next section). Let
D+, D− be disjoint open disks whose closures cover the whole extended com-
plex plane D+∪D− = C := C∪{∞}. A continuous function γ : Γ→ GL(n,C)
on the circle Γ := D+∩D− is said to be left-factorable (resp. right-factorable)
if there are continuous functions γ± : D± → GL(n,C) that are holomorphic
on D± and satisfy γ = γ+γ

−1
− on Γ (resp. γ = γ−1− γ+ on Γ). We regard the

3Throughout the paper gl(n,C) stands for the set of all n × n-matrices with complex

entries, GL(n,C) is the group of all invertible matrices in gl(n,C), and [A,B] = AB−BA
is the commutator of matrices A,B ∈ gl(n,C).
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function γ as data of the Riemann problem and the pair (γ+, γ−) as a solu-
tion. If a solution exists, it is unique up to right (resp. left) multiplication of
both elements of the pair by the same invertible constant matrix.

We now describe a holomorphic version of the Zakharov–Shabat dressing
method [26]. Let (U0, V0) be a holomorphic solution (which may, for example,
be identically equal to zero) of equation (9) on a domain Ω ⊂ C2, and let E0 be
the corresponding solution of the auxiliary linear problem (8) normalized by
the condition E0(x0, t0, z) = I (the identity matrix) for all z, where (x0, t0) ∈
Ω is a fixed point. Consider any covering of the extended complex plane C by
the disks D+, D− such that the circle Γ = D+ ∩D− contains no poles of the
rational functions U0, V0, and take any right-factorable continuous function
g : Γ→ GL(n,C). For every (x, t) ∈ Ω pose the Riemann problem of finding
invertible continuous functions θ± : D± → GL(n,C) that are holomorphic
on D± and satisfy

E0(x, t, z)g(z)E−10 (x, t, z) = θ−1− (x, t, z)θ+(x, t, z) for z ∈ Γ. (10)

To make the solution θ± unique, we fix a point z0 ∈ D− and impose the ad-
ditional condition θ−(x, t, z0) = I for all x, t. By a theorem of Malgrange [27,
§ 4], the set Ωg of all points (x, t) ∈ Ω for which the Riemann problem (10)
is soluble, is either the whole domain Ω, or the complement to a complex
curve Cg ⊂ Ω that does pass through the point (x0, t0), and the matrix-
valued functions θ±(x, t, z) are meromorphic on Ω×D± with at most a pole
in (x, t) along this curve for every fixed z ∈ D±. We put

U1(x, t, z) =

{
(θ+)xθ

−1
+ + θ+U0θ

−1
+ for z ∈ D+,

(θ−)xθ
−1
− + θ−U0θ

−1
− for z ∈ D−

(11)

and define V1(x, t, z) by the same formula with U0 replaced by V0 and the
derivatives in x replaced by the derivatives in t. Then the pair (U1(x, t, z),
V1(x, t, z)) is a holomorphic solution of (9) on the domain Ωg ⊂ C2

xt (or a
meromorphic solution on Ω) with the same positions and multiplicities of poles
of the rational functions U1, V1 as they were for the rational functions U0, V0.
We say that this solution is obtained by dressing the solution U0, V0 by means
of the function g.

In what follows we always assume that the divisors of poles of the ra-
tional functions U, V are equal to ∞ and m∞ for some integer m ≥ 2, that
is, U is a polynomial of degree 1 in z, and V is a polynomial of degree
m ≥ 2 in z (see the definition of soliton equations of parabolic type in the
Introduction). Then it is natural to consider a limiting case of the dressing
method when the disk D− contracts to the point ∞ and the disk D+ ex-
pands to the whole plane C. (An analogue of this construction was studied
by Krichever [22, Ch. I] in the hyperbolic case when the sets of poles of U
and V are disjoint4.) For the dressing function g(z) we take the germ at ∞

4This enabled him to present all local holomorphic solutions of (9) with disjoint sets of

poles of U and V as a result of dressing of “trivial” solutions and write any local holomor-
phic solution as a non-linear superposition of two waves running along the characteristics
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of an arbitrary holomorphic invertible matrix-valued map, and for the con-
tour Γ we take any circle of large radius lying in the domain of that germ. To
state the limiting version of the dressing method, we digress on the algebraic
structure of zero-curvature equations (9) for polynomials U, V of the form
specified above. It may be assumed from the very beginning that{

U(x, t, z) = az + q(x, t) ,

V (x, t, z) = bzm + r1(x, t)zm−1 + · · ·+ rm(x, t)
(12)

for some diagonal matrices a, b ∈ gl(n,C) and holomorphic matrix-valued
functions q, r1, . . . , rm : Ω → gl(n,C) on a given domain Ω ⊂ C2. Then (9)
is a system of m + 1 matrix equations for m + 1 unknown matrix func-
tions q, r1, . . . , rm. Assume for non-degeneracy that the matrix a has simple
spectrum (that is, all of its eigenvalues are distinct) and the matrix-valued
function q(x, t) is off-diagonal (that is, qii(x, t) ≡ 0 for i = 1, . . . , n). Then the
first m equations of the system and the diagonal part of the last (m+ 1)-th
equation are soluble in a purely algebraic way. Hence the system can be
reduced to one off-diagonal matrix equation for one off-diagonal unknown
matrix-valued function q(x, t).

To state this more precisely, we fix an arbitrary point x0 ∈ C and
introduce the set R(x0) of all germs of holomorphic gl(n,C)-valued maps
at x0 and the set R(x0)od of all off-diagonal germs q ∈ R(x0), that is, the
germs with qii(x) ≡ 0 for i = 1, . . . , n. A map F : R(x0) → R(x0) is called
a differential polynomial if each entry of the matrix-valued function F (κ)
is an ordinary polynomial (the same for all κ) in the entries of κ and their
derivatives (of any order) with respect to x. We need the following assertion
([28, Lemma 1]) whose content and proof must be regarded as well known.

Lemma 1. Let a, b, c1, c2, . . . ∈ gl(n,C) be diagonal matrices such that a has
simple spectrum. Then there is a unique sequence of differential polynomials
Fj : R(x0)→ R(x0) (j = 0, 1, 2, . . .) with the following properties:

(a) F0(κ) ≡ b,
(b) Fj(0) ≡ cj for all j = 1, 2, . . . ,
(c) the formal Laurent series F (κ, z) :=

∑∞
j=0 Fj(κ)z−j satisfies the differ-

ential equation ∂xF (κ, z) = [az + κ, F (κ, z)] identically with respect to
x and z for all κ ∈ R(x0)od.

Arguing as in the proof of [28, Theorem 1], we see that a pair of
polynomials U(x, t, z), V (x, t, z) of the form (12) with diagonal matrices
a, b ∈ gl(n,C) (where a has simple spectrum) and off-diagonal function q(x, t)
is a holomorphic solution of (9) in a domain Ω ⊂ C2 if and only if the fol-
lowing two conditions hold. First, the coefficients r1, . . . , rm : Ω → gl(n,C)
of the polynomial V must be expressed in terms of the off-diagonal function
q : Ω→ gl(n,C) by the formulae

r1 = F1(q), . . . , rm = Fm(q)

similarly to the d’Alembert formula for solutions of the wave equation. Clearly, none of
these results holds in the case of parabolic equations, which we study here.
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for some diagonal matrices c1(t), . . . , cm(t) ∈ gl(n,C) that depend holomor-
phically on t in the domain equal to the projection of Ω to the coordinate
axis C1

t . Second, the holomorphic off-diagonal function q : Ω→ gl(n,C) must
satisfy the equation

qt = [a, Fm+1(q)] (13)

on Ω for the same choice of the diagonal matrices c1(t), . . . , cm(t) as in the
first condition and for an arbitrary diagonal matrix cm+1 ∈ gl(n,C) (the
right-hand side of (13) actually does not depend on the choice of cm+1).

Among all solutions U, V of the form (12) of the zero curvature equa-
tions (9), we are interested only in those that correspond to solutions of (13)
for some t-independent diagonal matrices c1, . . . , cj . We also assume for non-
degeneracy that both matrices a, b have simple spectrum. Then we call (13)
the soliton equation of parabolic type defined by the matrices a, b, c1, . . . , cm.
This equation is equivalent to the zero curvature equation Ut−Vx+[U, V ] = 0
for the polynomials

U(x, t, z) = az + q(x, t), V (x, t, z) =

m∑
j=0

Fm−j(q)(x, t)z
j , (14)

where F0, F1, . . . , Fm are the differential polynomials determined by the
sequence of matrices a, b, c1, . . . , cm according to Lemma 1. Examples of re-
ductions of soliton equations of parabolic type are the linear equations of
the form ut = P (∂x)u for an arbitrary polynomial P of degree ≥ 2, the
Korteweg–de Vries equation (4), the nonlinear Schrödinger equation (5) and
others (see, for example, [28, end of § 2]).

We now state the limiting version of the dressing method for construct-
ing holomorphic solutions of the equations studied. The identically zero so-
lution U0, V0 will be dressed by means of any germ g = f−1 ∈ D, where D
is the set of all holomorphic GL(n,C)-valued functions f on {z ∈ C | |z| >
R0} ∪ {∞} (R0 depends on f) with f(∞) = I. In other words, D consists of
the germs of holomorphic GL(n,C)-valued functions f at ∞ with f(∞) = I.
The following assertion ([28, Theorem 1]) must be regarded as well known,
although it was not explicitly stated and completely proved anywhere in the
literature. Versions of it are contained in [29, Proposition 2.7], [30, Theo-
rem 3.2.6] and [31, Proposition 2.9].

Lemma 2. Let a, b, c1, c2, · · · ∈ gl(n,C) be diagonal matrices such that a has
simple spectrum. We fix an integer m ≥ 2 and a point (x0, t0) ∈ C2. For every
function f ∈ D let Ω(f) be the set of all (x, t) ∈ C2 such that the function

γ(x, t, z) := exp{az(x− x0) + (bzm + c1z
m−1 + · · ·+ cm)(t− t0)}f−1(z)

is right-factorable on some (and then on any) circle {|z|=R}, R0 < R < +∞.
Then the set Ω(f) ⊂ C2 is either the whole of C2 or the complement to
an entire complex curve (the set of zeros of an entire function) not passing
through (x0, t0). For every point (x, t) ∈ Ω(f) let (γ+(x, t, z), γ−(x, t, z)) be
the solution of the Riemann problem

γ(x, t, z) = γ−1− (x, t, z)γ+(x, t, z) for R0 < |z| < +∞, (15)
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normalized by the condition γ−(x, t,∞) = I. We put

qf (x, t) := lim
z→∞

z[γ−(x, t, z)− I, a]. (16)

Then the function qf : Ω(f) → gl(n,C) is an off-diagonal holomorphic solu-
tion on Ω(f) of the soliton equation of parabolic type (13) determined by the
matrices a, b, c1, c2, . . . .

We note that the Riemann problem (15) coincides with (10) up to the
notation f = g−1, γ− = θ−, γ+ = θ+E0, and the definition (16) of the
solution constructed in Lemma 2 is obtained by equating the coefficients
of z0 in second equation (11).

The class of solutions qf (x, t) constructed in Lemma 2 contains all finite-
gap solutions (they correspond to those matrices f ∈ D whose columns
are eigenvectors of some non-degenerate5 rational gl(n,C)-valued function
G(z); see [32, Theorem 5]) and many rapidly decreasing solutions (as de-
scribed in [32, § 5]). In both cases the construction of Lemma 2 coincides
with the corresponding version of the inverse scattering method if we under-
stand the germ f ∈ D as the scattering data of a matrix-valued potential
qf (x, t0) ∈ R(x0). This is explained at length in [32, §§ 4, 5]. Note that our
“potentials” determine their “scattering data” not uniquely, but only up to
right multiplication by any diagonal germ in D. This can be expressed in the
following form (see [32, Theorem 4(A)] and its proof).

Lemma 3. Two functions f, g ∈ D determine the same solution qf (x, t) =
qg(x, t) of equation (13) in a neighborhood of the point (x0, t0) ∈ C2 if and
only if the function g−1f ∈ D is diagonal. This condition is also necessary
and sufficient for the equality qf (x, t0) = qg(x, t0) in a neighbourhood of the
point x0 ∈ C.

3. The main definitions and results

The construction of solutions described in Lemma 2 is far from giving all local
holomorphic solutions of (13) in a neighborhood of the given point (x0, t0) ∈
C2. (For example, all solutions constructed in Lemma 2 extend meromorphi-
cally to C2, while the Cauchy–Kowalevsky theorem stated in the introduction
enables us to construct local solutions with any prescribed singularity in t.)
We now present a natural modification of this construction which is free from
this disadvantage as well as from the non-uniqueness (described in Lemma 3)

5Here non-degeneracy means that the complex curve CG := {(z, w) ∈ C2 | det(G(z) −
wI) = 0} splits into n distinct holomorphic branches over a punctured neighbourhood

{|z| > R} of the point z = ∞. This automatically holds if the matrix G(∞) has simple

spectrum. The algebraic curve CG is known as a spectral curve and plays an important
role in the theory of finite-gap solutions. Replacing “rational” by “holomorphic at ∞” in

the definition of G gives an equivalent description of the set of all solutions constructed in

Lemma 2.
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of the correspondence between potentials and their scattering data6. Recall
that the set D of “scattering data” consists of all convergent (in a neighbor-
hood of the point z =∞) series of the form

f(z) = I +
ϕ0

z
+
ϕ1

z2
+ . . . ,

where ϕ0, ϕ1, · · · ∈ gl(n,C). We now want to replace it by the set D1/m of all
formal power series of the same form with off-diagonal matrices ϕk ∈ gl(n,C)
(this makes the correspondence between the germs of solutions and their
scattering data one-to-one in contrast to Lemma 2) and with

∞∑
k=0

|ϕk|
k!1/m

Ak <∞ for some A > 0,

where m ≥ 2 is the number of the equation (13) in its hierarchy. The
class D1/m is natural because its elements are precisely those formal power
series for which the left-hand side of (15) (that is, the data of the Riemann
problem) is well defined as a formal Laurent series in z for all (x, t) in a neigh-
borhood of the point (x0, t0) ∈ C2. (This follows from Lemma 4 below.) In
the case when m = 1 (or, equivalently, b = c1 = c2 = · · · = 0), equation (13)
takes a trivial form qt = 0, but its “solutions” (that is, all germs q(x) of holo-
morphic off-diagonal gl(n,C)-valued functions at the point x0 ∈ C) are also
described by their scattering data. This is an important part of the whole
method (see Theorem 3 below).

Let us describe appropriate Banach spaces of formal power series. For
every α ≥ 0 we introduce the set Gevα (referred to as Gevrey class α) of all
formal power series of the form ϕ(z) =

∑∞
k=0 ϕkz

−(k+1) ϕk ∈ gl(n,C) such
that the series

∑∞
k=0(k!)−α|ϕk|xk has a non-zero radius of convergence. Here

| · | is any fixed norm on gl(n,C) with the property |AB| ≤ |A||B|. The vector
space Gevα is the union of an increasing family of Banach spaces isometrically
isomorphic to l1. Namely, Gevα =

⋃
A>0Gα(A), where Gα(A) is the set of

all formal power series ϕ(z) =
∑∞
k=0 ϕkz

−(k+1) with ϕk ∈ gl(n,C) such that
‖ϕ‖α,A :=

∑∞
k=0(k!)−α|ϕk|Ak <∞.

In the same vein, for every m ≥ 1 we write the vector space Entm
of all gl(n,C)-valued entire functions of order ≤ m and finite type (for or-
der exactly m) in the form Entm =

⋃
B>0Em(B), where Em(B) is the set

of all formal power series ε(z) =
∑∞
l=0 εlz

l with εl ∈ gl(n,C) such that

‖ε‖m,B := supl≥0 |εl|(l!)1/mB−l < ∞ (this condition guarantees that the
series converges for all z ∈ C). Clearly, each Em(B) is a Banach space iso-
metrically isomorphic to l∞.

6Note, however, that this non-uniqueness is sometimes an asset: it provides a flexible and

natural language in some important constructions. For example, adding a soliton to a given

solution qf is very conveniently described in the notation of Lemma 2 as multiplication of f
by a Blaschke factor (see, for example, [25, Ch. III, § 2] or [31, Proposition 4.2]), but this

description becomes cumbersome if we insist on using the normalized scattering data,
which are introduced below.
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An important property of the Banach spaces Gα(A) and Em(B) is the
possibility to multiply their elements for αm ≤ 1 and B < A (and, generally
speaking, these inequalities are unimprovable). This fact is expressed by the
following assertion [17, Lemma 1], where {·}+ and {·}− stand respectively
for the positive and negative parts of a Laurent series: {

∑
k∈Z akz

k}+ =∑
k≥0 akz

k, {
∑
k∈Z akz

k}− =
∑
k≤−1 akz

k.

Lemma 4. Suppose that A > B > 0, m ≥ 1 and 0 ≤ α ≤ 1/m. Then
the product of elements of Gα(A) and Em(B) in any order is a well-defined
formal Laurent series belonging to the direct sum Gα(A−B) +Em(B). The
maps (ϕ, ε) 7→ {ϕε}± and (ϕ, ε) 7→ {εϕ}± are continuous bilinear forms on
Gα(A)× Em(B) with values in Gα(A−B) and Em(B).

We can now state the main result (a slightly extended version of [17,
Theorem 3] with basically the same proof) on the solubility of the Riemann
problem (15) in the context of divergent power series and on the analytic
properties of its solutions as functions of parameters. We actually need only
two very special cases: first, when Ω is C2

xt and the polynomial P (x, t, z) is of
the form a(x−x0)z+(bzm+c1z

m−1+ · · ·+cm)(t−t0) for some integer m ≥ 2
with the same diagonal matrices a, b, c1, c2, · · · ∈ gl(n,C) as in Lemma 2 and,
second, when Ω is C1

x, the polynomial P (x, z) is equal to a(x − x0)z, and
m = 1. In part (B) we use the notation Gevα−0 :=

⋃
0≤s<α Gevs.

Theorem 2.

(A) Let Ω be a complex manifold, m ≥ 1 an integer, p0, p1, . . . , pm : Ω →
gl(n,C) holomorphic maps, and ξ0 ∈ Ω a point with pk(ξ0) = 0 for
k = 0, 1, . . . ,m. Put P (ξ, z) :=

∑m
k=0 pk(ξ)zk for all ξ ∈ Ω, z ∈ C.

Then for every series f ∈ I + Gev1/m one can find a neighborhood
Ω(f) of the point ξ0 in Ω, numbers A,B > 0 and holomorphic maps
γ− : Ω(f) → I + G1/m(A) and γ+ : Ω(f) → Em(B) such that the
following equality of formal Laurent series holds for all ξ ∈ Ω(f):

eP (ξ,z)f−1(z) = γ−1− (ξ, z)γ+(ξ, z) (17)

and all values of the entire function z 7→ γ+(ξ, z) belong to the group
GL(n,C) of invertible complex n× n-matrices and satisfy the equality

det γ+(ξ, z) = etrP (ξ,z) for all z ∈ C. (18)

(B) Under the hypotheses of part (A), if we additionally know that f ∈
I + Gev(1/m)−0 and Ω is a Stein manifold7 with H2(Ω,Z) = 0, then
there is a holomorphic non-vanishing at ξ0 function τf ∈ O(Ω) with the
following properties.
(a) The germs of the holomorphic maps ξ 7→ τf (ξ)(γ−(ξ, z) − I) and

ξ 7→ τf (ξ)(γ−1− (ξ, z)− I) at the point ξ0 admit an analytic contin-
uation to holomorphic maps Ω→ G1/m(A) for every A > 0.

7A Stein manifold may be defined as a closed complex submanifold of CN . The additional
requirements on Ω in part (B) guarantee the solubility of the second Cousin problem on Ω
(see, for example, [33, subsections 41 and 49]). All the hypotheses of part (B) automatically
hold in our cases when Ω is either C2 or C1.
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(b) For every exhaustion {ξ0} = K0 ⊂ K1 ⊂ . . . of the manifold
Ω by holomorphically convex compact sets Kj ⊂ intKj+1 with
H2(intKj ,Z) = 0 there is a sequence of numbers Bj > 0 such

that the germs ξ 7→ τf (ξ)γ+(ξ, z) and ξ 7→ τf (ξ)γ−1+ (ξ, z) admit an
analytic continuation to holomorphic maps intKj → Em(Bj) for
every j = 1, 2, . . . .

(c) The equalities (17) and (18) hold for all ξ ∈ Ω with τf (ξ) 6= 0.

To say this in simpler words, if a formal gl(n,C)-valued power series
f(z) = I + ϕ0z

−1 + ϕ1z
−2 + . . . belongs to a Gevrey class such that the

left-hand side of (17) is well defined in a neighborhood of ξ0 by Lemma 4,
then the Riemann problem (17) is soluble in some neighborhood of ξ0, and its
solution γ±(ξ, z) is holomorphic with respect to ξ in this neighborhood. This
fact further supports the idea of natural appearance of the Gevrey classes
in our approach. But if we additionally assume (as in part (B)) that the
series f(z) belongs to a strictly smaller Gevrey class than in part (A), then
the Riemann problem (17) becomes soluble everywhere on Ω except possibly
for a complex hypersurface {ξ ∈ Ω | τf (ξ) = 0} that does not pass through ξ0,
and the solution γ±(ξ, z) is globally meromorphic with respect to ξ in Ω with
at most poles along this hypersurface. The hypotheses of part (B) certainly
hold (for any m) when f(z) is an ordinary convergent series in a neighborhood
of z =∞ (this situation was described in Lemma 2), and we thus recover the
(needed part of the) result of Malgrange [27, mentioned in § 1].

To prove part (A) of Theorem 2, we reduce the Riemann problem (17)
to a linear inhomogeneous equation of the form X(ξ)ϕ = u(ξ) on the Banach
space E = Gα(A) for appropriate values of α ≤ 1/m and A > 0, where ϕ =
ϕ(ξ) ∈ E is the unknown vector, X(ξ) : E → E is a known linear operator
(a slightly modified version of the Toeplitz operator on the Hardy space) and
u(ξ) ∈ E is a known vector. Here X(ξ) and u(ξ) depend holomorphically on ξ
in a neighborhood of ξ0 and X(ξ0) = I is the identity operator. Once this is
done, it is clear that the solution ϕ(ξ) = X(ξ)−1u(ξ) exists, is unique and
depends holomorphically on ξ in a neighborhood of ξ0. The details are given
in [17, § 5].

To prove part (B) of Theorem 2, we note that under the hypotheses of
part (B) the operator X(ξ) and the vector u(ξ) are defined and holomorphic
with respect to ξ on the whole parameter space Ω and, moreover, the operator
Y (ξ) := X(ξ) − I is compact for every ξ ∈ Ω. Therefore the desired conclu-
sion follows from the “meromorphic Fredholm alternative” contained in the
following lemma8, which can be found along with a proof in [17, Lemma 8].

Lemma 5. Let Ω be a Stein manifold with H2(Ω,Z) = 0 and let Y : Ω →
B(E) be a holomorphic map from Ω to the Banach space B(E) of all linear

8This result seems to be first stated at the needed level of generality (that is, for operators

on general Banach spaces and not only on the Hilbert space) by Gokhberg (1953). Then
it was rediscovered many times by various authors. Amazingly, references to the possible

authorship of this result in the well-known monographs of Kato (1966), Lang (1975), Reed
and Simon (1978) and Yafaev (1993) give us four mutually disjoint sets of authors.
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continuous operators on a Banach space E. Suppose that the operators Y (ξ)
are compact for all ξ ∈ Ω and the operator I + Y (ξ0) is invertible for some
point ξ0 ∈ Ω. Then there is a holomorphic function τ ∈ O(Ω) with τ(ξ0) = 1
such that the following assertions hold.

(i) The operator I + Y (ξ) is invertible for those and only those ξ ∈ Ω that
satisfy τ(ξ) 6= 0.

(ii) ξ 7→ τ(ξ)(I + Y (ξ))−1 is a holomorphic map Ω→ B(E).

Theorem 2(A) enables us to define the inverse scattering transform for
all f ∈ I + Gev1 (recall that Lemma 2 did so only for f ∈ I + Gev0) by the
formula (16) with t = t0 (or, equivalently, with b = c1 = c2 = · · · = 0). We
now describe this definition in more detail. Fix a diagonal matrix a ∈ gl(n,C)
with simple spectrum and an arbitrary point x0 ∈ C. For every formal power
series ϕ ∈ Gev1 consider the solution γ±(x, z) of the Riemann problem (17)
with P (x, z) = a(x − x0)z and f(z) = I + ϕ(z). Let R(x0) be the set of
all germs of holomorphic gl(n,C)-valued functions at x0, and let R(x0)od be
the set of all off-diagonal germs q ∈ R(x0) (that is, those with qll(x) ≡ 0
for l = 1, . . . , n). Then all coefficients gk(x) of the expansion γ−(x, z) =
I+
∑∞
k=0 gk(x)z−(k+1) belong to R(x0), and the formula (basically (16) with

t = t0)
Bϕ(x) := [g0(x), a] for x− x0 ∈ Ω(f) (19)

determines a map B : Gev1 → R(x0)od. We call this map the inverse scat-
tering transform. The notation Bϕ is chosen in honor of the classical Borel
transform, to which (19) reduces for upper-triangular gl(2,C)-valued conver-
gent series ϕ ∈ Gev0 (as explained in [28, § 6], or [17, § 2]).

The direct scattering transform L : R(x0)od → Gev1 is defined by the
formula

Lq(z) := µ(x0, z)− I, (20)

where µ(x, z) = I+
∑∞
k=0mk(x)z−(k+1) is a unique solution of the differential

equation µx = (az + q(x))µ − µaz in the class of formal power series of the
form indicated with mk ∈ R(x0), k = 0, 1, 2, . . . , such that all coefficients
of the series µ(x0, z) − I are off-diagonal (the existence and uniqueness of
this solution are proved in [17], § 6, the paragraph before Lemma 10). The
notation Lq is chosen in honor of the classical Laplace transform

Lu(z) =

∫ ∞
0

u(x)e−xz dx,

to which (20) reduces in case of upper-triangular gl(2,C)-valued potentials
q(x) that are entire functions of exponential type (see [28, § 6], [17, § 2]).
The definition of Lq may seem strange (where does the differential equation
µx = (az+q(x))µ−µaz come from?), but it is natural in view of the following
observation (which is rather standard in the Riemann-problem approach to
integrable systems). Consider the Riemann problem (17) with ξ = x and
P (ξ, z) = a(x − x0)z, differentiate it with respect to x (the Leibniz rule
for the derivative of a product still holds because of the last assertion of
Lemma 4) and separate the positive and negative powers of z in the resulting
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Laurent series. This yields that the components of the solution of the Riemann
problem satisfy the differential equations

∂xγ+ = (az + q(x))γ+, ∂xγ− = (az + q(x))γ− − γ−az (21)

with initial conditions γ+(x0, z) = I, γ−(x0, z) = f(z), where q(x) := Bf(x)
is defined in (19). Thus we see that the differential equation for µ(x, z) just
selects the candidates for the role of γ−(x, z), and the initial condition re-
stores f(z) by the formula (20). This observation also motivates the first
part of the following theorem (an extended version of [17, Theorem 1]) which
says that the maps L and B are indeed inverse to each other if we restrict
ourselves by only off-diagonal series in Gev1 (as already mentioned in the def-
inition of D1/m above, this restriction removes the non-uniqueness described
in Lemma 3). The second part of Theorem 3 follows from the first part and
Theorem 2(B). It says that all potentials whose scattering data belong to
strictly smaller Gevrey classes than necessary for the Riemann problem (17)
to be well defined, are globally meromorphic in x.

Theorem 3.

(A) The map q 7→ Lq is a bijection of the set R(x0)od onto the set Gevod
1

of all off-diagonal series in Gev1. The inverse map is the restriction to
Gevod

1 of the map B : Gev1 → R(x0)od defined in (19).
(B) If q ∈ R(x0)od and Lq ∈ Gev1−0, then the germ q(x) admits an ana-

lytic continuation to a globally meromorphic off-diagonal gl(n,C)-valued
function on C1

x (denoted again by q(x)) such that for every z ∈ C the
auxiliary linear system Ex = (az + q(x))E has a globally meromorphic
fundamental system of solutions.

A key role in the proof of part (A) of Theorem 3 is played by the
following particular case of a theorem of Sibuya on formal solutions of singu-
larly perturbed ordinary differential equations (see [34, Theorem A.5.4.1 on
pp. 254–256] or [35, Theorem XII-5-2]). Let m, ν ≥ 1 be integers, A : Cν → Cν
an invertible linear operator, and y(x, z) =

∑∞
k=0 ak(x)z−k a formal power

series whose coefficients ak(x) are Cν-valued holomorphic germs at x0 ∈ C.
Suppose that

dy

dx
= zmAy +

m−1∑
j=0

zjBj(x, y) (22)

for some Cν-valued polynomials Bj(x, y) in the components of the vector y
with coefficients in O(x0). Then the series y(x0, z) belongs to Gev1/m.

In our applications of this result, Cν is the vector space of all off-diagonal
matricesX ∈ gl(n,C) and the operator AX := [C,X] sends every such matrix
to its commutator with a given diagonal matrix C ∈ gl(n,C). The role of C
is played by a in the proof of Theorem 3 and b in the proof of Theorem 4
below. Since the operator A is invertible if and only if the matrix C has
simple spectrum, this explains our non-degeneracy assumptions (made in the
definition of soliton equations of parabolic type in § 2) that the matrices a
and b have simple spectrum.



Local inverse scattering 15

The detailed proof of part (A) of Theorem 3 is given in [17, §§6, 7] and we
shall not repeat it here. Once part (A) (or rather the equality q = BLq for all
q ∈ R(x0)od) is proved, part (B) follows easily. Indeed, if Lq ∈ Gev1−0, then
the germ BLq(x) admits a global meromorphic extension from a neighbor-
hood of x0 to the whole of C1

x by Theorem 2(B). Since BLq = q, this proves
the first assertion of Theorem 3(B). To prove the second assertion, note that
the component γ+(x, z) of the solution of the Riemann problem (17) with
P (x, z) = a(x− x0)z satisfies the auxiliary linear system Ex = (az + q(x))E
for all z ∈ C (this follows from the first equality in (21)) and its columns
are linearly independent by (18). Hence its columns form a fundamental
system of solutions. On the other hand, it follows from Theorem 2(B), as-
sertion (b), that γ+(x, z) is a globally meromorphic function on C1

x with
denominator τf (x) for every fixed z. This proves the second assertion of The-
orem 3(B), which is also known as the trivial-monodromy property.

We can now state a criterion for solubility of the local holomorphic
Cauchy problem for soliton equations of parabolic type. Consider any system
of evolution equations of the form (13), where q(x, t) is an unknown off-
diagonal gl(n,C)-valued function, m ≥ 2 is a given integer and F0, F1, F2, . . .
is the sequence of differential polynomials in x corresponding to a given se-
quence of diagonal matrices a, b, c1, c2, · · · ∈ gl(n,C) according to Lemma 1.
We always assume that the non-degeneracy condition holds: the matrices a, b
have simple spectrum. Let R(x0, t0) be the set of all germs of holomorphic
gl(n,C)-valued maps at the point (x0, t0) ∈ C2, and let R(x0, t0)od be the
set of all off-diagonal germs in R(x0, t0). The local holomorphic Cauchy prob-
lem for (22) is posed as follows. Given an off-diagonal holomorphic germ
q0 ∈ R(x0)od, it is required to find a germ q ∈ R(x0, t0)od that satisfies equa-
tion (13) and the initial condition q(x, t0) = q0(x). The following theorem is
an extended version of [17, Theorem 2].

Theorem 4.

(A) The Cauchy problem q(x, t0) = q0(x) for equation (13) admits a local
holomorphic solution at the point (x0, t0) ∈ C2 if and only if Lq0 ∈
Gev1/m. If such a solution q(x, t) exists, it is unique.

(B) Every local holomorphic solution q(x, t) of equation (13) in an arbitrary
bidisk D := {(x, t) ∈ C2 | |x− x0| < δ1, |t− t0| < δ2} admits an analytic
continuation to a meromorphic function in the strip S := {(x, t) ∈
C2 | |t−t0| < δ2} possessing the trivial-monodromy property with respect
to x (in the sense of Theorem 3(B)) for every fixed t. On the other hand,
one can find a holomorphic solution q0(x, t) of (13) in D that admits
no further analytic extension beyond the strip S.

(C) The envelope of meromorphy of any local holomorphic solution q ∈
R(x0, t0)od of equation (22) can be written in the form C1

x ×X, where
X is a Riemannian domain over C1

t . Conversely, for every Riemannian
domain π : X → C1

t over C1
t and every point (x0, t0) ∈ C × π(X) one

can find a local holomorphic solution q ∈ R(x0, t0)od of equation (22)
whose envelope of meromorphy is equal to C1

x ×X.
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(D) In the notation of part (A), if the germ q0(x) := q(x, t0) satisfies Lq0 ∈
Gev(1/m)−0, then the solution q(x, t) of the corresponding Cauchy prob-
lem admits an analytic continuation to a meromorphic off-diagonal
gl(n,C)-valued function on C2 possessing the following trivial-mono-
dromy property with respect to x and t. For every z ∈ C the auxiliary
linear system Ex = (az+q(x, t))E, Et = (bzm+

∑m
j=1 Fj(q)(x, t)z

m−j)E

(which is defined by the formulae (8) on account of (14)) has a globally
meromorphic fundamental system of solutions on C2

xt.

In connection with the terminology in part (C) of the theorem we recall
that a Riemannian domain over CN is a complex manifold X together with
a holomorphic locally invertible map π : X → CN (see [33, subsection 22]),
and the envelope of meromorphy of an arbitrary family of germs of holomor-
phic functions at a point ζ0 ∈ CN is defined as the largest holomorphically
separable Riemannian domain over CN such that all the germs in this family
can be analytically continued to meromorphic functions on this Riemann-
ian domain (see [33, subsection 41]). This domain over CN admits a more
constructive description as the union of the results of all possible analytic
extensions along chains of polydisks, similarly to the definition of a complete
analytic function in the sense of Weierstrass ([33, Russian page 276]). By the
envelope of meromorphy of a gl(n,C)-valued germ (or a family of such germs)
we understand the envelope of meromorphy of all entries of these germs.

To prove the necessity of the condition Lq0 ∈ Gev1/m for the existence
of a local holomorphic solution q(x, t) of the Cauchy problem, one should
reduce the ordinary differential equation for µ(x0, t, z) (where µ(x, t, z) is the
formal series from the definition (20) of the scattering data Lq(t, z)) to the
form (22) with x replaced by t and then apply Sibuya’s theorem mentioned
above (using the assumption that the matrix b has simple spectrum). This
part of the argument is done in [17] by a reference to [28], but the exposition
of this proof in [28, § 5] contains an inaccuracy that will be corrected now.
Contrary to the last paragraph of [28, § 5], one cannot in general remove all
terms with negative powers of z from the formula (5.1) of [28] by making the
transformation indicated there. However, there is no actual need to remove
them. Just replace the last paragraph of [28, § 5] by the following paragraph
(which uses our current notation µ(x, t, z) for what was denoted by m(x, t, z)
in [28]; the other notation is from [28]).

By the definition of the series Ṽ in [28], the off-diagonal series N(t, z) :=

µ(x0, t, z)− I satisfies the differential equation Nt = V (I +N)− (I +N)Ṽ ,
where V is defined by (14). Taking the diagonal parts of both sides of this

equation, we have 0 = Vd+(VodN)d−Ṽ . Now, substituting Ṽ = Vd+(VodN)d
into the equality of the off-diagonal parts, we obtain the following equation
of the form (22) for N(t, z):

Nt = V N −NVd + Vod − (I +N)(VodN)d,

where the subscripts d and od denote the diagonal and off-diagonal part
respectively. To verify that this equation is indeed of the form (22) (with
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the variable t instead of x and after rearranging all entries of the matrix N
into one vector y ∈ Cν , ν = n(n − 1)), we note the following. First, Vod
and the difference between V N − NVd and [bzm, N ] are polynomials of de-
gree at most m− 1 in z whose coefficients depend holomorphically on t and
polynomially on N . Second, the linear operator N 7→ [b,N ] is invertible9

on the space of all off-diagonal matrices. Therefore all the hypotheses of
Sibuya’s theorem hold, and we arrive at the desired conclusion: the formal
series Lq0(z) = N(t0, z) belongs to Gev1/m. This proves the necessity in
part (A).

To prove the sufficiency of the condition Lq0 ∈ Gev1/m for the exis-
tence of the local holomorphic solution of the Cauchy problem, we consider
the Riemann problem (17) with parameter ξ = (x, t) ∈ C2, the polynomial
P (ξ, z) = az(x − x0) + (bzm + c1z

m−1 + · · · + cm)(t − t0), and the formal
series f(z) = I + Lq0(z). By Theorem 2(A), the solution γ±(x, t, z) of this
problem exists in a neighborhood of the point (x0, t0) ∈ C2 and depends
holomorphically on x, t. Putting q(x, t) := [g0(x, t), a], where g0(x, t) is the
coefficient at z−1 in the expansion γ−(x, t, z) = I +

∑∞
k=0 gk(x, t)z−(k+1), we

claim that the holomorphic off-diagonal gl(n,C)-valued function q(x, t) satis-
fies equation (13) in a neighborhood of (x0, t0) along with the initial condition
q(x, t0) = q0(x). Indeed, the initial condition q(x, t0) = q0(x) follows from the
equality BLq0 = q0, which holds by Theorem 2(A). Furthermore, the first
equality (21) shows that in a neighborhood of (x0, t0) we have Ex = UE,
where E(x, t, z) := γ+(x, t, z) and U(x, t, z) := az + q(x, t). Repeating ver-
batim the proof of Lemma 2 (which is legitimate in our case because of
Lemma 4), we obtain that Et = V E, where V (x, t, z) is given by the for-
mula (14) with the same differential polynomials Fj : R(x0) → R(x0) as
in (13). The resulting equations Ex = UE and Et = V E form the auxiliary
linear system (8) whose solubility (with invertible E) implies that we have
the zero curvature condition (9): Ut − Vx + [U, V ] = 0, which is equivalent to
the equation (13). This completes the proof of part (A) of Theorem 4.

Once part (A) is proved, part (B) follows easily from it and Theo-
rem 3(B) since we always have 1/m < 1 for all m ≥ 2. Examples mentioned
in the last assertion of part (B) can be constructed in abundance using the
Cauchy–Kowalevsky theorem (this was done in [36, § 4], for all equations
appearing in Theorem 1). The rest of Theorem 4 can also be easily obtained
from part (A) and Theorems 2, 3, but we omit the details since these results
have no direct use in the proof of Theorem 1.

4. Proof of Theorem 1

We start by showing that every local holomorphic solution u(x, t) of any
of equations (4)–(6) induces a local holomorphic solution q(x, t) of an ap-
propriate system (13). Indeed, if u satisfies (4), then a rescaling of x and t
yields that ut = uxxx − 6uux, which is equivalent to (13) for m = 3, a =

9This is the only place where we use the assumption that b has a simple spectrum.
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b = diag(1/2,−1/2), c1 = c2 = c3 = 0 and q(x, t) =
(
0 u(x,t)
1 0

)
. If u satis-

fies (6), then a rescaling of x and t by real factors yields that iut + uxx =
±u|u|2, which is equivalent to (13) for m = 2, a = b = diag(−i/2, i/2),

c1 = c2 = 0 and q(x, t) =
(

0 u(x,t)

±u(x,t) 0

)
. If u satisfies (5), then the re-

duction is more complicated. It is described, for example, in [36] and fol-
lows Drinfeld and Sokolov [37]. First, a rescaling of x and t yields that
utt = −1/3uxxxx − 4/3(uux)x, which is the condition for solubility of the
system

ϕx = ut, ϕt = −1/3uxxx − 4/3uux

in the bidisk D. This enables us to write the rescaled equation (6) in the form
Lt = [P,L] (see (7)), where L := ∂3x+u∂x+ 1/2(ϕ+ux) and P := ∂2x+ 2/3u.
Second, writing L = (∂x − v3)(∂x − v2)(∂x − v1) for some v1, v2, v3 ∈ O(D),
we define an off-diagonal (because v1 + v2 + v3 = 0) matrix-valued function
q(x, t) := K−1 diag(v1(x, t), v2(x, t), v3(x, t))K with K ∈ GL(3,C) being the
matrix with entries Kij = (αj)

i−1, where α1, α2, α3 are the cubic roots of 1
written in an arbitrary order. Then the rescaled equation (6) is equivalent
to (13) for m = 2, a = diag(α1, α2, α3), b = a2 and c1 = c2 = 0.

Now, to prove Theorem 1, we apply Theorem 4(B) to q(x, t) and con-
clude that q(x, t) extends to a global meromorphic function of x for every
fixed t. Recovering u(x, t) from q(x, t) by the formulae above, we see that the
same conclusion holds for u(x, t), as required.
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