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L E C T U R E S  O N  D I F F E O M O R P H I S M  G R O U P S  
I N  Q U A N T U M  P H Y S I C S  

GERALD A. GOLDIN 

Depar tments  of Mathemat ics  a n d  Phys ics  
Rutgers  University 

Piscataway, N J  08854, USA 
E-mai l :  gagoldin@dimacs.rutgers.edu 

Infinite-dimensional groups and algebras play an increasingly important  role in 
physics. This presentation describes from an elementary starting point how diffeo- 
morphism groups and their unitary representations enter nonrelativistic quantum 
theory, making connections with local current algebras and various Lopics of current 
interest. Along the way some fundamental ideas from group theory and quantum 
field theory are introduced and discussed, with illustrative examples of unitary 
group representations and the physical systems they describe. 

I .  In t roduc t ion :  G r o u p s ,  Represen ta t ions ,  a n d  S y m m e t r i e s  

My goal in these lectures is to  give a broad, mostly self-contained intro- 
duction t o  local current algebras and diffeomorphism groups. I hope to  
highlight how these infinite-dimensional algebras and groups help t o  unify 
certain ideas in quantum theory, and connect with other topics in physics. 
Thus we shall focus on elementary ideas, overarching themes, and impor- 
tant physical intuitions, rather than on rigorous proofs of theorems. 

As we proceed, fundamental concepts will be introduced from group 
theory, quantum field theory, and topology. We shall construct illustrative 
examples of unitary group representations and the physical systems they 
describe, explaining and making use of some necessary techniques from 
infinite-dimensional functional analysis and differential geometry. Hope- 
fully the result will be a fully accessible presentation that  develops the 
connections among a number of areas often considered separately. 

For those familiar with other work on infinite-dimensional algebras and 
groups in physics, the content of these notes can be considered comple- 
mentary to  the excellent boolts by Pressley and Segal,' by Micltel~son,~ 
and by K a q 3  with which there are important points of contact but only a 
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A linear operator Q : Vl -t Vz is unitary if it is invertible and preserves 
the respective inner products in V1 and Va.  In particular, U : V -t V is 
unitary if and only if U* = U-', where '' * " denotes the adjoint operator. 
Two representations ~ 1 ~ x 2  of G ,  in Vl and V2 respectively, are called 
unitarily equivalent i f  there exists a unitary operator Q : Vl -t V2 such 
that (Vg E G) Qnl(g)Q-l = n ~ ( g ) .  Especially important in physics are  
unitary representations of groups, which we denote by U(g), g E G.  Thus 
U(g) preserves the inner product of all pairs of vectors in 1). When V is 
the one-dimensional complex vector space C1, so t h a t  U(g) assigns t o  each 
g E G a complex number of modulus 1, U is called a character of G. 

A representation T of a group G in V is  called irreducible when V has 
no closed subspaces, other than {0) and V itself, tha t  are invariant. under 
all the operators ~ ( g ) ,  g E G. Equivalently, any linear operator in V that  
com~nutes with all the x(g)  is a multiple of the identity. Under appropri- 
ate conditions, an arbitrary representation of G may be decomposed into 
a direct sum of irreducible representations, so that  the unitary equivalence 
classes of irreducible representations of the group become fundamental ob- 
jects in the study of the symmetry the group describes. It  is evident tha t  
I-di~nensional group representations are always irreducible. 

For the case of NH3, we have two inequivalent characters of S3 (or 
equivalently C3u) - the trivial one, where all group elements are  rep- 
resented by 1, and the alternating representation, where group elements 
obtained through an odd number of elementary (pairwise) exchanges are 
represented by -1. A class of two-dimensional irreducible uriitary rep- 

resentations of S3 also exists. Once obtained, these representations of 
the symmetry group pertain immediately to  the  electronic structure of the  
ammonia molecule (via symmetry-adapted molecular orbitals), and to the 
description of molecular vibrations (via symmetry-adapted displacement 
coordinates).' 

The trivial and the alternating 1-dimensional unitary representatiolls of 
SN exist for all N > 2, and are pertinent in quantum mechanics to  the 
clescription of bosons and fermions. Higher-dimensional representations 
of SN are classified by means of I'oung  tableau^,^ and pertain t o  the 
description of particles obeying parastatistics (see Sec. 5 below).1° 

NOW a crystal in three-dimensional space consists of multiple copies 
of a f~~ndamental  (bounded) region, the unit cell, arranged in a periodic 
Ialtice that we idealize as being of infinite ex ten t  The  symmetry of the 
conti~gration wi th in the  unit cell is described by means of a finite group, 
t,lie point group H .  The lattice (called a Bravais lattice) is described by an 

i 
Abelian group L of discrete translations in physical space t h a t  leave the 

: lattice structure invariant. The symmetry of the  whole crystal is described 

i 
by a larger group called the space group, obtained by combining point 

group and translations, together with screw axes and glide planes. 
i The ~rystallographic point groups and space groups have been completely j 

classified - there are 32 point groups, and 230 space groups. Their study is 
important to  the  theory of molecular orbitals in quantum chemistry, t o  the  
relatioll~l~ip of X-ray diffraction patterns to  crystal structures, t o  the  theory 
of correlated electron systems, and t o  many other topics in t h e  fundamental I 
physics of condensed matter." 

Let us write the elements of the lattice group L as vectors a E IX3. 
The group operation in .L is then vector addition, denoted by the  + sign. 
Any element h E H also acts naturally on L; for a E L, we write this 
action as h a .  By applying elements of L and H successively and keeping 
track of what happens, we obtain a semidirect product of L with H. The  
semidirect product group is the  set L x H ,  with t h e  group law given by 

(a l ,  hl)(a2,  h2) = (a1 + hlaz,  hlh3). 
Symmetry groups may be  finite or infinite. T h e  point groups associ,ated 

with many geometric shapes (e.9. the tetrahedron, the  cube, the octahe- 
dron) are finite, as is the symmetric group S N .  The  groups of translations 
describing periodic lattices, on the other hand, are infinite discrete groups, 
while the symmetry groups. of the circle, the cylinder, or the  sphere are 
infinite continuous groups. 

A normal subgroup of a group G is a subgroup N G having the 

property tha t  (Vn E N)(Vg E G )  g-lng E N .  T h a t  is, N is invariant as a 
set under conjugation by elements of G.  For any subgroup H of G ,  and 
for g E G ,  the  right coset H g  is { hg I h E H ) .  It  is easy t o  show tha t  any 
two right cosets H g l  and Hg2 are either equal or disjoint. Similarly the 
left coset g H  is {gh I h E H ) .  A normal subgroup of G is thus a subgroup 
for which g N  = N g  (Vg E G).  Let us denote the space of all left cosets 
by G I H ;  and the space of right cosets by H \ G .  When G has a normal 
subgroup N ,  one can form the quotient group G I N ,  whose elements are 
the distinct (right or left) cosets by N ,  endowed with the  group law for 

cosets, (Ng1)(Ng2) = N(g192). 
A simple group is a group G,  containing more than one element; whose 

only normal subgroups are itself and {e), where e is t h e  identity element in 
G. Thus the simple groups.are the analogues in group theory of the prime 
numbers in number theory - they are the fundamental building blocks 
from which other groups inay be constructed. The complete classification 



of the finite simple groups, long a dream of mathematicians, required about 
500 journal articles by about 100 authors, mainly published from 1955 to 
1983. One of the most interesting of the finite simple groups is the largest 
of the sporadic groups, dubbed "the Monster" due t o  its extraordinary size 
- it contains 24" 3". 5'. 7" 112. 1 3 ~  . 1 7 . 1 9 . 2 3 . 2 9 . 3 1  . 4 1  . 4 7 . 5 9 .  71 
elements. The ~ o n s t e :  is the automorphism group of a vertex operator 
algebra, and has deep connections with Icac-Moody algebras and groups 
and with quantum field theory.12 

Rut groups do not describe everything that  is crystalline in nature. 
11 new horizon opened in the mathematical and physical study of crystal 
syn~metry with the 1984 discovery in nature of q~~asicrystals  - inaterials 
\villi q?~asil~eriodic  structure^.'^ These are configurations in which (ideally) 
every local structure repeats infinitely often, though there are no global 
synl~netry transformations. The  X-ray diffraction patterns of quasicrystals 
show, for example, pentagonal symmetry, which cannot occur in any of 
(,he 230 permitted space groups. Indeed, it is lilcely that  the well-known 
existence of a complete mathematical classification of the possible crystal 
structures in R3 actually inhibited the discovery of quasicrystals. Thus 
liistory teaches us not to be too rigidly collstraineh by known structures, but 
to 1)e alert to ways of relaxing constraints or generalizing existing categories. 

Ordinary group theory no longer suffices to characterize quasiperiodic 
pat~erns, and one must make use of other mathematical techniques.14 

1 . 2 .  Lie Groups and L ie  Algebras 

To this point our examples have been discrete groups, but equally important 
to physics are the continuous groups. Cylindrical symmetry is described 
1 ) ~ '  the group S0 (2 ) ,  of rigid rotations of R2 about the origin. Spherical 
symmetry is likewise described by SO(3). Choosing an orthonormal basis 
for iX3, we can realize SO(3) as the group of real 3 x 3 orthogonal matrices, 
untler the operation of matrix multiplication. 

A Lie group is simultaneously a group and an analytic manifold (real or 
colnplex), where the group operations of multiplication and inversion are 
analytic mappings. The  group manifold for SO(2) is the circle S1, while 
the manifold for SO(3) is three-dimensional. Another example of a Lie 
group is the group SU(2) consisting of the coniplex 2 x 2 unitary matri- 
ces, well-known as the two-sheeted universal covering group of SO(3).  The  
i~.retl~ic:il)le uiritary representations of SO(3) and SU(2)  give us, respec- 
lively, the orbital angular momentum states of the hydrogen atom (or any 

quantum system having rotational symmetry), and t he  spin states of 
fundamental particles (or composites). The  group SU(3) describes an ap- 
proximate symmetry of the strong interactions; its irreducible unitary rep- 
resentations give us quarks and antiquarks, as well as multiplets of hadrons 
describing families of baryons and mesons. 

These are examples of Lie groups tha t  are compact. Intuitively, com- 
pactness means tha t  their group manifolds neither "extend t o  infinity" nor 
are "open" in any direction. Closed intervals in R are compact, while open 
or half-open intervals are not; spheres are compact, while infinitely-long 
cylinders are not. Mathematically, a compact topological space is a space 
for which every covering by open sets has a finite subcovering; or equiv- 
alently, one for which every continuous real-valued function assumes its 
nlaximum value. The symmetries of space-time, on the other hand, are tle- 
scribed by noncompact Lie groups - the Lorentz group, or its semidirect 
product with space-time translations, the PoincarC group. Tlle PoinsarC 
gioup is actually the group of all transformations of Minlcowskian space- 
time leaving invariant the indefinite form [(x, - y,)(xp - yp)], where we 
use the common notation p = 0,1 ,2 ,3 ,  e, = (ct ,x) ,  and sum over repeated 
indices: Z,N, = cZt2 - x . x Sometimes we restrict ourselves t o  PoincarC 
transformations that  preserve the directionality of the  time coordinate xO, 
or preserve spatial parity, or both. Irreducible unitary representations of 
the PoincarC group are labeled by particle masses and spins.15 

While Lie groups describe physical symmetries globally, the local (or 
infinitesimal) description of symmetry is achieved through Lie algebras. A 
Lie algebra G is a vector space (here talcen to be real or complex), equipped 
with an additional binary operation that  is written as the  bracket of two 
elements: for all X, Y E G, [X, I'] E G. The  bracket [X, Y ] is bilinear with 
respect t o  scalar multiplication. I t  is antisymmetric, z. e i [X,  I'] = -[I', S ] ;  
and it  satisfies the  famous Jacobi identity, 

Then, associated with a Lie group G,  we have the corresponding Lie algebra 
G, whose elements are tangent vectors to the Lie group manifold a t  the 
identity. The  elements of are the infinitesimal generators of I-parameter 
subg ro~~ps  of G; for S E G, the exponential map a + exp ( a x ) ,  a E W, 
defines the  corresponding 1-parameter subgroup. 

Alternatively, one can think of the elements of the  Lie algebra 4 as 
left-invariant vector fields on the group manifold of G. If X and Y ale 
two elements of 4, their Lie bracket [X,I'] as vector fields is defined as 



the vector field tha t  corresponds t o  the infinitesimal outcome of flowing 
infinitesimally by each of the two vector fields, in succession, and then 
flowing backward infinitesinlally by each of the vector fields. T h a t  is, taken 
to order n" the equation 

exp ( - a x )  exp (-a]') exp ( a x )  exp (alT) a exp (a2[X,  Y ] ) , (2) 
serves t o  define the bracket in the Lie algebra of the Lie group,'" 

 hen a Lie group is represented by unitary operators in V, the cor- 
respnnding Lie algebra may be represented by self-adjoint operators in V, 
with the bracltet in the Lie algebra corresponding t o  the  commutator of 
linear operators in V .  We shall use the same braclcet notation for the  com- 
nlutator of linear operators, namely [A, B ]  = AB - BA. I t  should always 
he clear from the context whether we refer t o  the Lie.bracket of a pair of 
~ e c t o r  fields, the braclcet operation applied t o  elements of a Lie algebra, or 
t,he c.olnm~~tator of linear operators. If [X', Y ]  = Z in the Lie algebra G, 
ure sha.ll require for a self-adjoint representation of G that  the commutator 

[u(X) ,  ~(1 ' )  ] = . iu(Z), where g ( Z )  is the  self-adjoint operator represent- 
jilg 2. The  extra factor of i on the right is needed t o  allow for a self-adjoint, 
rat,Iler than a skew-adjoint representation. Tlle concepts of irreducible rep- 
resentations (for which there are no nontrivial invariant subspaces), and of 
ullit,arily equivalent representations, apply equally well a t  the level of the 
T,ie algehra as a t  the level of the group. 

The  Lie algebra so(3) of S 0 ( 3 ) ,  for example, is three-dimensional, and 
i s o ~ u a r ~ ~ h i c  to  the  Lie algebra s11(2) of S U ( 2 ) .  The  three generators call be 
lei~i~ese~lted in V = @' by the  well-known Pauli spin matrices ol , or, 03, 

Hr]lose conlmutators satisfy 

[ g j , o k ]  = 2i f jkeu , ,  j , k , f =  1 , 2 , 3 .  
(3) 

The  coinponents of = (h /2) (u l ,  m ,  03) correspond respectively t o  the 2, 
Y, and t components of angular momentum for a spin-; particle. For each 
~ ~ l l l e  of the spin s = $ , I ,  j, 2 , .  . . . there is an irreducible, self-adjoint rep- 
resent,ation q (i = 1 , 2 , 3 )  of the Lie algebra su(2). obeying E q  (3), acting 
ill the complex vector space @2st1: and there is a corresponding unitary 

of S U ( 2 )  For integer S, this representation is also a unitary 
I .epi~esentat i~n of SO(3) ;  for half-integer s ,  it is a projective representa- 
1,jnn of 5 0 ( 3 ) .  Unitary representations of SO(3) also describe the orbital 
nllsl~lar n ~ o l n e n t ~ l m  L, ill urllicll case we label the generators ( i , ,  $, t 3 )  
correspontling t o  the x, y, and z components of L,  

Anoilier important example for quantum mecllanics is tlle Heisenberg 
Consider the Lie algebra with three generators Q ,  F and C, 

with the  bracltet &eration 

[ Q , P ]  = C ,  [ Q , C ]  = [ P , C ]  = O .  (4) 

Since C is a central element, it must be represented by a multiple of the  
identity operator in an irreducible representation acting in V; tliat is, C i 
i h I ,  \vIiere h is a real constant. For any two such representations acting in 
spaces VI and V2 respectively, a unitary transformation Q : Vi i V3 self- 
evidently obeys &(ifiIl)Q-I = ihI3 (where Il and I2 are the respective 
identity operators). Thus distinct values of R must correspond t o  unitarily 
inequivalent representations of (4). 

Fixing h and letting Q i 4, P i $, we have t h e  famous Heisenberg 
algebra obtained by quantizing the  particle position q and momentum p 
coordinates, 

[4 ,  F ]  = i h I ,  (5) 

where h = h/  27~ (h being Planclt's constant). But Eq. (5), unlike Eq. (3),  
does not have any nontrivial finite-dimensional self-adjoint representations. 
Rather we have an irreducible representation, well-ltnown from quantum 
mechanics, t h a t  acts in the  infinite-dimensional Hilbert space of complex- 
valued, Lebesgue square-integrable functiolls on the real line, X = Li,(R). 
Writing tP(q) E 8, we have 

The uniqueness of this representation up  t o  unitary equivalence (demon- 
strated by von Neumann), together with the  symmetry between position 
and momentum variables tha t  is evident under Fourier transformation of 
Eqs. (6),  are beautiful properties that  have been regarded for many years 
as advantages of the usual, simple prescription for quantization of ltinemat- 
ics based on position and momentum operators. We shall see shortly an 
exquisite contrast with representations of Lie algebras of local currents and 
d i f f e ~ m o r ~ h i s m  groups in quantum mechanics, where we have a different 
lcind of beauty - a rich multiplicity of unitarily inequivalent representa- 
tions that  describe physically distinct quantum-mechanical systems. 

Notice too that  in Eqs. (6), 4 and 6 are unbounded self-adjoint oper- 
ators. This means that  the ratios 1 1  @ lI/II/ II~IJII and 115 Till/ IIlPlI have no 
upper bound, where II~IJII = [h 19(q)12dq]1/2 denotes the  usual  norm 
of ~IJ .  Among other things, this also means that  the domains of definition 



of the operators ĝ  and lj are not all of 3t, but dense subspaces of 3t. 
T l ~ e  commutation relation (5) makes sense on a still smaller dense domain 
tha t  is invariant under the actions of both Q and lj. In contrast, unitary 
opelators are bounded operators, that  are defined on all of 3t.  

A unitary representation U(g) of a Lie group G in a (finite- or infinite- 
dinlensional) I-Iilbert space 3t is (weakly) contznuous if the inner product 
(a, U(g)\>) is continuous in g (V cP, 9 E X).  Suppose tha t  we have such 
a represelltation. Let exp(aA), a E R, be the I-parameter subgroup of G 
obt,ained from the fixed Lie algebra element A. Then U[exp(aA)]  is just 
a ron t i l l~~ous  I-parameter unitary group acting in 3t. There now exists a 
(not necessarily bounded) self-adjoint operator a (A) ,  defined by 

1 
a ( A ) 9  = lim 7 { U [exp(aA) ] Q - 

a-+O za 
where the domain of definition of u(,4) consists of those vectors Q E X 
for which the limit in Eq. (7) exists (with respect to the Hilbert space 
norm). From Eq.  (7) we typically obtain from U (under the right domain 
conditions) self-adjoint operators giving us a representation u of the Lie 
algebra of G. 

Conversely, given a (not necessarily bounded) self-adjoint operator A 
in a Ililbert space X I  there exists a continuous I-parameter unitary group 
U(n) = exp(iaA) from which A can be recovered by means of Eq. (7). 
Again under the right domain conditions, we can exponentiate the self- 
adjoint representation of the Lie algebra to  a unitary representation of the 
corresponding Lie group. 

As an illustration, let us exponentiate 6 and lj in Eqs. (6) to  obtain 
]-parameter groups of unitary operators. For a E R, define [U(a)\2](q) = 
[ exp (-in@)lF](q), which is just the product function exp (- iaq)9(q) .  (Re- 
call tha t  @ is a n  operator, while g is a real variable. Here the minus 
sign is a convenient choice.) Similarly, for b E R, we define [V(b)Q](q) = 
[exp ( - i b + ) ~ P ] ( ~ ) ;  this is just the translated function Q(q - bfi) using Tay- 
lor's formula. Notice tha t  the power series expansion of exp [-bh (d/dp)]Q 
converges o~i ly  when Q is analytic in q, which is a very restrictive condi- 
tion; but the resulting formula Q(q - bfi) for the limit of tllis power series 
cztentls (by continuity in 3t) to  all square-integrable functions (even those 
;hat are not differentiable). 

We can now calculate what the group operation should be. Since 
;'(b)U(n) = exp(ifiab) U(a)V(b), it is natural t o  write a group element as 
I triple ( a ,  a ,  b), where a: is a complex number of modulus one; a ,  b E IW, 
u ~ d  Ii'(cu, a ,  b) = a: U(a)V(b) is t o  be a unitary group representation. Then 

it is easy to  see tha t  

( ~ ~ , a ~ , b l ) ( a : ~ , a ~ . , b ~ . )  = ( a l a x e x p  [ifiazb~], a1 + az., b~ + 62) , (8) 

is one forin of the Heisenberg group. 
More generally, a useful equation tha t  often permits direct calculation 

of a Lie group operation from the Lie algebra bracket, or the product of 
e ~ ~ o n e n t i a t e d  linear operators from the commutator bracket, is the Balter- 
Campbell-Hausdorff formula 

M - 

where (ad A)B = [A, B ] .  Using Eq. (9), we have immediately from Eq.  (5) 
that  exp( -ib+) q^ exp(ib+) = 4 - ib[p, 41  = 4 - bhl ,  from which the 
Heisenberg group law of Eq.  (8) follows. 

In a representation of Eqs. (3) or ( 5 ) ,  a vector Q corresponds t o  a quan- 
tum state .  To describe the dynamical time-evolution, we let Q depend on 
the time t with i f i a P / a t  = H Q ,  where H is the self-adjoint Hamiltonian 
operator. Thus H also generates a 1-parameter unitary group acting in the 
Hilbert space. When the time-evolution respects the  rotational symmetry 
of I W 3 ,  i.e, when H commutes with all the unitary operators representing 
S 0 ( 3 ) ,  the commutators of the angular momentum operators ij with I1 
are zero and angular momentum is conserved. Likewise when H commutes 
with the unitary operators representing translations in R 3 ,  linear momen- 
tuin is conserved. But  the  description of angular or linear momentum by 
means of self-adjoint generators of unitary group representations does not. 
make use of the particular choice of I-Iamiltonian. I t  is important to  note 
that  the description of the quantum kinematics. worlts even when the dy- 
namical equation of motioll does not respect the kinematical symmetry. 

The  Lie groups w e  have discussed in this subsectioil are  all finite- 
dimensional as manifolds. This means tha t  even if they are not compact, 
they are locally compact - every element has an open neighborhood whose 
closure is compact. The Lie algebras of finite-dimensional Lie groups are 
finite-dimensional as vector spaces. 

Finite-dimensional Lie groups come equipped with natural measures 
on the group manifold invariant under the group operation, called (left or 
right) Haar measures: if E is any measurable subset of the Lie group G, 
left Haar measure pe (for instance) satisfies pe(gE) = /be(E). When the 
group is coinpact the Haar measure is finite, so tha t  we can also choose. 
to  set pe(G) = 1. Haar measures are extremely useful in the theory of 



~lni tary representations of Lie groups, and one of the difficulties ill treating 
infinite-dimensional groups is their absence. 

1 . 3 .  I n f i n i t e - D i m e n s i o n a l  Algebras  ancl G r o u p s  

The s t ~ ~ c l y  of gauge symmetry, anlong other topics in physics, brings us to  
the study of infinite-dimensional groups and algebras. Suppose tha t  G is 
a compact Lie group such as U(1) or SU(2) ,  and let M be the space-time 
manifold. Then it  is natural t o  consider the gauge grotp whose elements 
are 'sn~ooth mappings from M to G ,  denoted by hfap ( M ,  G). T h e  group 
opera.tion in C is then applied pointwise to  define the group operation in 
A6ap (.M, G); that  is, for a pair of mappings 91 : M i f.2 and 92 : M i G I  

we defille (9192)(t, x )  = gl (t, x)gz(t, x ) .  
A loop gronp is a map group whose elements take the circle S1 to G. 

We can think of Map (S1 ,  G) in either of two ways - as a rule associating 
an element of G to every point in S1, or as a parameterized image of S1 
seen as a subset of the target space G .  

The Lie algebra associated with the group Map ( M ,  G) [or,  respectively, 
with Map (S1,  G ) ]  consists of maps from M [respectively, S1 ] to  the Lie al- 
gebra G of G, with the Lie bracket defined pointwise. We shall write this Lie 

algebra map ( M ,  G) [respectively, map (S ' ,  G)], using a lower-case letter 
m. Now there is a unique extension of map (S1,  G) by one additional &men- 
sion, such that  the new elements commute with all the original elements 
of map ( S 1 ,  G). This 1-dimensional central extension is called an afine 
fic-Moody algebra and the corresponding group is a Kac-Moody group. 
Icac-Moody groups and algebras find application t o  conformal-invariant 
quantum field theory, to  nonperturbative string theory, and in many other 
~hysical  and mathematical contexts. They are naturally related to  another 
infinite-dimensional Lie algebra, the Virasoro algebra, which we shall intro- 
duce in the next subsection. 

Let us mention here still another infinite-dimensional group, one tha t  en- 
tered mathematical physics relatively early - the Heisenberg-Weyl group 
of canonical quantum field theory. Consider the field 4 (t ,  x )  and its canon- 
ical conjugate ~ ( t ,  x )  = d t d ( t ,  x ) ,  satisfying the equal-time commutation 
relations 

where I is the identity operator. Equations (10) are a kind of generalization 
of Eq. (5) to describe infinitely many degrees of freedom. Here 4 and T act 
\inearly in a Hilbett space 'H, but  they are  not bona fide operators in If[. 
Technically they are operator-ualued distributions - t h a t  is, they are linear 
maps from a test fiinctaon space of smooth, real-valued functions on M to 
tile self-adjoint operators on U. For fixed t ,  we may interpret Ecls. (10) by 
choosing test functions f and g that  depend on the spatial variable x only. 
Tlleil (suppressing the time coordinate) we write formally the  "smeared 
fields" d ( f )  = SRs d(x) f (x )d3z  and ~ ( g )  = SR, ~ ( x ) ~ ( x ) c l ~ x ,  which are 
actual (unbounded) operators. From Eqs. ( l o ) ,  we easily obtain the  fixed- 
time commutation relations 

where ( f ,  g) = S,, f ( X ) ~ ( X ) ~ ~ X  is the formula for the usual L 2  inner prod- 
uct of functions. Notice tha t  the singular Dirac 6-function in (10) no longer 
appears. Equations (11) thus represent an infinite-dimensional Lie algebra, 
modeled on the test function space. 

Let us exponentiate Eqs. (11), setting U ( a f )  = exp [- ia*(f)]  and 
V(bg) = exp [ -iba(g) ] . Using Eq. (9), we have that  V(g)d(  f )l/(g)-' = 

d( f )  - ( f ,g )  I ,  or V(g)U(f)V(g)-l = e x ~ [ i ( f , g )  I U ( f ) .  We thus obtain 
the infinite-dimensional Heisenberg-Weyl group, likewise modeled on the  
test function space, whose elements are triples ( a ,  f ,  g); where a is again a 
complex number of modulus 1 ,  and f and g are test functions. T h e  group 
law is now given by 

This should be compared with Eq. (g), which defined the Heisenberg group 
as a 3-dimensional Lie group. 

Equation (12) generalizes readily from the L2-inner product t o  

( ~ ~ , f ~ , g i ) ( ~ ~ , f z , g a )  = ( a l a z  exp[iB(fz,gl)] ,  f l  + fz, g~ + g2),  (13) 

where B is a positive definite bilinear form on the space of test functions. 
Let us close this subsection by mentioning a n  important extension of 

the  theory of groups, whose importance developed from work by Drinfelcl, 
Jimbo, Manin, and others in the 1980s - the study of so-nailed "quantum 
groups". A quantum group can be  constructed from a mathematically nat- 
ural deformation of the enveloping algebra of a simple Lie algebra by a real 



or complex parameter q. I t  can also be defined as a matilematical ob~ect  in 
its own right, a Hopf algebra (or, possibly, a more general object, as the ax- 
iomatization of quantum groups is not really complete). Quantum groups 
describe a kind of generalized symmetry, where the notion of the invelse 
of an element is weakened. The word "quantum" here does not mean we 
have "quantized" a classical theory, since representations of ordinary non- 
commutative Lie groups and algebras already describe quantum-mechanical 
systems. But quantum groups have application in physics to  conformal field 
theory, quantum inverse scattering, exactly solvable lattice models, exotic 
quantum statistics, and other domains.17 

Later, when we discuss braid statistics, we shall have occasion to make 
use of q-deformed conimutation relations, where the commutator (A, B ]  of 
field operators is replaced by the q-commutator, 

1 .4 .  Diffeomorphisrn GTOUPS and Algebras of  Vector ~ i e l d s  

Next let us focus attention 011 a particular sort of infinite-dimensional group, 
the group of diffeomorphisms of a manifold Let M aAd N be smooth, 
finite-dimensional Riemannian manifolds. A diffeomorphism is a (k-fold or 
infinitely) differentiable homeomorphism 4 from M to N, whose inverse 
4-' : N i M is likewise differentiable. For there to exist a diffeomorphisn~ 
between M and N means that the two manifolds are, in the sense of 
differential geometry' as well as topology, equivalent. 

We now give attention to diffeomorphisms that map a manifold M to 
itself. Any two such diffeomorphisms 41 and d2,  acting successively on 
A{, give a third diffeomorphism 4 2  0 dl where 0 denotes con~position; 
i.e., [dz 0 4, ] (x) = 42(41 (x)). Since the operation is associative, since the 
identity map is automatically a diffeomorphism of M, and since the inverse 
of' any rliffeomorphism of M is again a diffeomorphism of M, we have a 
group 11nder composition. 

we have a clioice as to coovention. Suppose that a group G acts 
on a space M in a way that respects the group multiplication For g t G 
anrl x t M, we write (g ,x)  i Lg(x),  and call the action a left action, 

wllell (b'91;92 E G )  Lglgz = Lg, 0 Lg2. We call it a right action and 
write (g, x) + Rg(x) when ( V ~ I ,  g2 t G)  Rg,g, = Rgz 0 R g ;  If the group 

proril~ct of $1 and 4 2  is defined to be simply o $2 ,  then the action of 
tlie diffeon~orphisrn group on Dl becomes a left action. . 

But we shall shortly allow diffeomorphisms of M to act on the space 

of C" reaI-val~ed functions f defined on M ,  by moving the argument ol 
f ,  T~ Obtain a left action on the space of functions, we would then need to 
set 4 .  f = f 0 4-l; this giver us [mi 0 421 . f = 41 . (42 . f ] .  Alternatively, 
,, may define the product of two diffeomorphisms by setting 

$ 1 4 2  = 4 2  0 $1 , ( l5)  

so that the action of the diffeornorphism group on M is a right action This 
is the convention we shall actually adopt throughout these lecture notes. 
Then we let $f = f o 4 (without the inverse), SO that  we have a left action 
of the group on the function-space. 

Jve also want the diffeomorphism group to be a well-behaved topolog- 
ical group, and this requires (in general) some additional restriction on 
the diffeomorphisms. Recall that  the support of a real- or complex-valued 
continuous function f on a space M is the intersection of all ciosed sets 
C & M such that for x @ C ,  f (x )  G 0. Define then the support of a 
diffeornorphism 4 of M to be the intersection of all closed sets C C &I 
such that  for x E M - C, )(x) z x. Note that  if f t Cm(M)  has compact 
support, then for 4, E DiffC (M),  f 0 4 also has compact support. 

Now the set of C"" diffeomorphisrn.~ of M having compact (but ar- 
bitrary) support forms a group under composition. We call this group 
Diffc(M),  where the superscript c stands for "compact". Diffc(M) be- 
conies a topological group when it is endowed with the topology of uniform 
convergence in a11 derivatives in compact sets. Of course if the manifold M 
itself is compact, Diffc(Ad) is just the full group of C" diffeomorphisms 
Diff(M). It is an infinite-dimensional group, whose continuous unitary rep- 
resentations (CURS) are of great interest for both mathematics and physics. 

Associated with Difjrc(Af) is the infinite-dimensional Lie algebra 
vectc(M), consisting of the Cm (tangent) vector fields on M having com- 
pact support (i.e., vaiiishing outside some compact set), endowed wit11 t i e  
Lie bracket (cf. Eq. (21) below). Let us consider the relation of the Lie 
algebra uectc(M) to  the group DIffc(M), by exploring the exponentiation 
of vector fields. 

liltegml curves of vector fields 

Suppose that  v(x) is an arbitrary (not necessarily compactly supported) 
C" vector field on M (or, more generally, some open region 

of A{). 

Then v generateshtegral curves x ( a ) ,  where a is a real parameter. That  
is, for each x E Mo, there is an interval I, C R containing n = 0, such 
that for a E I x ,  the function x(a)  solves the ordinary differential equation 



&x(a)  = v(x(a) )  combined with the initial condition x(0)  = x For each 
ililtial value x E Ma and each parameter value a E I,, define $ I ( x )  = 
x(n);  so that  In particular, &,V=,(x) = x (Vx E Mo). 

Then, where it exists, $,V(x) is actually Cm in both x and a .  More- 
over, when n, a' ,  a + a' € I,, we have as expected the composition law 

c(4 :  (4) = (x). (16) 

Thus one may visualize a fluid filling the region Mo, with v (x )  descr~bing 
tlie magnitude and direction of the fuid 's  veloclty a t  x (taken as if un- 
changing in time) Then x(a)  is simply the trajectory of a mote of dust 
silspended in the fluid, carried along by the velocity field. 

Furthermore, we have 

exP I n v ( x )  . o1 f (x)  = f ( ~ , Y ( x ) ) ,  (17) 
as long as the infinite series expansion of the left-hand side is defined and 
convergent. However, even when v (x )  is a CM vector field defined on the 
whole manifold M, it may well be that  I, depends on x in silcl~ a way 
that  there is no fixed interval of v a l ~ ~ e s  for a on which $,V(x) exlsts for all 
x E A4 That  is, whlle an arbitrary smootb vector field on a ~loncompact 
ma~iif'olrl A'/ can be exponentiated locally, it does not necessarily generate 
a one-parameter grolip of diffeomorphisms of P1.l" 

Exnmples for = 1W 

Let us 1001; concretely a t  how these things may happen in the special 
case Ab = LW, where integral curves can be calculated explicitly.18 A vector 
field on a domain in R is given by a smooth. real-valued function g(x), 
since the tangent vectors are I-dimensional. Suppose that  g(x) is CW and 
has no zeroes in a certain open interval 1 = (x l ,  $2) c P (we may allow 
n:l = -03 and/or xz = 03). For specificity, take g(x)  > 0 on the interval. 
Fix NO E 2, and define 

(18) 

for 2: E I. Then the function y = G(z)  is Cm and strictly monotonic 
'11 P: (increasi~ig, when g is talcen to be positive). We have G(zo) = 0 
ancl G'(x)  = l lg(z),  where " ' "  stands for the first derivative. Denote the 
invene firnction by z = G-'(y). I t  is defined on tlie range of G ,  which 
conl;ains the reg1011 about p = 0 bounded by G(z1) alid G(xa) (which may 
possil~ly be -0s or m); with g positiveon 5, we have G ( r l )  < p < G(z2) .  

Since GP1[G(x) ] = x, we calculate (G-I) '  [G(z )  ] G1(x )  = 1 , so that  
. - 1 )  ( p )  = g [ G )  1, NOW let a be a real parameter. i t  is straigl~tfor- 

ward to verify that  the function 

#:(x) = G-'[G(x) i- a ] .  (19) 

gives the desired integral curves of g, where @(x) is defined a t  least on the 
domain of values {(x, a) x E (xl, $2) )  G(xI )  - G(x) < a < G(x2) - G(1)). 
o n  this domain, h e  indeed have a,$:(r) = g ( & ( ~ ) )  with &,(x) = x ,  

.ell as the composition law in E q  (16). Notice too that  the formula in 
~ q .  (19) leads to an answer that  is independent of the choice of xo used to 
define G ( r ) ;  in fact, replacing G(x) by G(x) + C (where C is a constant) 
means tha t  G-l(y) is replaced by G-'(y - C),  so that  &(x) is invariant 
wit11 respect t o  the choice of C. Equations (18)-(19) are thus elementmy, 
concrete formulas that allow us to calculate &9,(x) explicitly. 

Furthermore, we recover Eq. (17) by observing tha t  under the change 
of variable y = G(x) ,  we have 

d d 
e x p ; n g ( ~ ) ~ l i ( x )  = e x p [ a d y ] l f  O G - ~ ] ( Y ) = [ ~ O G - ~ I ( Y + ~ )  (20) 

We also note the general possibility of translating tlie vector field; i.e., of 
replacing g(x)  by h ( ~ )  = g(x - b) a ~ i d  working o n t h e  translated interval 

E I+ b ,  for any fixed b E P The consequence is that  G ( x )  is replaced by 
H(.) = G(x-b) with H(xo+ b) = 0; and H-'(Y) = G-'(y)+ b. T l ~ e a  the 
integral curves &(x) for x E I+ b are given by G-I [G(x - b) + a ]  + b ,  
which again is identically equal to x when a = 0. 

Let us apply our formulas to some special cases of vector fields. First 
suppose g( r )  = r 3 ,  wl~icli is certainly, C m  on the whole real line, bat  
which grows large when 1x1 4 m. When x = 0 we have g(0) = 0, so that  
&(0) = 0 ( Y O )  Considering the region x > 0, we have 

1 
G(x) = -- + C ,  

1 
G-'(y) = 

2x2 J- ' 

wliere C > 0 is fixed; and using Eq. (19), 
1 x 

4:(x) = [ - x2 - 2a]-1/' = - J l c 5 z  ' 

We see that  for any given initial value of x greater than 0, $9 , (~ )  gro~vs 
without bbuncl as a increases, becoming infinite while iz is still finite. The 
interval I, of values of a for which & ( r )  exists is bounded above by 
1 / ( 2 : ~ ) ~ .  W r  r < 0 1ve obtain the same formula, SO that  (!(x) decreases 



without bound as a increases toward 1/(2x)'. Despite the continuity of 
g ( x ) ,  its rate of growth means there is no fixed interval containing a = 0 
on which 49,(x) is defined for all x E R. 

On the other hand the choice g(x) = x ,  which grows more slowly as 
1:cI i m, gives us straightforwardly the  one-parameter group of dilations 
@,(n:) = xen ,  defined for all values of x and a. 

As an example where the vector field vanishes a t  m ,  co~lsider g(x) = 
I / coshx = 2/(ex + e-'). Here g(x) is Cw and as 1x1 -+ m tends toward 
0 (together with all its derivatives) faster than the reciprocal of any poly- 
nomial in x.. Then G(r) = sin11 x + C, and 49 ( r )  = sinh-'lsinh x + a ] ,  
whicl~ for all vali~es of x is defined for all a E R. Thus we have a one- 
p"ramet,er group of diffeomorpl~isms of R. When x is very large alld posi- 
tive, siilll r r;. ex/2,  so that  sinll-' (9) = In 2 9  Then d:(r) r;. ln(ex + Za) ,  
wllicli grows without bound as a i m. The integral curve through any 
ii~ilial point eventually reaches any point to  the right as a increases, albeit 
very slowly as the growth with a is logarithmic. 

111 contrast, if we choose g(x) t o  be  a Cm compactly-supported vector 
field, then the one-parameter groups 4:(x) give us integral curves tha t  are 
bounded above and below. 

Finally, some interesting formulas for integral curves of vector fields 
resiilt, even when the latter are only partially defined on R. Wit11 g(x) = 
3:' (7 # 1). we have formally G(x) = xl-'/(l - r )  + C ,  and G-l(9) = 
[ ( I  - r.)(v - C ) ]  l / ( lpr) .  Then a((%) = [xl- '  + (1 - ~ ) a ] ' / ( ~ - ' )  Suppose 
I.11at 7. = 1/2; then g(n:) = &, wllich is defined, positive, anrl CCU for 
x > 0. T11e growth as 1x1 i m is moderate, since 6 < x and we 
liave already exponentiated the vector field g(x) = x. In fact, we l la~le  
(/~z(r) = [ &  + a / 2 I 2  = (1/4) [ a x  + 4 a f i  + a'], which a t  first glance 
appears to be defined for x > 0 and for -m < a < m, and which is 
illentically x when a = 0. But  here the  appearance is somewhat deceptive. 
Notice that  although the vector field g(x) vanishes a t  x = 0, 4:(O) is only 
zero to first order in a ;  so that  x = 0 is not behaving like a stationary point 
of the flow. This is related to  the fact that  g(x) is not differentiable a t  
r: = 0. Notice further tha t  if a / 2  < -fi, the application of 4:. to  @(x) 
does not respect E q  (16). Even if we augment the definition of g by setting 
y(x) = 0 for x < 0, SO that  &(x) - x for x < 0 ,  the vector field g does not 
exponentiate to  a I-parameter group of diffeomorpl~isms. 

Recently Duchamp and Penson found some interesting uses'of E ~ S .  (18)- 
(18) in studying the combinatorics of orthogonal polynomials. Their worh 
has motivated my inclusion of the above examples in these lecture notes.lg 

Lie algebras of vector fields , 

Returning to the case of a general manifold A{, a compactly-supported 
CM vector field v on M always exponentiates to  a one-parameter group of 
cw diffeomorphisms of Ad. T h a t  is, 4,'(x) is defined for all a E R, and 
4;(4:(x) = d;,(x). Conversely, let a -+ 4, (a t R) b e  a one-parameter 
group of diffeomorphisnls of M, smootll in a .  Such a group defines a vector 
field v on M ,  whose value a t  x E M is just the tangent vector t o  the  
parameterized curve &(x)  a t  a = 0. Thus we have B,~,(x) = v($,(x)), 
with 4 a = o ( ~ )  = X, and 4, = 4;. We call 4; the pow generated by the  
vector field v .  If the flow 4; has support in  a compact region IC, then v 
evidelltly vanishes outside K .  T h e  space of all such vector fields, under 
pointwise addition and multiplication by real scalars, is of course infinite- 
dimensional; this is the Lie algebra vectC(M). 

As suggested by E q  (2), if v l  and v2 belong to vectc(M), their Lie 
bracket [ V I ,  v2]  is the vector field that  corresponds to  the (infiniteiimal) 
outcome of flowing (infinitesimally) by each of the two vector fields in suc- 
cession, and then flowing backward (infinitesimally) by each of the  two 
vector fields. In local coordinates, 

[ V ~ , V ' ] ( X )  = v1(x) .  Vv2(x) - v 2 ( x ) .  Vv,(x). (21) 

The Lie bracltet of two Cm, compactly-supported vector fields on A t  is 
again a C m ,  compactly-supported vector field. T h e  Lie bracltet satisfies 
the Jacobi identity ( I ) ,  and defines the Lie algebra structure on vectc(A/l). 

In general, a Lie group G acts on its own Lie algebra G by the nrljoillt 
represeiztatiolz, defined as follows. For A, B E S, the acljoiilt action of G on 
itself is given by (ad A ) B  = [A, B]; see Eq. (9). At the  group level, we may 
obtain Ad(g)B (writing Ad with the  capital letter A )  by exponentiating 
(ad A)B. Alternatively, with L,(h) = gh  denoting left multiplication in G', 
and R,(h) = hg denoting right multiplication, we may define the adjoint 
action of G on itself, Ad, : G -+ G, by the composition Ad, = R,-I 0 L,; 
i .e. ,  conjugation by g. We then have Ad,,,,(h) = (Ad,, 0 Ad,,)(h), so t h a t  
Ad, (like L,) is a left action on G. Letting B be the infinitesimal generator 
associated with a curve h, in G passing through the identity, we can then 
obtain Ad(g)B by differentiating Ad(g)h, with respect t o  a and evaluating 
a t  a = 0. Thus Ad(g) : i G, for g E G. The  adjoint representation on the  

Lie algebra is also a left action, satisfying Ad(gl)Ad(gz)B = Ad(glga)B. 
Having 'established our convention for the group multiplication law for 

diffeomorphisms, = 42 o q51, the adjoint representation is given by 
Ad(41) $z  = $1$2$;1 = 4;' o 4' o d l .  I t  is then a straightforward 



calculation to obtain the adjoint representation on the space of vector fields 
in local coordinates; it is 

where our convention is to  sum over the repeated index k From E q  (22), 
it, is easy to  clierli tha t  (ad v ? )  v2 = ( v l ,  vz], in accordance with Eq. (21). 

We remarli further tha t  the set of compactly-supported C q i f f e o m o r -  
phisms of M (for k = 0 , 1 , 2 , 3 ,  . . . )  whose inverses are lilte~lise C h a l s o  
forl~i a group ulider composition, But  the Lie bracket i11 Eq. (21) i~lvolves 
~:aliing a derivative, so tha t  in general the bracket of a pair of Ck vector 
fields is only Ck-' .  Thus the requirement tha t  we have a Lie algebra nat- 
urally restricts us t o  the  C M  vector fields, for which the group elements 
sl~ould be Cw diffeomorphislils. 

1.5. Semiclirect P r o c l ~ ~ c t s  a n d  O t h e r  E x t e n s i o n s  

1,eL D ( M )  be the set of CM real-valued functions on A4 having compact 
support. Then defining addition pointwise, D ( M )  is an Abel ian group. 
Endo\ved with its usual topology of uniform convergence in all derivatives 
in compact sets, i t  is a topological group. A diffeomorphism 4 E D S c ( M )  
acts naturally on D ( M )  by transforming the  argument of each function; 
i e . ,  for f E D(A4), 4 : f + f 0 4.  Fiirthermore the map (f ,$)  + f o 4 is 
jointly continuo~ls in f and 4. Then we have the natural semidirect product 
grouj, D(A4)x DiffC(Al), with the semidirect product group law given by 

(f1341)(f2,  42) = ( f l  + h f 2 ,  4142) ; P 3 )  
where as noted above, 4, f 2  = f;! 0 4, and 4,42 = b2 o 4,.  At the level of 
the Lie algebra, we have a semidirect sum of the commutative Lie algebra of 
compactly-supported scalar functions on M with the Lie algebra vectc(M). 

Blit D(A4) is just the subgroup of Map(M,B) consisting of the  CM 
conipactly supported maps (regarding R as an additive Lie group). Thus i t  
is useflll to introduce more generally the subgroup Mnpc(M, G), of smooth 
maps tha t  equal the identity element in G outside compact sets in &I. A 
compactly-sl~pported diffeomorphism 4 of A4 then acts naturally on the 
compactly-supported maps g : A4 + G by (Bg)(x)  = g ()(x)),  respecting 
t,he pointwise group operations. We have the natural semi,direct product 
A,fapC(A4,G) x Diffc(M) for a general Lie group G ,  with the group law 
(gi , 41) (92, $2) = ( gl(41 g2), 4142) , and the  corresponding semidirect sum 
of the infinite-dimensional Lie algebras mapC(M, G) and vectc(M). 

Let us now consider the case M = B d ,  corresponding t o  d-dimensional 
space. Here an importantsubgroup of Diffc(Bd) is the group of 

area- or volume-preserving diffeomorphisms SDiffC(Bd),  d > 1, where the 
prefix letter '5'' stands for "special". When d = 2,  this subgroup coincides 
.rith. the group of compactly supported synlplectic diffeomorphisms of the 
plane. When d = 1 ,  however, the group is trivial. The  corresponding Lie 
subalgebra is svectc(Rd), which is the algebra of rlivergenceless compactly- 
supported vector fields. Unitary representations of the  group S ~ i f i ~ ( W ~ )  

the algebra svectc(W" are important to  .the quantum theory of an 
ideal, incompressible fluid in Wd, d > 1. 

The condition tha t  diffeomorphisms be compactly siipported can Ije 
\arealtened in various ways in lRd, modifying the group topology appropri- 
ately while maintaining the correspondence between the resulting diffeo- 
morphislll group and a Lie algebra of C* vector fields on Wd tthak.generate 
global flows. For example, one possibility is to  include diffeomorphisms 
that,  in the limit as 1x1 i m, approach the identity map rapidly in all 
derivatives (here rapidly means faster than any polynomial). This group 
can be given the topology of uniform rapid convergence in all derivatives, 
and has been called K(Rd). The  natural correiponding Lie algebra con- 
sists of vector fields with components belonging t o  Schwartz' space S ( R d ) ,  
the space of real-valued CM functions of rapid decrease in all derivatives, a 
property respected by the Lie bracket of Eq. (21). We saw an example in the 
preceding subsectionin the vector field on B defined by g(x) = 1/ cosha.  
In place of the semidirect product group D ( R d ) x  DiffC(Bd) we then have' 
a semidirect product S(Rd)  x K(Rd) ,  whose elements satisfy Eq .  (23). 

Consider as a further alternative all C* diffeomorphislns of Bd tha t  
coincide with some (uniform) translation outside of an arbitrary compact 
region K E R d i  These form a group tha t  we may call DifftranS(Rd). We 
can obtain any such diffeomorphism by composing an element of ~ i f f ' ( W 9  
with an element T of the translation group T ( B d ) .  Note further tha t  

there is a natural homomorphism from T ( R d )  t o  the group of automor- 
phisms of Diffc(Wd): for each translation T, we have the automorphisln 
4 + T o 4 o T-l. This lets us write ~ i f f ~ ' ~ " ~ ( W ~ )  as a semidirect product 
T(Wd) x DiffC(Rd)..  We can enlarge this group as well, to  include diffeonior- 
phisms which, in the limit as 1x1 + m, approach a translation' rapidly in 
all derivatives. . '  

Similarly we may define groups of diffeomorphisrns tha t  coincide with 
(outside compact sets), or rapidly approach (in the limit as 1x1 + m), 
the following: a rotation or a Euclidean transformation (for d > l ) ,  a 



dilation, or a linear or affine transformation. When we work with the 
area- or volume-preserving diffeomorphisms, it is natural to extend them 
by Euclidean, special linear or special affine transformations. 

For each such extension of the diffeomorphism group we have a corre- 
sponding infinite-dimensional Lie algebra of vector fields on Rd , where the 
vector fields coincide with (outside compact regions) or rapidly approach 
(as 1x1 + m), the infinitesimal generators of a finite-dimensional Lie group 
acting globally on R d .  

An important special case occurs when we consider the Lie algebras 
of vector fields on the line R' or on the circle S1,  and the correspond- 
ing diffeomorphism groups. In this situation of a one-dimensional man- 
ifold there is a natural, nontrivial one-dimensional extension of the Lie 
algebra called the Virasoro algebra and, correspondingly, we have the Vi- 
rasoro group. For the example of the circle, it is natural to parameter- 
ize the manifold by 0 5 0 < 2rr, and to choose a basis of vector fields 
$,,)(0) = i exp(in0), n = 0. -t 1, i 2 , .  . . for the (complexified) Lie algebra. 
Then Eq. (21) becomes [g(,), g(,) ] = (m - n)g(,+,). Adjoining to the Lie 
algebra a central element I (that commutes with all the g(,)), the extended 
bracket is given by the formula 

- - 

where the coefficient c is called the central charge. It is straightforward to 
verify that Eq. (24) satisfies the Jacobi identity. 

The Virasoro algebra and group are the natural analogues for D i q ( S 1 )  
of the affine Kac-Moody algebras and groups for Map(S1, G). Its repre- 
sentations have important application to quantum field theories in (1 + 1)- 
dimensional space-time, to exactly solvable models in statistical mechanics, 
and to many other domains. 

In the next section, we introduce some basic ideas from quantum field 
theory. This permits us to see how representations of algebras of vector 
fields (and, correspondingly, groups of diffeomorphisms) occur naturally 
within such a theory, representing local currents. 

2. Local Q u a n t u m  Fields a n d  Fock Space  

A profound idea that deeply influenced the development of particle physics 
is t,he notion that fields rather than particles are the fundamental physi- 
cal quantities. The particles that we observe in nature are then actually 
q l ~ n n t n  of fields. For instance we understand photons to be quanta of the 

electrolnagneti~ field, heavy vector bosons to be quanta of the wealc field, 
and gluons to be quanta of the field that binds quarlcs into baryons and 
mesons and accounts for the strong interactions. 

Equation (10) can be regarded as a way to quantize a classical relativistic 
neutral scalar field 4(t,x), describing theoretically a neutral scalar boson 
with mass. After writing the commutation relations for the fields, the 

challenge is to represent them by self-adjoint operators in Hilbert space, 
to write other operators such as the Hamiltonian (describing interactions) 
in terms of the field operators, and to deduce the particle interpretation. 
This program is essentially complete for free (z.e., noninteracting) q u a i ~ t u n ~  
fields, while major challenges have been overcome and others remain for 
interacting t h e o r i e ~ . ~ ~ , ~ ' , ~ ~  

Let us discuss first some nonrelativistic quantum field theory. 

2.1. Canonical  Nonrelat ivist ic  Fields 

Consider the simple harmonic oscillator Hamiltonian in quantum mechanics 
given by X = e2 /  2m + (k/2) 4'. Using Eqs. ( G ) ,  the action of H may be 
represented by HP(q)  = - (fi'J2rn) d2P(q) /  dq2 + (k/2) q2@(q), where 
m is the particle mass. We recall from elementary quantum mechanics 
that the solutions to the time-independent Schrodinger equation H$,,(q) = 
E,.P,(q) are Hermite functions, with energy levels En = ( n  + i ) Tw, n = 
0 , 1 , 2 , .  . . , where w = m. Appropriately normalized, these give us 
an orthonormal basis for the Hilbert space L ~ ~ ( R ) ,  SO that (qm, qTl)  = 
b,,,. Defining the raising and lowering operators in the usual way, a' = 
( 2 m ~ w ) - ~ / ~  [mwd - ifi] and a = (2mTw)-1/2 [ m w g  + ifi], we find easily 
from the Heisenberg bracket of Eq. (5) that a and a* obey the commutation 
relation 

[a ,  a+]- = a a +  - a*a = I ,  (25) 

while 
1 

H = (a'a + -) h. 
2 

Thus a 'a8 ,  = nP,. It is straightforward to see that a QTl = n 1 / 2 ~ f n - l ,  
with = 0 ;  while a* P, = (n + 1)1/2$n+l. Thus we have a representa- 

tion of Eq. (25) by linear (unbounded) operators in Li,(R). 
Such a representation has another possible interpretation. Instead or 

thinking about the energy levels of the oscillator, we can think of n as 
describing the number of Bose particles in a given quantum state (the 



occupation number). Then 90, the lowest energy state, is the vacuum; 
n is the particle annihilation operator, a* is the particle creation operator, 
and n'n is the number operator. There is of course no limit t o  the  number 
of bosons tha t  can occupy the same quantum state, so the number operator 
is ~ulbounded (as are a and a*) .  

If we want t o  describe Fermi particles tha t  obey the Pauli exclusion 
principle, however, we must restrict the permitted occupation numbers t o  
be  only 0 or 1. Such a system is obtained by replacing the commutation 
relation in Eq .  (25) by the  nnticommutation relation 

[ a ,  a*]+ = a n *  + a * n  = I ,  (27) 
where again the  number operator is a * a  Noiv a representatio~l is given by 
n 9 0  = 0 ,  nlPII1 = ~ I J ~ ,  a*Qo = qll ,  and nl\P1 = 0. 

To describe Bose or Fermi quantum particles occupying a family of 
distinct states indexed by the subscript a ,  with occupation numbers n,, 
we can write 

[a,, a; I* = 6,p I .  (28) 
The  number operator with eigenvalues n, is then a:a,. 

In nonrelativistic q l~an tum field theory, we posit the field operator 
$( t ,  x) and its adjoint $*(t ,  x ) )  obeying fixed-time canonical commutation 
(-) or anticommutation (+) relations, given by (suppressing t ) ,  

[G(x)r G*(Y)]* = 6 ( 3 ) ( ~ -  Y ) I .  (29) 
These equations are  solnetimes interpreted as a second qz~antization of the 
Schrodinger wave ft~nction 11. Notice how they may be regarded as general- 
izations of Eqs. (%), with the discrete index n replaced by tlre continuous 
spatial coordinate x .  

One representation of E q s  (29) is the Fock representation or particle- 
number representation, which we introduce using positional coordinates. 
(We disregard here the possibility of particle spin.) Let us define the N- 
particle Hilbert space 'HN, N = O, l , 2 ,  . . . , as follows For N = O ,  we have 
a one-dimensional Hi1 bert space 3-10 = C, which we interpret as the  ray cor- 
responding t o  the  vacuum state. For N 2 1, 'HN consists of complex-valued 
wave fr~nctions \PN which are square-integrable functions of x l  , ... X N ,  with 

. - We have the standard L2 inner product ( , ) N  in 'HN, given in 
80 by ~ I J ~ Q ~ ,  and for N 2 1 by 

As usual in quantum mechanics, we are often interested in wave func- 
tions, tha t  satisfy specified exchange statistics. We may let the symmetric 
group SN act on 'HN by permuting the N indices labeling particle coor- 
dinates (in Sec. 4.2 we shall discuss t h e  action of SN in greater cleptll). 
For u E S N ,  set u : (1, ..., N )  + (u[ l] ,  ... u[N]). Let ((0) = 1 if u is an 
even permutation, and ((0) = -1 if u is odd. The  Hilbert space 3-1:' con- 

sists of wave functions 9;) tha t  are symmetric under exchange of particle 
coordinates; i.e., they obey the condition 

for all u E S N  For notational convenience, we take 'HF) = 'HO and ?lki = 

yl. AS usual, we can obtain 8:) as the symmetric tensor prodirct of N 
copies of the  1-particle Hilbert space: 'Ht) = 'Hy' N. Alternatively, the 

Hilbert space 7tt1 consists of wave functions i t )  tha t  are nntisymmetnc 
under coordinate exchange, so tha t  

B ~ N  
for all u E SN, and we write 31:) = . 

The Foclc Hilbert space is then the infinite direct sum 3-1 = @:=o 'HN , 
or in the fixed-symmetry cases, f l ( ~ ) , ( a )  = .@s;sI=~ f lg )a (a ) .  T h a t  is, we 
can identify a vector + E 3-1 with a n  infinite sequence Q = ('I'N), N = 
0 ,  1, 2.., , such tha t  the infinite series C F = a ( Y ~ ~ ,  B N ) N  converges; alld 
likewise for I $ ( S ) , ( ~ )  E H ( S ) ~ ( ~ ) ,  The  inner product in 3-1 is given by 

and similarly for the inner product in 'H( ' )L(~) .  
Now we are ready to write representations of the  fields satisfying 

Eqs. (29), acting in the  appropriate Fock spaces. We follow (alith small 
modifications) the notation in Schweber's b o 0 1 c . ~ ~  



Fields satisfying fixed-time canonical commutation relations are repre- 
sented in by: 

where the notation 1, means that the particular triple of coordinates xj is 
omitted, and where [ ~ * ( x ) Q ( ' ) ] ~  = 0. Note that because of the Dirac 6- 
functions, we know immediately that these expressions define not operators 
but operator-valued distributions - like the relativistic fields in Eq. (lo), 
they must be interpreted as mapping test functions to  actual linear opera- 
tors in the Hilbert space. Thus if f i(x) and fz(x) belong to D(W3) or s(@) 
we write, just as we did in obtaining Eq. (11). $(fl) = h 3 $ ( x )  f l  (X)d3r 

and $*(f2) = h3 $*(x) fz (x )d3~ .  This gives us the Lie algebra of canonical 
nonrelativistic fields modeled on test-function space. 

where (f i ,  f2) is the LZ inner product formula applied to the test functions. 

We often spealt loosely of field "operators" rather than the more tecllnically 
correct operator-valued distributions. 

We can see tliat $(x) is an annihilation operator, and $*(x) is a 
cleatiol~ operator. If tile initial vector P(') is, for example, a one- 
11arLicle state (0, \Pjs)(x,), O,O, 0, . ) ,  then $ ( x ) ~ ( ' l  is just the zero-particle 

State (Q!')(x). O,0,0,0, ....) while $* (x)'P(') becomes the t,wo-particle state 
(0.0, J(x - x ~ ) P ~ ' ) ( x ~ )  + d(x - x2)8js)(xi) ,  0,0, ...). 

Tlie sineared versions of E q s  (34) are easily obtained, 

again with [$*(f)@(s)]o = 0 as befits the interpretatio~i of $*(f) as a 
creation field. 

sn the case of the canonical anticommutation relations, we have a rep- 
resentation in given by: 

P a ]  ( x i  . X N )  = (N + I)'/' (XI  , ..., XN,X) , 

with ( $ * ( ~ ) \ k ( ~ ) ] ~  = 0, and with of course a corresponding representation 
of the smeared fields. 

A number operator in these representations may be written Nop = 
JR3 $*(x)$(x) d3x .  Tlie eigenfunctions of No, have as eigenvalues the par- 
ticle number N. The order in whicll $* and 11, are written is very important 
in the definition of Nap. But let us remark that  because l ( x )  and $(x) 
are operator-valued distributions, there is no a priori general definition for 
their product at a point x. Indeed there are well-known difficulties with 
interpreting pointwise products of field operators, or equal-time commuta- 
tioll relations of currents constructed from such pointwise products. Special 
techniilues such as talcing "normal ordered" products, or splitting the points 
in space-time, are needed in relativistic theories to maice sense of the prod- 
ucts or to correctly calculate commutation relations in a representation. 
Without such technic~ues, malting only formal calculations, pointwise prod- 
ucts of field operators typically come out to be infinite, while equal-Lime 
current commutators that cannot vanish (such as commutators of tiine- 
with space-components of local, covariant currents) are never~heless found 
to be zero The missing terms (which are restored wlth more careft11 pro- 
cedures) are sometimes called Schwznger terms. 

The interpretation of the expression for No, thus needs to be checlted 
carefully. Here, in the nonrelativistic context, it turns out there is no 
difficulty. We have just Nop(O, . . . , 0 ,  \YN, 0, . .  . ) = (0,. . . ,0 ,  N ~ N ,  0 , .  . . ), 
( P  a ) .  Since each 'HR)"'), N = 1,2 ,3 , .  . . , can be identified 
with a particular subspace of %(s)~(a) invariant under No,, we write for 
short Na,PN = N P N .  

Of course, we have constructed the Fock space so as to make explicit 
the particle number content; and we have written the field operators that 
explicitly create and annihilate particles. Nevertheless, let us reiterate our 
point of view that the quantized fields are the more fundamental entities. 
The particle number interpretation is viewed as a consequence of the repre- 
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sentatzon of the fields, with the partrcles themselves occurring as the quanta 
of the fields 

Let us make a further philosophical comment about the quantum-field- 
theoretic approach to physics. Many (though not all) physicists have held 
the intuition that  the fundamental physical entities - i .e . ,  those that  "re- 
ally existv as distinct from those that  are merely auxiliary constructs - are 
local in space-time (with any apparent "action at  a distance" being a conse- 
quence of local interactions). In classical physics, one imagines these could 
consist of finitely many quantities describing matter (such as the mass den- 
sity, the charge density, and so on) and the dynamical state of the matter 
, . ~. 
(such as the momentum density, the electric current density, and so on). 
As the description of electrodynamics by means of field strengths proved 
so powerful, we could imagine the fundamental local entities to consist of a 
finite set of observable field strengths, depending only on space-tirne points. 
Then quantities such as the mass density would be derivable (locally) from 
the gravitational field strength, and the charge density and the electric cur- 
rent density would be obtainable (locally) from the electric and magnetic 
field strengths. The dynamical equations (i.e., the equations of motion) 

..- -- 
would then form a system of coupled partial differential equations, first- 
order in time, telling us the classical time-evolution of such a fundamental 
set of local, physical fields - a "classical theory of evervthin~". 

< u 

But we have learned that classical physics fails as subatomic phenomena 
are taken into account. In the Schrodinger description of quantum physics, 
the (complex-valued) wave function is an essentially nonlocal construct. 
It is not a function on physical space-time; rather, it is a time-dependent 
function defined on the configuration-space of a multiparticle system. Thus 
a quantum state described by the wave function is nonlocal in the special 
sense that it can encode information descriptive of quantum correlations 
among spatially separated particles. 

To recover a picture in which entities defined locally in space-time are 
fundamental, the quantum field operator is introduced. The latter is in- 
dexed again by the coordinates x and t. But as an operator-valued distri- 
bution in an infinite-dimensional Hilbert space, the quantum field necessar- 
ily encodes infinitely many degrees of freedom. F'rom these field operators, 
then, we hope to be able to construct algebras of local observables modeled 
on localized regions of space-time. 

We then expect the local causalzty property of the observables to ex- 
press itself through the property of local commutatzvzty. That  is, when two 
regions 01 and 0 2  of space-time are causally separated (e.g., because one 

would need to  travel faster than light t o  reach a point in U1 from a point 
in u 2 ,  and conversely), all the local observables associated with measure- 
ment in U1 commute with those associated with measurement in U2. In 
the nonre la t iv i~ t i~  case, we can anticipate fixed-time observables associated 
with regions of physical space. Galilean local causality then takes the form 
of requiring that when two spatial regions do not intersect, the equal-time 
commutation relations between observables associated with measurement 
in the respective regions are zero. 

2.2. Local c u r r e n t '  Algebras 

Neither the field operators $(f)  and $*(f) ,  nor self-adjoint linear combi- 
nations of them, actually represent physical observables directly. For one 
thing, we always have the possibility of replacing i,b and $* by exp(,iQ)$ 
and exp(-iO)$* respectively, where b' is a fixed real parameter, without 
changing the physics. This corresponds to a gauge transformation of the 
first kind in quantum mechanics, so that the field operators are gauge de- 
pendent. Perhaps more importantly, we do not expect to actually observe 
changes in the particle number in nonrelativistic physics, while the opera- 
tors $( f )  and $* ( f )  implement annihilation and creation respectively. 

These are initial motivations for the introduction by Dashen and Sharp 
of local density and current operators as descriptive of local, nonrelativistic 
quantum o b s e r ~ a b l e s . ~ ~  Another motivation refers back to the early success 
of current algebra in describing features of the electroweak interactions of 
relativistic hadrons - strongly interacting  particle^.^^^^^ Let us discuss 
this relativistic background first, and then elaborate on the nonrelativistic 
current algebra. 

Relativistic local current algebra 

The famous "eightfold way" associated various families of hadrons (in- 
cluding octets of both baryons and mesons) with irreducible unitary rep- 
resentations of SU(3), is the Lie group which is an approximate symmetry 
of the strong in t e r a~ t ions .~Var ious  parts of the weak and electromagnetic 
currents can be combined into an eight-component L'vector octet" of cur- 
rents F;(x) ( a  = 1,2,.  . . ,8),  where p = 0, l ,  2 , 3  is a Lorentz index [as 
usual, we use here the 4-vector notation z = (xO, x ) ,  with x = (2' , x 2 ,  x 3 ) ] .  
The axial vector parts of the weak currents likewise form an "axial vec- 
tor octet" F;"(X). Gell-Mann hypothesized the time components Fo  and 
F: of the vector and axial vector octet to satisfy equal-time commutation 



 relation^,'^ using the structure constants of f a b d  of the Lie algebra su(3) 
of SU(3). More specifically, 

5 b  0 [F :~ (X~ ,  x), FO (y , Y ) ] ~ O = ~ O  = i d 3 ) ( x  - y)  f abd F;(X', X) . (38) 

When the F," are integrated with test functions f a (x )  on R3 (for fixed 
xO),  and the F:a with test functions ga(x),  Eqs. (38) represent an infinite- 
dimensional Lie algebra of the type map( EX3, 6 ) ;  where the mappings are 
given by x -t Ca [ f '(x) Qa + ga(x) Q5 a ] ; here Qa and Q5 a are charges 
that  belong to the finite-dimensional Lie algebra 6. Integrating out the 
spatial variables entirely thus leads to the equal-time algebra 6 of charges 
Q a t  xO, used (for example) in obtaining the Adler-Weisberger r e l a t i ~ n . ' ~  

It is natural, then, to try to extend the idea from Eqs. (38) to a Lie 
algebra that  would also include the spatial components F; of local currents 
a t  equal times. Further, since Eqs. (38) are not explicitly dependent on how 
the currents might be constructed from underlying canonical fields, one can 
imagine the possibility of expressing the Hamiltonian operator directly in 
terms of such local currents, bypassing the field operators entirely. 

In 1+1 dimensions, we have available the ICac-Moody and Virasoro alge- 
bras, where the (finite) central extension plays the role of a Schwinger term. 
But difficulties occur with this idea in relativistic models in Minkowskian 
space-times of dimension higher than 1 + 1. Here the Schwinger terms for 
local currents that are defined from canonical fields are typically infinite, 
suggesting that equal-time current algebras - if they can be used at  all - 
need to be written down independently of any underlyihg fields. 

In d+  1 dimensions, d > 1, relativistic models with finite central or non- 
central Schwinger terms were proposed by Sugawara and by others.29~30*31~32 
The Sugawara model, which turned out to be perhaps the most iiifluential 
of those proposed in the late 1960s and early 1970s, is based on the following 
infinite-dimensional Lie algebra: a t  the fixed time x0 = yo: 

[J,"(x), J;(Y) = i6(3) (x  - y) fubd J$(x), 

d [ J," (x) , J: (y) ] = i 6(3) (x y )  fa" J ~ ( x )  + ic dab - 6(3) (X - y)  , 
dx " 

where Ji = ( J t ,  JL), k = 1 , 2 , 3  is again a 4-vector, the f abd are the struc- 
ture constants of the Lie algebra for an  arbitrary compact internal symme- 
try group G, and c is a constant. The Sugawara Hamiltonian is given in 
terms of the local currents by the formal expression, 

An excellent discussion of Kac-Moody and Virasoro algebras, as well as the 
Sugawara model, is provided by Goddard and Olive.33 

Nonrelatiuistic local current algebra 

The problem of Schwinger terms does not arise for the nonrelativistic 
current algebra defined in terms of the canonical fields satisfying Eqs. (29). 
Let us define the mass density operator p(x) and the momentum density 
operator J ( x )  a t  fixed time t by 

where it is understood that the products of field operators a t  a point must 
be interpreted within a specific representation of the canonical fields. But 
in the Fock representations, these products do have unambiguous and satis- 
factory meanings when the fields act in or ata) according to Eqs. (34) 
or (37). We observe immediately that here, SRS p(x) d3x  = m No,, which 
is consistent with the interpretation of p(x) as the total mass density. 

Note that before the second quantization, the above formula for p(x) 
would just be the mass m times the usual expression for the 1-particle 
probability density in positional space, while the formula for J ( x )  would 
just be the mass times the probability flux density. 

Using Eqs. (29) formally, we can calculate the (singular) fixed-time com- 
mutation relations for the current algebra from the commutator or anti- 
commutator algebra of fields. The result for p together with the spatial 
components Jk of J is, 





amplitude interpretation for Ql(xl ) .  If f (x) approximates an indicator 
function XB(X) for a Borel set B 5 R3, then [plv,l(f)Ql ] (XI)  approx- 
imates m xB(xl)Ql (x l ) ,  which is the mass times the usual localization 
operator projecting Q1 to the subspace of wave functions vanishing out- 
side B. And if f (x) is (approximately) 6(x - xo) for a fixed point xo in 
physical space, we obtain the mass times the probability density l Q l ( ~ o ) ( ~  
for the expectation value of p ~ = l ( f ) .  When g tends toward a constant 
vector field in some spatial direction (let us say, in the xl-direction), then 
[ J N = ~ ( ~ ) Q ~  ](XI) tends toward -ihaQl(xl)/ax:, which is just the appli- 
cation to Q1 of the usual operator for the (total) I-particle momentum in 
the xl-direction. 

When N = 2 or more, the expectation values are sums. For example, 
let B be again a Borel set in R3 and consider f m XB, which gives us 

Here the j th term in the sum is the j th particle mass times the (marginal) 
probability that an idealized measurement detects particle j in region B. 
111 Eq. (47) we have integrated over all possible values of the positional 
coordinates of all the other particles. The expectation value of p ~ ( f )  as 
f (x) tends toward b(x - xo) becomes a sum over j of the expected mass 
density for particle j at  the point xo, similarly calculated. 

Of course (as is indicated by our earlier discussion of the need in quan- 
tum mechanics for infinitely many local degrees of freedom), not all the 
physical information about QN when N > 1 can be contained in its expec- 
tation values with respect to pN (x) and JN ( x )  One must also consider the 
correlation functionals among multiple points in physical space. We need, 

for instance, the 2-point functionals defined by (QN,  p ~ ( x ) p ~ ( y ) Q ~ ) ,  
(QN,PN(x)JN(Y)QN), and (QN, JN(x)JN(Y)QN), for X , Y  E R3; and like- 
wise the higher correlations. 

The N-particle representations are then characterized by systems of 
identities among the N-point functionals of p. For example, in a single- 
particle representation, pl satisfies the 1-particle identity, 

Some time ago Grodnik and Sharp, who considered such identities, also 
introduced the discretized local current algebra in momentum space, with 

ect to which the N-particle identities characterizing Eqs. (44)-(45) take 
ce form.34 Let n = (n l ,  n2,n3) be a triple of integers, and write the 

1 operator Fourier coefficients 

p(,,) = exp(-in. x)  p(x) d 3 x ,  1 
Jk (n) = 1 exp(-in . x )  J ~ ( x )  d3x  ( k  = 1 , 2  

we consider the integrals to be over a 3-torus of 
at is, a "box" with periodic boundary conditions). 
to obey Eq. (42), we have a Lie algebra modeled on 

,, .: ..#. ,,; .,,,;, ;.,,,,, ; .p. 
;,;Aj:!;;:. 
,.:.: ..,,.,,, :.: ,.. . ., L.. : ' , . 

linear dimensioil 
Taking p(x) and 
an integer lattice 

[ ~ ( n ) , ~ ( n l ) I  = 0 ,  

[ ~ ( n ) ,  Jk (n') 1 = nk P(n+nl) 

[ Jk (n)  JC (n') 1 = nt Jk (n+nf) - 

e dimension, this algebra is just tlie Virasoro algebra with central 
e zero, and is sometimes called the "Witt algebra". 
formal represelltatioll of Eqs. (50) may be written 

a 
Jk (n) = ): nk Z(n+nl) - , 

n f  a~(n1) 

,where the operators act on a space of functions of infinitely many coinplex 
variables z(,). The expressions here can all be given rigorous meaning for 
quite general representations of the local current algebra, including the 

-particle (s) and (a) representations discussed above.'' 
In terms of the operators p(,), the 1-particle identity given by Eq. (48) 

P(n)P(nl) = mp(n+nf) r (52) 

while the 2-particle identity for identical particles is 



When the N-particle identity is satisfied, all of the N'-particle identities 
for N '  > N are necessarily also satisfied; but not conversely. 

We have obtained the above "N-particle representations" as descriptive 
of the kinematics of nonrelativistic quantum systems. But it is worth noting 
that  creation and annihilation field operators obeying equal-time canonical 
commutation relations, together with a corresponding Lie algebra of cur- 
rents, exist within relativistic quantum field theories too. Let us take a 
moment to see how this occurs. 

To write the relativistic Foclt space representation of a neutral scalar 
field obeying Eqs. (10) at  a fixed time t we proceed in the following standard 
manner." AS usual, we write 4-vectors x = (xO, x) and k = (ko, k ) ,  with 
ko = wk = [ k 2  + m2]1/2  > 0; and Icx = k,x, = koxO - k . x. 

Let ak and a; be annihilation and creation operators for states of 4- 
momentum (wk, k ) ,  satisfying the relativistic commutation relations 

[ak17 aka] = [a;,, a;,] = 0 ,  

The Foclt space carrying a representation of Eqs. (54) can again be writ- 
ten as the direct sum of N-particle spaces: formally, Ikl, k2, . . . , k ~ )  = 
( ~ ! ) - ' / ~ a ; ,  a;2 . . . a i N  lo), where 10) is the vacuum state. The normaliza- 
tion is established so that (010) = 1, while 

Next write the so-called positive and negative frequency parts of the field 
operator: 

and $(-) (2) = $(+) (x) * . Then with i ( x )  = $(+) (x) + $(-I (o) , we have 

where A(x) is the famous invariant distributional solution of the Klein- 
Gordon equation with initial conditions A(0,x) = 0, ( d A / d ~ ~ ) J , o = ~  = 
- d 3 ) ( x ) .  Defining the operator-valued distribution ~ ( x )  = d$(x)/dxO, we 
obtain Eqs. (10) from Eq. (57) a t  equal times xO = yo. 

and its adjoint, we have that 41 and 4; satisfy the equal-time canonical 
commutation relations in Eqs. (29) - the same as we wrote for nonrelativis- 

second-quantized fields. Then 4; ( t ,  x)41 (t,  x) has the interpretation of a 
rticle number density in position-space at  time t ,  and m$; ( t ,  x)$l (t,  X) is 

mass density. However, compare the form of Eq. (58) to that  of Eq. (56) 
note the extra factor of wkf2 (SO that we are no longer respecting the 

Likewise we can define a 3-momentum density operator in terms of $1 

4; a t  a fixed time. Thus we have obtained from these operators a rep- 
resentation in the relativistic Fock space of the same local current algebra in 
Eq. (43), which decomposes as before into N-particle Bose representations. 
However in Minkowskian space-time the resulting operators are nonlocal 
and noncovariant. The current algebra extended to commutation relations 

equal times leads to operators that  do not commute at  spacelilte sep- 
tions, nor are p and J the components of a 4-vector - that is, (p, J )  do 

not transform covariantly under the Lorentz group. 
Nevertheless the occurrence of a representation of the equal-time Lie 

algebra of currents modeled on vector fields in relativistic quantum field 
theory is significant. Although the physical world is relativistic, we lcnow 
that nonrelativistic quantum mechanics provides good approximations to 
observations a t  .low velocities. While local, relativistic algebras of observ- 
ables necessarily connect subspaces in the Hilbert space corresponding to I 
different numbers of ~ar t ic les ,  if the local particle number makes sense there 
should exist mathematically (in a given reference frame) a system of op- 
erators for measuring the spatial locations of the particles and the flux of 
the particles. Here we see this is indeed the case - the "nonrelativistic" 
local current algebra can exist a t  a fixed time even in relativistic models, 
and generally does. At low energies in particle theories, it .is $his current 
algebra that (approximately) describes the kinematics. ! 

We have shown, then, that a family of self-adjoint representations 
{~ t )"~) ,  ~ g ) ' ( ~ )  I N  = 0 ,1 ,2 , .  . .)  of the local current algebra can describe j 
the kinematics of distinct systems of quantum particles. I 

But we can go somewhat further - we call also express a nonrela- 
tivistic Hamiltonian operator H = Ho + V ,  with kinetic energy Ho and 

i 
' 

- Potential energy V derived from a 2-body potential, in terms of the lo- 



cal currents.35 To do this, we begin with the. kinetic energy expression 
Ho = (h2/2m) JR3 V$Jt (x) . V$J(x) d3x. Then, using Eqs. (41), we can 
rewrite Ho formally: 

while 

The mathematical interpretation of Eq. (59) requires treating not merely 
the product of operator-valued distributions a t  a point, as in the Sugawara 
model, but the reciprocal of an operator-valued distribution. Despite its sin- 
gular appearance, it is nevertheless possible to make sense of this expression 
as a bilinear form on an appropriate domain of vector-valued distributions 
in the N-particle Hilbert space. 

Having reached this point, we shall want to reformulate the theory so 
as to think of the self-adjoint representations of the Lie algebra of local 
currents as the fundamental entities, and the field operators as a kind of 

auxiliary construct derived from and relating these representations. We 
do this in Sec. 4, after developing more about unitary representations of 
diffeomorphism groups. 

2 .4 .  N-Particle Representations of Diffeomorphism 
Groups 

Now the algebra of scalar functions and vector fields entering Eqs. (43) 
exponentiates to the semidirect product group D(R3)x  Dzf fc  (R3) or 
S( (R3)  x K(R3),  according to the choice of limiting condition as 1x1 -+ m. 
So it is natural to write the unitary group representations of Eq. (23) that  
correspond to Eqs. (44)-(45). In general we shall write such unitary rep- 
resentations in the form (f ,  $) -+ U(f)V($), so that U(f)  represents the 
subgroup ( f ,  e) where e(x) r x is the identity diffeomorphism, and V($) 
represents the subgroup (0, 4). 

The group laws become 

U(f l )U(f i )  * Wfl + fz), V($l)V($Z) = V($l$Z), 

V($)U(f) = U(f $)V($), (61) 
or equivalently 

..recalling our conventions f i  = f2  o and $2 = $2 o 

, ,  The corresponding N-particle unitary representations that  satisfy 
E q .  (62) in 'fig) or gk) can be derived from Eqs. (44)-(45) as follows. 

r a, b E R, let us define continuous one-parameter unitary groups by 
xponentiating the self-adjoint density operators pg)da)(f)  and currents 

(g) respectively; thus: 

~,$! ' (~)(a f )  = exp [ ( ia lm)  p~ 

~ $ ) ' ( ~ ) ( $ f )  = exp [ (iblh) J:)'(~)(~) ] . 

ere J$(x) is the Jacobian of $ a t  x .  Notice how the square root of this 
obian is just what is needed for Eq. (64) to give us a unitary representa- 

tion of VN -the change of variable x' = $(x) transforms the inner product 
(QN,  QN),  expressed as an integral, to the inner product (VNPN, VNQN). 

Our uersuective now is the following. Suppose we are given a con- . . 
tinuous unitary representation (CUR U(f)V($) of Eq. (23); for exam- 

ple, one of representations Ug)l(a),Vj)v(a), or some other CUR. We then 
have immediately the continuous 1-parameter unitary groups U(a f )  and 
If($:), a, b E R. Continuity of these unitary subgroups is a consequence of 
the continuity of the representation with respect t o  the topology of D(R3) x 
D i f C  (R3) or S( (R3)  x K(R3). The operators p ( f )  and J ( g )  can then be 
recovered in the representation as the self-adjoint generators of these 1- 
parameter unitary groups, using Eq. (7); i.e., 

1 
J ( g ) 9  = h b+o lim ~b [V($f)P - ] . (65) 

The meaning of p(f) as the spatially-averaged mass density observable, and 
J (g )  as the spatially-averaged momentum density observable, allows each 



such representation of the group to be interpreted physically. In particular, 
Eqs. (44) and (45) follow from Eqs. (64) using Eqs. (65). 

Should the spectrum of p( f ) ,  for'f (x)  2 0, fail t o  be positive definite in 
the representation, we need not immediately discard the representation as  
unphysical. We reserve the possibility of modifying Eqs. (65)) and changing 

our interpretation of the operators. For example, we can multiply the 
right-hand expressions by q lm ,  where q is the unit charge, and interpret 
the resulting operators p( f ) ,  J ( g )  as  the spatially averaged charge density 
and the spatially averaged electric current density respectively. A situation 
where doing this is natural occurs in Sec. 3.3 below. 

2.5. D i f f e o m o r p h i  G r o u p  Repres .en ta t ions  a n d  Local 
S y m m e t r y  i n  Q u a n t u m  Mechan i c s  

We have seen tha t  the unitary representations of the diffeomorphism group 
are not unique, and tha t  inequivalent representations can describe the kine- 
matics of quantum systems tha t  are physically distinct. Although the dif- 
feomorphism group is infinite-dimensional, representations exist describing 
systems whose configuration-spaces are finite-dimensional. Later we shall 
obtain still other representations, with infinite-dimensional configuration 
spaces. Let us first digress briefly to discuss why the diffeomorphisms of 
Rd, or those of a more general manifold M ,  should be fundamental for 
quantum mechanics. 

From the point of view of symmetry, thinlc first of a diffeomorphism $ of 
Ad as acting actively, taking whatever might be located in a neighborhood 
0 of a point xo, and moving it (while smoothly turning and distorting 
it) to  a new neighborhood $ (0 )  containing $(xa). Just  as  we identify 
the self-adjoint momentum operator j1 in quantum mechanics with the 
infinitesimal generator of the group of translations in the x-direction, or the 
self-adjoint angular momentum operator e3 with the infinitesimal generator 
of the group of rotations about the z-axis, we have interpreted the self- 
adjoint operator J ( g )  as  the infinitesimal generator of the flow generated 
by the vector field g - a "local symmetry" of physical space. 

This identification is also kinematical. Just as the self-adjoint operators 
generating translations or rotations (as group actions on the spatial mani-. 
fold) describe linear or angular momentum respectively, and do  not depend 
on the Hamiltonian operator H being translation- or rotation-invariant, so 
do the self-adjoint generators of the flows describe local currents for N par- 
ticles, independent of the particular dynamics. The description depends 

on the fact that  the diffeomorphisms act smoothly as a group on the 
sical space (along with appropriate technical properties of the continu- 
unitary group representation). 
Alternatively we can think of a diffeomorphism 4 as acting passively, 
ning a general coordinate transformation that  provides a smooth way 
edify our description of the locations of objects in space a t  a partic- 
time. The time-evolution operator (and consequently the Schrodinger 

ya t i on )  will not be invariant under such a transformation. But  the prob- 
ility amplitude for a system in s tate  $1 t o  be observed in state 92, give11 
,usual by the inner product (Q2,  Q1), is understood as  being defined a t  

ed,time; and the "collapse of the wave packet" is not itself a dynam- 
process. Then (Q2, $1) should remain unchanged by such a change 
scription - i.e., we expect the modification of coordillates t o  be inl- 

lemented in 7-l by a unitary operator V(q5). And we plausibly expect the 
~ r r e ~ p o n d e n c e  4 + V($) to be smooth and to respect the composition 

of diffeomorphisms, providing a continuous unitary representation (CUR), 
or a t  least a projective representation, of   iff ' ( R ~ )  in 3-1. But  we cannot 
expect the expression for the Hamiltonian t o  be invariant under such gen- 
ral coordinate transformations - at least, outside the context of theories 

(such as  some possible descriptions of quantum gravity) that  are wholly 
independent of a baclcground metric. 

i We begin t o  see the generality of tile diffeomorphism group approach 
to quantum theory. Still another aspect of this description is tha t  because 
we have a local symmetry group, we are not restricted t o  R3 as the spa- 
tial manifold. We can easily consider the group of compactly-supported 
diffeomorphisms of a manifold that  lacks global translation- or rotation- 
invariance, one that  is not simply-connected, and so. on. Suppose we take 
physical space X to  be a manifold M with boundary a M ;  taking X to  
be compact, the natural group consists of Cm invertible homeomorpl~isms 
whose inverse is Cw; and these preserve a M  (as a set). .Thus, even when 
total momentum or angular momentum operators do not exist or are not 
uniquely specified, we have a natural way to describe the kinematics. 

Consider next the general coordinate transformations of the space-time 
manifold EXd+', rather than just of Rd.  A natural group consists of diffeo- 
morphisms 4 : R d t l  + EXd+' that  respect the causal structure; let us call 
such transformations causal diffeomorphisms. 

In Galilean space-time, this means that  the point 6 ( t l ,  XI)  precedes the 
point 4 (tz, x z )  if and only if ( t l ,  x l )  precedes ( tz ,xz)  ( i .e . ,  t l  < tz); while 
4 ( t l  , x l )  and 4 (  t 2 ,  XI) are simultaneous if and only if (tl  , x i )  and (tz. xz)  



are simultaneous as well (i.e., tl = tz). The identity map is causal, and a 
diffeornorphism 6 is causal'if and only if 6;-' is causal; so we again have a 
group. A general Galilean causal diffeomorphism may be written, 

where T : R -+ IW is a diffeoi11orphism of the time axis only, and d t (x )  is 
a parameterized family of diffeomorphisrns of Rd depending smoothly on 
t (not ilecessarily a flow, however). In effect, we consider Rd+l as a bun- 
dle over R (the time axis), and take the group of bundle difJeomorphzsms. 
Evidently the Galilean boosts (t '  = t ,  x '  = x - vt)  belong to this group, 
as well as the time translations. There is also the natural embedding of 
~ z f l ~ ( R ~ )  in the larger group of causal diffeornorphisms of Rd+' given by 
t '  = t ,  x '  = $(x). Representation of this group of bundle diffeomorphisms 
may be i~lteresting for the description of quantum mechanics in nonuni- 
formly moviilg or accelerating reference frames.36 

In Minkowskian space-time, there are four possible causal relations be- 
tween two points x and y: (1) space-like [i.e., (x - y ) , ( ~  - y), < 01, 
(2) light-like [i.e., (x - y),(x - y), = 01, (3) time-like with x preceding 
y [i.e., (x - Y),(x - y), > 0 and xO < or (4) time-like with x fol- 
lowing y [ i. e., time-like with xO > yo]. Causal diffeomorphisms must be 
such that the relation of 6 (ctl, x l )  to 4 (ctz, x2) is the same as that of 
(ctl, x l )  to (ctz,xz). In (1 + 1)-dimensional space-time, a diffeomorphism 
6 of the Minltowskian plane with this property acts independently on light 
cone coordinates. This means that if we write a point (ct,x) in the form 
( ~ 1 ,  -XL) + (xz,xz),  where ~1 = (ct - x)/2 and xz = (ct + x)/2, there 
exists a pair of diffeomorphisms dl and dz of two different real lines (the 
left and the right light cone through the origin) such that with X; = dl (xl) 
and X; = 4 2  (xz), 6 (ct, x) = (x i ,  -xi)  + (x;, x;). We thus realize a certain 
group of causal diffeomorphisms of the Minkowskian plane as the direct 

product group DifJC(IW)xDiflC(R). Note, however, that even when and 
dz are compactly supported on R1, 6 is not compactly supported on R2, 

The appropriate local currents here are light cone currents, not fixed- 
time currents. The appropriate representations are projective representa- 
tions of the Lie algebra, accommodating Schwinger terms - so that we have 
not just two copies of the algebra of vector fields on R, but two copies of the 
Virasoro algebra, leading into conformal field theory in 1 + 1 dimensions. It 
is then possible (but nontrivial) to take a nonrelativistic limit, recovering 
the nonrelativistic local current algebra of Eqs. (43) in 1-dimensional space, 
and the corresponding group. 

In Minltowskian space-time of greater than 1 + 1 dimensions, the group 
of causal diffeomorphisms is finite-dimensional (as is the conformal group). 
1, have PoincarB transformations that respect the time-direction, together 
with dilatations; but we call no longer deform the space-time locally. Special 
relativity in three or more space-time diinensions has a causal structure "too 
rigid" for the diffeornorphism group. But when we move from special lo 
general relativity, the group of diffeomorphisms of a spacelike surface enters 
explicitly again. Here it plays the role of a gauge group, for illstance i11 the 
superspace formulation of quantum g r a ~ i t ~ . ~ ~ , ~ '  

3. Representa t ion Theory  for Di f feomorph i s~n  Groups  

There are several approaches to studyillg unitary representations of diffeo- 
morphism groups. In Sec. 3.1 we describe a very general picture, in which 
the group is represented in the Hilbert space of square-integrable functions 
on some configuration space. Then in Sec. 3.2 we consider various candi- 
dates for such spaces of configurations. In Sec. 3.3 we develop the "method 
of semidirect products," and realize the N-particle group representatiolls 
that were described in Sec. 2.4 on particular orbits in a configuration space 
of distributions. We also introduce some additional representations that 
are associated with other orbits in the same space of distributions. 

3.1. Configuration Spaces, Measures, and Cocycles 

We shall see that the following picture provides a quite general frame- 
work. First consider a continuous unitary representation (CUR) V(4) 
of DifJc(M). Typically M = Rd, but more generally we can take M to 
be a Cm, oriented Riemannian$ manifold that has all the desired topo- 
logical properties - for example it is connected and locally simply con- 
nected (though it is not necessarily simply-connected); it is locally com- 
pact, a-compact, second-countable, and metrizable (and therefore Haus- 
dorff). Often one can then realize the representation V ( 4 )  in a Hilbert 
space 7-1 = Lf,(A, W)  , which is the space of functions q ( 7 )  on a configu- 
ration space A taking values in an inner product space W ,  square-integrable 
with respect to a measure ,u on A. We write the inner product in 7-1 as 

(@, @) = 1 (@(7), @(7))w d ~ ( 7 ) .  (67) 
A 

where ( , ) w  denotes - the inner product in W .  When W = @., Eq. (67) 
becomes (@, *) = JA @ ( Y ) ~ ( Y )  d,u(y). 



For the inner product Eq. (67) to make sense, we require that A be 
a measurable space. That  is, there must exist a u-algebra BA of subsets 
of A (the "measurable" sets), closed under countable unions and intersec- 
tions and under complements, that includes A itself. The  measure p is 
then a positive real-valued function on BA obeying the usual assumptions, 
including countable additivity. 

We shall shortly see how to obtain some examples of the configuration 
space A. For any such example, there must be a natural group action by 
DzffC(M) on A; z.e., a (continuous) map DzffC(M) x A -+ A respecting 
the coinposition of diffeomorphisms. We shall also write 4 : A -+ A, or 
y t 47, for y E A and 4 E Diffc(M). We further require BA to be 
invariant under the action of DiffC(M), so that if B E BA , then 4 B  E BA. 

Then V(4) is given by the important formula 

whose meaning we shall now discuss. 
First we remark that since we are worlting in an L2-space over A with 

respect to the measure p ,  functions on A are defined up to equivalence: two 
11-square-integrable functions are "the same" if they differ only on a set of 
p-measure zero. The abbreviation "a. e. (p)" ill Eq. (68) stands for "almost 
everywllere with respect to p," and means that the equation may fail on 
some p-measure zero set in A. Note that the failure set for Eq. (68) may 
depend on 4; it may even do so in such a way that there are no elements 
y E A where the equation holds for all 4. 

Next observe that in order for the group representation property 
v ( 4 i ) v ( d z )  = V(4142), as in Eq. (61), to be consistent with the factor 
*(4y) in Eq. (68), the action of Dzffc(M) on A should be defined as a 
right action; z. e., 

[41 4217 = $2 ($1 Y) (v 41,4z E Diff '(M), E A).  (69) 

Now the transformed measure pm occurring in Eq. (68) is defined by 
pm(B)  = p(4B)  for all B E BA. It is required that p have the important 
property of quasiinvariance under the action of DiffC(M). This means that 
for all 4 €DlffC(M) and for all B E BA, p(B) = 0 if and only if p(4B)  = 0. , 

Equivalently, B has positive measure if and only if 4B has positive measure. 
This condition is necessary and suficient for the existence for all 4 of the 
Radon-Nzkodyrn derivative in Eq. (68) - dp@/dp is a positive measurable 
function cu,(y) defined for almost all y t A, with dp4(y) = a@(y)dp(y).  

Note that the Radon-Nikodym derivative in Eq. (68) satisfies the "chain 
rule for derivatives" 

~ 9 1 9 ~  (7) = a d 2 ( 4 1 ~ ) ~ m l  (7) (70) 

almost everywhere in A. Eq. (70) is likewise satisfied by a4 (y )  4 ,  malting 
Eq. (68) consistent with the group law. Equation (70) is called a cocycle 
equation, and we say that a$(y)  thus defines a real 1-cocycle. 

In Eq. (68), we have 9 ( 7 )  E W. Then ~ ~ ( 7 )  : W t W is a system 
of unitary operators acting on W for y E A, defined a.e. (p). Unlilte the 
real-valued cocycle cu$(y), the operators x+(Y) do not in general commute 
with each other; so it is important to write the order of operators carefully 
in the cocycle equation they satisfy. In order that V(41)V(dz) = V(4142) 
we need [V(41)[V(42)Q]](y) = IV(4142)9](y); then Eq. (68) implies the 
cocycle equation for x4(y),  

~ 4 ~ 9 , ( 7 )  = Xb,  ( ~ ) ~ 4 ~ ( 4 1 7 )  a.  e. (71) 

Equation (71) is permitted to fail on a set of p-measure zero that can 
depend on and q5z; again, there nlay even be no elements of A wliere 

the equation holds for all diffeomorphisms. 
Given the quasiinvariant measure p on A, we can always choose W = C 

and ~ $ ( y )  = 1, so that Eq. (68) already defines a t  least one unitary group 
representation. When W = C we have complex-valued wave funct,ions, and 
in that case x is a 1-cocycle of complex numbers of modulus one. We can 
in fact obtain additional, nontrivial complex cocycles by setting xg(y)  = 
a4(y)" = exp [iXln cr4(y)], for arbitrary X E R. Note that because of the 
Square root of the Radon-Nikodym derivative in Eq. (68), evaluation of 
the inner product (V(q$)@, V(4)q )  using Eq. (67) gives precisely (@, 9), by 
making the change of variable y ' = 4 y in A. 

Thus we picture CURS of Difjc(M) as described by quasiinvariant mea- 
sures on configuration spaces, together with unitary l-cocycles. TO have 
an irreducible representation, it is necessary that p be ergodic in a cer- 
tain sense for the action of Diffc(M) on A: namely, given any measurable 
set B E Ba that  is invariant under all diffeomorphisms, either p(B) = 0 
or p(A - B )  = 0. Indeed, if there exists an invariant set B E BA with 
p(B)  > 0 and p(A - B )  > 0, then the set of functions in 31 vanishing on 
B is a nontrivial invariant subspace for the representation. But in Sec. 3.2, 
we demonstrate a more precise result. 

Imagine now that A is a subset of a larger measurable space, some 
"universal" space II of all posszble configurations in a class of theories, 



equipped with the a-algebra Bn.  It can be useful to have a topology on II 
for which B n  is generated by the open and closed sets (i.e., for which Bn 
is the Borel a-algebra). The diffeomorphisms of M must act on II with a 
right action in a natural way, so as to leave the a-algebra Bn invariant. 

Taking this point of view, it is actually the quasiinvariant measure p on 
II that ,  in effect, singles out some class of configurations associated with the 
particular representation in Eq. (68). The configuration space A c II is a 
set that  carries the measure - i t  is invariant under the action of Diffc(M),  
and it is of full measure with respect to p in the sense that the measure of 
its complement is zero. 

We then distinguish two ways in which p may be ergodic in the above 
sense for the action of Diffc(M) - either (1) A may be chosen so that  
the group acts transitively on it (so that  A is a single orbit of DiffC(M) 
in II), or else (2) A is an uncountable union of orbits, the measure of each 

of which is zero (in which case p is called strictly ergodic). Both cases 
are important t o  physics. The single-orbit case is typically associated with 
finite-dimensional configuration spaces, and the strictly ergodic case with 
infinite-dimensional spaces. 

Having chosen a quasiinvariant measure thus concentrated on a config- 
uration space A C II, i t  turns out that  the inequivalent choices of X+ for 
Eq. (68) - i.e., the noncohomologous cocycles - are at  least in some cases 
associated with nontrivial topological phase effects in quantum mechanics, 
and the quantum statistics of particles. Then the classification of the CURS 
of Diffc(M) by configuration space, quasiinvariant measure, and cocycle, 
allows us to predict or describe an extraordinarily wide variety of quantum 
systems within a single framework. 

3.2. Choices of Configuration Space 

There is 110 single, agreed-upon universal configuration space for the repre- 
selltation theory of Diffc(M) (or, for that  matter, forthe physics of systems 
having infinitely-many degrees of freedom). This can possibly be under- 
stood not just as an absence of consensus among physicists wo~lcing in 
clifferent domains, but as a gap in our present level of physical and math- 
enlatical understanding. Let us therefore survey several interesting choices . 
that have been made, according to  the physical context under discussion: 
(a) the space of locally finite point configurations, (b) the configuration 
space of closed subsets, (c) spaces of generalized functions (distributions), 
[d) tile configuration space of couiltable subsets, (e) spaces of embeddings 

and immersions, (f) marked configuration spaces, and (g) configuration 
spaces derived from generalized vector fields. Each has its advantages, and 
allows the convenient description and interpretation of certain classes of 
unitary representations.3g 

The space of locally finite point configurations 

. The space that  has played a preeminent role in statistical mechallics 
as well as quantum mechanics is the space rM whose elements are locally 
finite subsets of M (where typically M = Rd). That  is, we let 

rM = {y c M ( (VK c M, K compact) ly n K (  < oo) , (72) 

where ly r l  KI means the cardinality of y n I{. We can write 

N=D 

where rg) consists of all N-point subsets of M ,  FF) consists of all infinite 
but locally finite subsets, and u is the disjoint union. For some purposes, 
it is useful t o  omit rg), which contains just one element - the empty 
configuration. 

For y = {x, 1 j = 1 , .  . ., N or j = 1,2 , .  . .), the natural action of a 
d i f f eom~r~h i sm $ of M is given by $7 = {$(x,)). With our convention 

= $z o this defines a right action (as desired). Note that the 

physical space M is naturally identified with (but is not the same as) the 
I-particle configuration space, which is the class of 1-point subsets of M .  

The space rM may be topologized by the vague topology, which is 
the weakest topology such that  for all continuous, compactly supported 
real-valued functions f on M ,  the functions from rM -+ R defined by 
7 -+ xxE7 f (x) are all continuous. The corresponding Borel u-algebra 
makes r M  a measurable space. In addition the Riemannian structure of 
M allows rM to be given a natural differentiable structure, introduced and 
studied by Albeverio, Kondratiev, and E c k n e r .  For M = Rd,  a measure 
on r(MN) equivalent t o  (local) Lebesgue measure describes an N-particle 
quantum system; so that r(MN) is the N-particle configuration space (see 
below). Poisson and Gibbs measures on rg )  describe equilibrium slates in 
statistical physics, or infinite gases in quantum theory.'8~35~40~41,42143~44,45,46 

The configuration space of closed subsets 

A much larger configuration space, introduced in early work by 
Ismagilov,5~47~48~4g is the space RM of all closed subsets of the manifold 



&I. As in earlier papers, one may for certain purposes want to omit the 
empty configuration. Then for C t n ~ ,  we have that 4 C = {yl(x) ( x  E C }  
also belongs to OM, defining a right action of the diffeomorphism group. 
A u-algebra for RM, malting it a measurable space, is generated by the 
family of sets in OM consisting of all closed subsets of a given closed set. 
That  is, for C 5 RM closed, let nC = {C '  E OM 1 C' _C C}; then let Bn,  
be the smallest D-algebra containing the family of sets { 0 c) c M closed . 
This u-algebra can also be obtained as the algebra of Bore1 - sets with 
respect to a topology on f 1 ~ ,  for which a subbase is the family of sets 

{ C I C n O Z  ~ ) o ~ M . , , ~ .  

Evidently any locally finite configuration y E rM is also a closed subset 
of Ad, so that  in general rM C RM. 

Configuration spaces of generalized functions (distributions) 

Still another choice, convenient to the method of semidirect products 
discussed below, is t o  take the dual space 2I1(M) to the space of CC" 
compactly-su'pported functions D ( M ) .  That is, a configuration F E D1(M) 
is a continuous, linear, real-valued functional on D(M) - a distribution or 
generalized function on M. We shall write (F ,  f )  for the value of F on the 
function f t D(M) .  Diffeomorphisms act on D1(M)  by the dual to their ac- 
tion on D(M);  i.e., q5F is defined by (4F, f )  = (F ,  f 0.4) for all f E D(A4). 
With this definition and our earlier convention, (41$?)F = $2(q51F), SO 

that we have a right group action as desired. A o-algebra in D 1 ( M )  may 
be built up directly from cylinder sets with Rorel base150 or D 1 ( M )  can 
be endowed with the wealc dual topology and measures constructed on the 
corresponding Borel a-algebra. 

When M = R d ,  it is also convenient to use the configuration space 
of tempered distributions S'(Rd),  dual to Schwartz' space S(LRd). Since 
D(LRd) C S(@),  we have S 1 ( P )  c Dl(@)_ The somewhat smallei config- 
uration space S'(Rd) is convenient for representing the group K(Rd) or the 
semidirect product group S(Rd)  x K(Rd), as described in Sec. 1.4. 

Evidently r M ,  or more specifically r R d ,  may be identified naturally 
with a subset of D1(M) ,  or S ' (Rd) ,  by the correspondence 

Y -t EL, (74) 
X E  Y 

where 6, E D i ( M )  or S ' ( R d )  is the evaluation functional (i.e., the Dirac 
6-function) defined by (6,, f )  = f (x ) .  The vague topology in rM is in 
fact the topology it inherits from the wealc dual topology. While rM is 

not a linear space, the larger spaces D 1 ( M )  and S 1 ( P )  are. In addi- 
tion to linear combinations of evaluation functionals (with possibly distinct 
real coefficients), D 1 ( M )  or S ' (Rd)  contain other kinds of configurations 
of physical importance. For example, configurations may include terms 
that are derivatives of &-functions, or generalized functions with support 
0, embedded submanifolds of M (see below). 

The configuration space of countable subsets 

A natural configuration space still larger than RM, that Moschella and 
I have found especially useful, consists of the space Cw of all finite o r  
countably infinite subsets of M .  We write 

where is as above, and ZF) consists of all countably infinite subsets. 

Evidently rM C E M ,  but now there can also be accumulation points for 
configurations in C E ) ,  giving us the possibility of fractals or of point- 
like approximations to manifolds embedded in M. Let us adopt the same 
convention for rM, EM, and RM, of including the empty configuration. 
Since M is separable, the closure map .rr : CM -t RM is surjective. 

The space & is of special interest because of its relation to random 
point processes in M Let M n  denote the Cartesian product M X .  . . X  M (n 
times), and let M w  be the projective limit of M n  as n i m; thus Mm is the 
space of infinite sequences (xi), j = 1 , 2 , 3 , .  . . of elements of A!!. As usual 
in probability theory, M w  is endowed with the wealc product topology, and 
thus also with the o-algebra of Borel sets with respect to this topology. 
Define the map p : M m  3 EM to take the (ordered) sequence (xi) to the 
(unordered) set {x,). Then the natural right action of the diffeomorphism 
group on these spaces ommutes  with p; that is, for q5 E Diff ' (M),  define 
$ : Mw -t M m  by $((xi)] =_ ($(xi)), and define 4 : EM i EM by 

4 [{xi}] = {4(xl)}, whence P 0 4 = 4 0 P.  
Next we introduce in CM the u-algebra BE,, defined to be the largest 

o-algebra with the property that p is measurable; R E ,  is preserved by dif- 
feomorphisms of M Now probability measures on Mw project to probabil- 
ity measures on EM which, for certain classes of self-similar random point 
processes, are quasiinvariant for the action of Dzffc(M) on M w .  This per- 
mits the construction of unitary group representations describing extended 
"cloudsv of particles having a point of condensation.3g~511.2~5354~55~56~57~58 



While the vague topology on r M  does not have an  analogue on Bw, 
one may instead extend the topology described above on Rnr t o  EM. To do 
this, let a subbase be the family of sets { o  E EM / o n  0 # O}oc M...~. 

- But the Borel e-algebra for this topology is not large enough to allow us 
to measure the number of points in a given open set in M .  A stronger 
topology of interest is the Vietoris topology. This is actually a topology 
defined on the space of all subsets of M I  for which a subbase consists of the 
family of all sets {X C M I X  n 0 # 0)oc M ~ ~ ~ ~ ,  together with all sets 

of the form {X C M ( X O)o M,,., . Restricted to EM,  it provides a 
useful topology, whose Borel o-algebra is contained in BE,. 

Configuration spaces of embeddings and immersions 

Yet another way to  approach the characterization of quantum config- 
urations is to consider a given manifold or manifold with boundary L, 
together with the set of maps o from L to M obeying some specified 
regularity and continuity properties (for which there are numerous possible 
choices) that are respected by diffeomorphisms. Then L is the parameter 
space for a class of configurations, and M is the target space. For example, 
L might be the circle S1, or the closed interval [O, 2x1, so that  config- 
urations are (respectively) closed strings (loops) or open strings (arcs) in 
M .  Further possibilities include configurations that are ribbons, tubes, or 
higher-dimensional submanifolds of M .  

When a is injective (so that self-intersection of the image of L in the 
target space is not permitted), we have a configuration space of embed- 
dings Emb(L, M);  without this restriction, it is a space of immersions 
Imm(L, M ) ;  so that Emb(L, At) c Imm(L, M ) .  

Note too that we may consider either parameterized or unparametenzed 
configurations. A parameterized configuration is just the map a(0),  0 E L. 
For 4 t DiEfc(M), 4 : a -t 4 0 a defines the (right) group action on the 
space of parameterized configurations Imm(L, M ) ,  and this action leaves 
Entb(L, M )  invariant as a subset. But in addition, the group Diff(L) acts 
on hnm(L, M ) .  I t  does SO (as a left action) by reparnmeterizatzan, so 
that  for $ E Diff (L), $J : a -t o 0 $. An unparameterized configuration 
is just the image set o(L)  C M ,  where the parameterization has been 
disregarded. Alternatively, under the right conditions on a, we can obtain 
the set a (L)  as an equivalence class of parameterized configurations modulo 

reparameterization; thus, a1 a 2  if and only if 31) E Diff(L) such that  
a1 0 I) = a,. Observe that the configuration space of unparameterieed 
immersions of L in M is a subset of the configuration space RM that is 

(as a set) under the action of D i f fC(M)  Thus this description 
lllnws us to refine RM as sensitively as desired, according to the topological u..- 

properties of extended configurations. 
We shall come to  see that  reparameterization invariance has very nice 

for quantum mechanics, when expressed in terms of ditfeo- 
mOrphi~m group representations. Note that we can consider the N-particle 

space l?(MN) as a special case of Emb(L, M )  modulo reparam- 
eterizati~n, with L = {I, . . . , N}. The group Diff (L) reduces in this case 
to the group SN.  Likewise the configuration space cE) can be 
reearded as the special case in which L = Z (the integers), and Diff (L) is - - 
the group SCO of all bijections of Z .  

Marked configuration spaces 

As before, let M be the manifold of physical space. Let S be another 
manifold, the "internal space" or mark space, introduced to describe some 
possible internal degrees of freedom of the particles in a statistical theory 
0, quantum theory. Frequently S will be a homogeneous space for some 
internal symmetry group. A single-particle configuration is then described 
hv nn element of a bundle space M over M equipped with a projection "J - - 

map p : M -t M ,  with fibers p-'(x) Z S .  
In the most interesting applications M is non-compact, while S may 

or may not be compact. Restricting ourselves to the case of a trivial bun- 
dle, we take M = M x S and p ( x ,  s) = x .  Naturally M x S is just 
another manifold, and we might consider the group DiffC(M x S) act- 
ing on it. But a general diffeomorphism of M x S does not respect the 
assignment of a copy of S to each   article. Writing (x ' ,  s ' )  = $(x, s), 
where 4 is a diffeomorphism of M x S ,  the condition desired is that 
x '  = $(x), while s '  = $(x i s )  - that is, x '  depends only on x and 
not on s .  Here 4 is a diffeomorphism of M I  while for each fixed x 
the condition s '  = $(x, s) defines a diffeomorphism of S .  Then 4 re- 
spects p and is a bundle diffeomorpl~ism, in that  p 0 $ is well-defined 
and equals 4 o p. With & = $142, we have &(x i  S) = [ ) l & ] ( ~ ,  S) = 

B2(m1 ( X ) , $ ~ ( X ,  3)) = c c ( 4 1  (x)), q 2 ( r 1  ( d l  $I (x, s)))l SO that 43 = 4142 
while s "  = $a(x, s )  = $ J ~ ( ~ I ( X ) , $ J I  (x:~))) .  

We also require the support of to be compact in At; i.e., to be 

contained in a set K x S for some compact region li' c M .  This condition 
is stronger than requiring 4 to be compactly supported; it means that for 
x outside the region K, we not only have x '  = x but also s '  = s .  As these 
constraints respect the composition of diffeomorpllisms in DiffC(M x S) ,  



they define a subgroup whereby S is treated differently from M with 
respect to the action of diffeomorphisms. 

For some applications, one may impose additional conditions according 
to the particular situation. For instance, when S is a homogeneous space 
for a finite-dimensional internal symmetry group G we may restrict our- 
selves to diffeomorphisms $ such that  for all x E M ,  the diffeomorphism 

$J(x,s) of S corresponds to the action of an element of G on S The 
semidirect product MapC(M, G) x Diffc(M) introduced in Sec. 1.5 is real- 
ized naturally by setting S equal to the group manifold of G ,  so that it is 
a homogeneous space for the action of G on itself by right multiplication. 

With g l ,  g2 E MapC(M, G) and s E G I  we then have s '  = sgl (x) = $Jl (x, s) 
and s " = sgl (x)g2 ($1 (x)) = s[gl($l gz)](x), consistent with the semidirect 
product group law (gi, 41)(92, $2) = (91($192), $142). 

Now the space P M  of locally finite marked configumtions is defined bv 

where r M x s  is defined from Eq. (72). For 4 t f M ,  there is a unique 
corresponding configuration 7 E rM given by {x I I? n ({x) x S ) /  = I}; 
and a angle point s E S is associated with each x E 7, so that a t  most 
one particle can occupy a point in the physical sDace. 

- 
This framework is natural for describing various physical examples, such 

as a gas of hadrons with internal quantum numbers derived from SU(3) 
symmetry. Other possibilities include letting S be a higher-dimensional 
sphere or torus, with G = Diff(S), to model the compactified spatial di- 
mensions in a critical string theory; or letting S be an infinite-dimensional 
space of pointed loops in a target space &I1, with G = D?flc(M').5g 

Configuration space derived from generalized vector fields 

The final possibility we mention here is to malce use of the coadjoint 
representation of the group DiffC(M), which leads to a configuration space 
that  is natural in the geometric quantization framework 

. ---.. 
Earlier we described the adjoint representation of a Lie group G, with 

Ad(g) : G 4 G for g t G. Now let P '  be the dual space to G; that  is, the 
space of C O ~ ~ ~ ~ U O U S  linear functionals on G. For 7) t Y', let (7 ) ,  A) denote 
the value of 7) at  A E G. We next define the coadjoint representation of G 
as a right action on G ' ,  given by (Coad(g) q ,  A) = (71, Ad(g)A). For finite- 
dimensional groups, G '  is isomorpllic as a vector space to P ;  but when G 
is an infinite-dilnelaiol~al group of'the ldnd that we consider, then C '  ' 

J is in a sense larger than G. 

In particular, the dual space to vectc(M) is the space vectc(M)' of 

9 eneTalized vector fields; that  is (intuitively speaking), vector fields whose 
c,mponents belong to D1(M).  The coadjoint representation of Diff C(M) 
acts thus on generalized vector fields. It might seem, then, tha t  we c o ~ l d  
just take uectc(M)' as our configuration space. However, from the point 
of of geometric quantization, this space is not the configuration space 

but 
rather to a classical phase space. A bit more work is 

necessary to distinguish the "position-like" coordinates (that characterize 
the configuration space) from the "momentum-lilce" coordinates, in a way 
that is consistent with the group action. When we consider a coaQoznt 
OTbzt under Diff '(M), configurations may be identified (under the right 

with leaves in a foliation of the orbit. Then equivalence classes 
of vectoi fields define the elements of the configuration space. 

Quantization on coadjoint orbits of the group of volume-preserving dif- 
feomorphisms is especially useful in the description of quantized vortex con- I 

figurations in ideal, incompressible superfluids. Further discussion of these 
topics is beyond the scope of the present lecture notes.7~60~fl~62~6~64~65~66 

3.3. Orbits in S ' ( R d )  

In this subsection, we consider how the "method of semidirect products" 
allows us to obtain measures on the space S ' (Rd) ,  quasiinvariant under 
the group DiffC(Rd) or the larger group K(Rd) of diffeomorphisms that  
together with all derivatives become rapidly trivial a t  infinity. We obtain 
measures and corresponding irreducible representations carried by N-point 
configuration spaces r$), regarding each of these (for fixed N )  as an 

orbit A$' in S '(Rd) under the diffeomorphism group. We also consider 
cocycles on these orbits corresponding to  the N-particle Bose and Fermi 
representations given by Eqs. (64). These results enable us to understand 
the N-particle representations of the diffeomorphism group in the general 
frameworlc described by Eq. (68). Finally we mention some other orbits 
and their possible physical interpretations. 

Then in Sec. 4.1, we give a concise review of Mackey's theory of in- 
duced representation~.~~!~8.69 Section 4.2 makes use of ideas motivated (N) by 
this theory t o  understand the inequivalent cocycles on the spaces rRd . 
This leads to important insight into how representations of the symmet- 
ric group SN enter the picture. In Sec. 5, we see how these ideas predict 
"topological" effects when the physical space itself is non-sinlply connected, 
"exotic statistics" for particles in two space dimensions.70371 



Measures on a space of distributions 

For specificity let us work with the group S(Rd) x K(Bd), and see first 
in detail how to obtain Eq. (68) on the configuration space S'(Rd). 

The function space S(Rd) h a s  many useful technical properties as a 
topological space. In particular, it is a nuclear space in the sense defined 
in the important book by Gelfand and V i l e r ~ k i n . ~ ~  Following the discussion 
there, the (generally linear) complex-valued functional L( f )  on s(@) is 
called posztive definite if and only if 

m 

C X A , L ( ~ ,  - n) 2 0 ( v f 1 , . .  . , f m  t s(P)) ( v ~ ~ , .  . .,A,,, E c). 
j , k = l  

(77) Using the fact that S(Rd) is a nuclear space, we then have the following 
theorem, which is the analog for nuclear spaces of Bochner's theorem: The 
functional L(f )  is the Fourier transform of a cylinder set probability mea- 
sure p on the configuration space S'(Rd) if and only if L(f )  is positive 
definite, (sequentially) continuous, and L(0) = I. In that case, we have 

L( f )  = dp(F)  . (78) 

Suppose now that we have a CUR U(f) of the additive group S(&) 
in a IIilbert space 3-1. The representation is called cyclic if there is a 
vector R E 31 such that the set {U(f)Rl f E S (Rd) )  spans a dense 
subspace Xn of X. Then R is called a cyclic vector for the representa- 
tion. Given the CUR U(f) with normalized cyclic vector R, the functional 
L(f)  = ( n , U ( f ) n )  satisfies the conditions of the preceding theorem, and 
is thus the Fourier transform of a messure p on S'(Rd). In this case. 
we can realize the Hilbert space H as LiP(S'(Rd),C). The cyclic vec- 
tor is given by the function n ( F )  = 1, and the inner product is given by - (a, 9 )  = js ,(R,) @ ( F )  P(F)dp(F).  The unitary operators U(f)  act by 
multiplication, 

[U(f)Q](F) = e i ( F 3 f ) 9 ( ~ ) .  (79) 

So we have simultaneously "diagonalized" all the operators U ( f ) ,  which 
are associated with the positional densities of the particle numbers or the 
particle masses. 

Next suppose that U(f)V(@) is a CUR of the semidirect product group 
s ( R d )  x ~ ( g )  in .H Then for any @ E K(Rd), the vector V(4))n is likewise 
a cyclic vector for U(f) ,  and L4(f)  = (V($)R, U(f)V($)R) is likewise the 

Fourier transform of a measure pe. But by the semidirect product group 
law.in Eq. (611, L4(f)  = L(f  $-'I; so that 

= eicF1f) dp(&F),  
F€Sf(Wd) 

(80) 

where the last step is just a change of variable. Hence dp((F) = dp($F). 
But from the inner product in the definition of Ll(f) ,  we also have 

Comparing the two Eqs. (80) and (81), we observe directly that dpm(F)  = 
I [ v ( $ ) C ~ ] ( F ) \ ~ ~ ~ ( F ) .  Hence pd is absolutely continuous with respect to p 
(meaning that any set of p-measure zero is also of pe-measure zero). The 
Radon-Nikodym derivative exists, and is given by 

%(F) d~ = l[V(4)fll(F)12, (82) 

, and 

where for 4 given, xg (F)  is a complex-valued function of modulus one on 
S'(R*), defined almost everywhere with respect to the measure p.  

Finally let us apply the unitary operator V(4) to a general vector B E 

En ,  Writing IIJ = xzl =, A j  U(fj)Q (Aj E 0, and using N Eq. (GI), we have 

As I takes the general form B(F)  = c:=, hj ei(F1f) in L:~(S'(@), c), we 
then obtain from Eq. (83) the desired expression, 

where the action of 4 on F is given by (+F, f )  = (F, f o 4). We have 
demonstrated the formula in Eq. (85) on X n ;  but the continuity of V(4) as a 
bounded, linear operator in H allows us to infer that the same formula holds 



on the closure of ? in ,  which is all of H. The complex-valued function X@(F)  
in Eqs. (83) and (85) satisfies, for any pair of diffeomorphisms, the cocycle 
equation (71) almost everywhere ( p ) ,  with y standing for the distribution 
F. 

To sum up, we have realized an arbitrary CUR of S ( E d )  x K(Bd), 
cyclic for the unitary representation of the Abelian subgroup S (Ed) ,  in the 
general form given by Eq. (68) but with the specialization W = C. We 
have done so using as our "universal configuration space1' II = S'(Rd)).  T l ~ e  
non-cyclic case, which we shall not discuss here (but see the discussion of 
induced representations in Sec. 4) ,  requires that 1P take values in a higher- 
dimensional space W,  and that X$ define a unitary operator-valued 1- 
cocycle acting in W. 

Ergodicity and irreducibility 

Next we consider in a little more detail the relationship between irre- 
ducibility of the representation realized in this way, and ergodicity of the 
measure p under the action of the group. 

Suppose we have a configuration space A that is a measurable space. 
a group G acting measurably on A ,  and a measure p on A that  is quasi- 
invariant under the action of elements g of G. We call a measurable set 
B 2 A almost surely invariant (with respect to p) if and only if (Vg E G), 
p(gB - B) = 0. Evidently such sets include (but are not restricted to) 
invariant sets as well as arbitrary sets of p-measure zero. But the measure 
zero set g B  - B may depend on the choice of g, and there is in general no 
guarantee that the union (over g E G) of all such sets is of zero measure. 
Thus let us call p ergodic for the action of G if any almost surely invariant 
B that  is of positive measure is necessarily of full measure; that is, the 
measure of its complement A - B is zero. This is a logically stronger sense 
of ergodicity than that  mentioned in the previous section. 

. ~ . .  
Now we shall show that  the representation U(j )V(4)  is irreducible if 

and only if p is ergodic. - 
First, suppose p is not ergodic. Then there exist measurable sets 

B l ,  B2 C S'(R?), with the properties that /L(B,) > 0 and p(B2) > 0, 
and with p(4B1 - B,) = 0 and p(4B2 - B2) = O(V) t K(Rd) ) .  
Let W I  be the subspace of functionsthat vanish almost everywhere on 
S'(Rd) - Bl, and similarly define U2.  These are non-empty, closed sub- 
spaces of L&(S '(IRd), @). By Eqs. (79) and (85) they are invariant under 
all the operators U ( j )  and V()), and the representation is reducible. 

Conversely, suppose that the representation is not irreducible, so there 

a nontrivial, proper closed invariant subspace H I  c X. Let P be 
the operator of orthogonal projection onto X i ;  then P commutes with all 
,he U ( f ) V ( d .  Because P commutes with the U (  f ), i t  is easy to 
sllow that on the dense subspace Zn it acts as a multiplication operator 
by tile measurable function P ( F )  = [PI1](F). This action extends to all 
of by continuity of the operator P Since P is a projection, P ( F ) Z  = 
p ( ~ )  a . e  (p),  so that P ( F )  = I or P ( F )  = 0 a.e. (p). And because 'HI 
is non-empty and not all of X, P is not the zero operator or ihe identity 
operator, so that P ( F )  is not almost everywhere zero or almost everywhere 
one, There must exist disjoint sets Bi, %? C S t ( @ ) ,  both having positive 
measure, with P ( F )  = 1 on Bi and P ( B )  = 0 on B 2  The subspace XI 
coTTesponds to the set of L2 functions that  vanish almost everywhere on 
1 )  - . Applying V ( $ )  for arbitrary ) to the vector Pi2 E XI, we 
see from Eq. (85) that  invariance of Zl implies p(dB1 - Bl)  = 0. Thus 
8, is an almost surely invariant set of less than full measure, and p is not 
ergodic This completes the argument. 

Ergodicity, then, is necessary and sufficient for irreducibility in the cyclic 
case. But there are two rather different ways in which a measure p on 
s f ( P )  could be ergodic First, it might be concentrated on a single orbit 
in ( )  Alternatively, the measure of every orbit could be zero, so that  
anv invariant set of positive measure is an uncountable union of orbits. In 
this case, we call p strictly ergodic. 

Meayures on N-particle orbits 

Let us consider some examples of orbits. One approach is to take a 
particular element of S'(Wd) and consider all elements obtained by applying 
diffeomorphisms to it. 

Suppose we start with the evaluation functional 6, E s ' ( R ~ ) ,  (for fixed 
y E Wd) defined by ( b y ,  f )  = f (y )  (Vf E S(Rd)) .  Then the orbit containing 
6, is the set A(') = {)&I4 E K(Rd)}. But ()6,,f) = (J r . f  0)) = 
f($(y))  = (6$(,,, f ) ,  whence 46, = bdiY1. Since (Vx t Bd) (34 E K ( P ) )  
such that x = )(y), we have the K-orbit A(') = {dx 1x t R ~ }  under 
the natural action of the diffeomorphism group. The Lebesgue measure 
dx = dzl . . - d r d  on P, or any measure p equivalent to i t ,  immediately 
gives us a measure on S1(Wd), concentrated on A('), that  is quasiinvariant 
under diffeomorphisrns. 

Then we have the Hilbert space 'HI = L~~, (A( ' )~@) .  With the choice 
dp = dx, ?il is straightforwardly identified with the usual 1-particle Hilbert 



space L:,(Rd,C). For P E %I we may write P = 8(dx) a e. (p). Then 

Taking the cocycle in Eq. (85) to be identically one, as we may alwaysdo, 
we complete a representation on the 1-particle orbit by writing 

Tlius we recover the 1-particle representation of Eqs. (64), having simply 
replaced the particle coordinate x by the distributiol~ 6,. Thus A(') is 
identified with I?::. 

We remark that if R(6,) 1 is to be a (normalizable) cyclic vector as 
in the immediately preceding discussion, so that L ( f )  = (R, U(f)R) is the 
Fourier transform of a probability measure as in Eq. (78), then we need 
p (n i l ) )  = 1. The Lebesgue measure dx itself does not qualify, since it is 
infinite. Instead we must consider a normalized measure equivalent to it. 
Therefore, we maymake the choice of writing dp(6,) = I@0(x)l2dx, where 
I@o(x)12 is integrable, positive almost everywhere, and J l@o(x)/2dx = 1. 
Then n(6,) E L:~(A('),C) is cyclic under the representation in E q  (86). 

A second, alternative choice is to replace dp(&) by the Lebesgue mea- 
sure dx, so that @O is the vector cyclic under the representation U given 
by E q  (86). With the first choice, the square root of the Radon-Nikodym 
derivative in Eq. (87) becomes 

which is defined almost everywhere ( p )  because Iao(x)/ > 0 a e. (p) With 
the second choice, the square root of the Radon-Nikodym derivative IS 

simply as in E ~ s .  (64). I t  is natural to think of choosing the vector 
to be the lowest-energy state of a 1-particle Hamiltonian: H l o  = Eo@o. 
More generally, let us obtain an orbit by starting with the distribution 

EE1 6,, E S'(IRd), for a given set of (distinct) polnts { y l ,  . . . , y ~ )  c Old. 
Because we have a sum of bfunctionals, such a distribution depends only 
on the set and not on the order in which its elements are listed. Applying a 
diffeoinorphism 4 to the distribution gives us E z l  66(y,). Moreover, for an 
arbitrary N-point subset { x l ,  . . . , x ~ )  C @, there exist diffe~mor~hisms 
4 E K(@) for which .Xg1 6,, = .XgI &,(,,) Tlie desired orbit is therefore 

A;:' = { X E l  $, E S 1 ( * ) ] x I  t lRdd.xI # x ~ f o r j  # k ) ,  and we have a 

6 1 

natural identification of _ I  the N\  distributions in this orbit with the elements of 
the space 1';;'. 

Again, any measure concentrated on A$) that  is equivalent (locally) to  
the Lebesgue measure dxl . . dxN is quasiinvariant under diffeomorphisms. 
~t is easiest just to  use the Lebesgue measure, but it may be more instructive 
to use a normalized measure p (see below). The former choice allows us 
+n the Hilbert space 8~ =' L ~ , , . . . d x ,  (AN ,C); then we write IN\ "- 

a E gN as a square-integrable function on the configuration space Ah.'. 
We have 

N 6 ) = e '(C-V=~ 6x> l f )  Q(c;="=~,,) [ u(f)*l(c,=, x, 

- - elC,N_l f ( X ~ )  *(c;!~ JX,),  (89) 

which should be compared with the first of Eqs. (64) 
Next we take the important step of making an identification between 

x$) or H&) and HN for N 2 2 (which was not a problem for N = 1). Re- 

call that totally symmetric or antisymmetric wave functions @$) or @$' are 
defined on the coordinate space of ordered N-tuples of points (XI , .  . . , XN),  

x, E Rd; but each satisfies a symmetry condition whereby its value 
at one such N-tuple actually determines its values at N! points in the 
coordinate-space that are related by permutations. Let us therefore dis- 
tinguish a preferred sector in the coordinate space. We shall do this con- 
ventionally for the manifold Rd. Given two distinct points x and y in Ktd, 
introduce the "lexicographical ordering" whereby x < y if x1 < y l ,  or if 
when 1.3 = u3 for j 5 k then zk+' < yk+' (from k = 1 up to k = N - 1). 
The preferred sector will then be { (XI, . . . , XN) 1 xl < (N) . . < X N ) ,  whose 
~ o i n t s  are in natural one-to-one correspondence with ARd . 

Now either Hilbert space 'HE) or 31k) (N 2 2) may be mapped unitarily 
2 to EN = Ldll,,,dxl (A$), c), just by restricting the values of P(') or 

to the preferred sector and normalizing the wave functions with a factor 
of m. Then it is easy to see that the representations uE) and US) in 
Eqs. (64) are unitarily equivalent to each other - when written in H N ,  
both representations act according to E q  (89). The fermionic and bosonic 
N-particle representations of the nonrelativistic local current algebra (and 
the corresponding semidirect product group) are thus modeled on the same 
configuration space, obtained as the K-orbit AL!) in s'(IRd), equipped with ., 
a measure locally equivalent to the Lebesgue measure. 



Cocycles on N-particle orbits 

If these representations are to be unitarily inequivalent, they must be 
distinguished not by the multiplication operators constructed from the mass 
density operators pN( f ) ,  but by the associated representations v,$) and 

~ t )  of the diffeomorphism group constructed from the momentum density 
operators JN (g). Mathematically, the different exchange statistics for finite 
particle systems will enter not through the measure on S ' (Rd)  or, corre- 
spondingly, the choice of quantum configuration space A;:)., but through 
a complex-valued (unitary) 1-cocycle for the action of the diffeomorphism 
group on that configuration space. 

It remains to  rewrite the representations v$) and v,$) in Hilbert spaces 
of square-integrable functions on A$). This is a convenient point at which 
to  introduce normalized measures. Suppose that the totally antisymmet- 
ric N-particle wave function @ t ) ( x l ,  . . . , x N )  E u:) is a cyclic vector 

for the operators u!) in the ferrnionic (a) representation of Ecls. (64), 

with ~~@k)ll = 1. Similarly let the totally symmetric wave function 
+t) ( x i ,  . . . , x N )  E 3-1;) be a normalized cyclic vector for the bosonic 

representation u!). AS these are cyclic vectors, they are nonvanishing 
a.  e. (in the measure dxl  . . . dxN) .  Note also that ( @ k ) ( x l ,  . . . , xN)I2 
and \@!)(xl, . . . , x N ) ~ '  are independent of the order of the arguments 
x i ,  . . . , XN, and thus are fully specified by their values on the preferred 
sector. The measures 

are equivalent to each other on A;:) (i.e., they have the same class of 
measure zero sets). 

Now define the linear operators : 3-i:) 4 Lip(.) (Ai;), C) and 
Q(S) : xg) + ~2 d / ‘ ( ~ )  ('Wd (N)  I '1.) 

Since and @k) (respectively, Q(') and a t ) )  have the same exchange 
symmetry, and and @t) are almost everywhere nonzero, the right- 
hand side of Eq. (90) is independent of the order of the arguments and 
is a well-defined function of C g ,  dxl (a. e .) .  From the definitions of dp(a) 

it is easy to that Q(") and are unitary. We also have 
and (3) @(s) = f)(s) =_ 1. 

= ora) a 1 ,  and Q 

. is 
to determine that the two unitary representations 

the diffeorn~rphism group, Q ( ) [ Q ~ ] -  and Q(')V,$)($)IQ'"\-~ , c N )  C) or L;~(.,(A$), 0 as 
act (mpectively) on vectors t L:pi-l(Aad 9 

hgain because of the antisymmetry Or symmetry of @p3(') under permu- 

., 

,,,ions of the the ratio oi functions entering E q  (91) is invariant under 

such permutations, 11 is thus well-defined a e .  by the specification of the 
functional z,N=, 6,, E A$). Comparing Eq. (91) with E q  (85)) we find the 
q,,uare of the Radon-Nikodym derivative O C C U U ~ ~ ~  in Eq. (85) to  be 
-1 

the real-valued I - c o c ~ c ~ ~ ,  

- 
while the unitary 1-cocycle in Eq. (85) is just 

6, ) = phase X +  (Cj=l 1 

Let us loolc at  Eqs, (92)-(93). Typically the wave function describing a 

L 

state in Schr6dinger quantum mechanics belongs to the 
of a Hamiltonian that is expressed as a differential operator in the parti- 
cle Thus i t  is a t  least a continuously differentiable function 
of those coordinates, For such a smooth, almost everywhere "onvanishing 
function or the sides of the above equations are de- 
fined except at the zeroes of the wave function - t l d  is, they are defined 
outside nodal surfaces in configuration Space. in the totally symmetric 
it is typically to choose the ground state a$) So that it is nowhen 

but  this is not SO for totally antisymmetric wave functions 'Thus 



the existence of measure zero sets where, in particular, xd ( C g 1  dXj) is un- 
defined, and where Eq. (71) for a 1-cocycle fails, is inevitable! However, we 
have an explicit handle on these sets - the "almost everywhere" qualifi- 
cation of Eq. (71) has turned out to be not merely an abstract, technical 
restriction, but a condition characterized by the nodal surfaces of fermionic 
ground state wave functions. Letting Z c A$) be the measure zero set 

,-, 
where iPr' vanishes and XI is undefined, we see that  Eq. (71) fails pre- 
cisely when the configuration 7 belongs to the measure zero set Z u 4 ; ' ~ .  
Thus we see that there does not exist a single set of measure zero outside 
of which Eq. (71) holds for all 41, & E Kc*); indeed, there may be no 
elements of the configuration space where this is so. 

To conclude this subsection, let us discuss the unitary equivalence or in- 
equivalence of the representations defined by apparently distinct 1-cocycles, 
where the underlying quasiinvariant measures on the configuration space 
are equivalent. 

First consider the N-particle symmetric (6) case of E q  (91), where 
N 2 2. Let us introduce the multiplication operator Mo,  defined on 

(N)  L : ~ ( ~ ~  (A*. , C) as multiplication by . . . , X N ) /  (x l ,  . . . , X N ) I  
= pliase [ a t )  (XI, . . . , XN) ] . Then Mo is a well-defined, unitary opera- 
tor that commutes with all of the operators ~ ( ' ) ( f ) .  From Eq. (91)) 
it follows straightforwardly that the equivalent unitary representation 
Ma Q ~ ) v $ ' ( ~ ~ ) [ Q ( ~ ) ] - ~ M ~ ~  is the representation associated with the trivial 
1-cocycle, X 4 ( C z l  S,,) = 1. 

Next consider the N-particle antisymmetric (a) case of Eq. (91), with 
N > 2. The unitary inequivalence between this representation and the N- 
particle symmetric representation depends in an essential way on the dimen- 
sionality d of the space. Intuitively, this is because diffeomorphisms that 
become trivial a t  infinity cannot implement an exchange of distinct parti- 
cle coordinates on the real line, while they can do so in higher-dimensional 
Euclidean space. 

For the case d = 1 we may, as in the symmetric case, let M,, be the op- 
erator of multiplication by the phase of an almost everywhere nonvanishing 
wave function iPt'(x1, . . . , x,). We have dropped the bold face notation 
to remind us that  with d = 1, the x, are just real numbers. But here, we 
specify (XI, . . . , XN) to be in the preferred sector rl < . . . < X N  of the 
space of ordered N-tuples of distinct particle coordinates. The elements 
of K ( R 1 ) ,  being order-preserving diffeomorphisms, act on this space of or- 
rleled N-tuples so as to leave invaliant this preferred sector. Using this 
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fact, together with Eq. (91), we have the perhaps surprising observation 
,.hat the N-particle antisymmetric and symmetric representations of the 
diffeomorphi~m group K(Rd), and hence of the semidirect product group 
s(&) x x ( R d ) ,  are unitarily eguavulent in onespace dimension. 

~ h u s ,  to distinguish bosons from fermions when d = 1,  it is necessary to 
refer to observablesthat are not fully expressible in terms of the local cur- 
rent Agebra. For example, consider the kinetic energy operator Ha, which 
acts on some domain in L$x,d,,.,,dz, ( A P ) ,  @) as a differential operator, 

Then Ho is defined a t  least on a minimal domain consisting of smooth 
functions 9(C% bx1) that  vanish together with their first derivatives when 
adjacent particle coordinates come together; i.e., that satisfy the boundary 

lim Q ( C ~ , 6 , , ) = 0  ( 1  . - 1 )  ' 

5 ,  -) x1+1 

a* (z,N=, hzj ) = lim a* ( c g 1  6, j) 
lim = o  ( j = l ,  . . . ,  N - 1 ) .  

zj-+ xj+l a x j  x , + x j + ~  ax j+l  
(95) 

But to fully specify the unbounded operator Ha as a self-adjoint opera- 
tor in Hilbert space, i t  is necessary to widen its domain of definition by 
meins of less restrictive boundary conditions - and the different possible 
choices then lead to  physically inequivalent (bosonic, fermionic, or even 
intermediate) particle systems. 

In particular, one way to  relax Eqs. (95) is to allow P(C$, hXj) and 
a ~ ( C 2  ijxj)/axj to take on arbitrary values in the limit as x j  + z j + ~  
(for each j = 1 , .  . . , N - I ) ,  but to require that  in this limit, aB/Bxj = 
8 9 / 8 ~ ~ + ~ .  Then a vector Q(CY,, &,) in the domain of Ho defines a 
corresponding totally symmetric wave function on the space of coordi- 
nates (x i ,  . . . , xN) that  is in the domain of the usual self-adjoint Hamil- 
tonian operator; and we' see that  we have a bosonic system. Alterna- 

tively, requiring Q ( C g l  L j )  to be zero in the limit as x j  + xj+l  (for 
each j = 1 , .  . . , N - I ) ,  with a 9 / 8 x j  = - a l P / a ~ ~ + ~  in this limit, means 
that a choice of IY(CY=, 6,,) in the domain of Ha determines a totully 
antisymmetric wave function on the space of coordinates (x i ,  . . . , x ~ )  Ihat 
is in the domain of the usual Hanliltoniall operator; and then we have a 
feymionic system. 



h r t h e r  discussion of unbounded self-adjoint operators and inequivalent 
self-adjoint extensions of symmetric operators is beyond the scope of these 
lecture notes; but see, for instance, the discussion of von Neumann's theory 
of deficiency ind~ces in the instructive book by Reed and Simon.72 

But d = 1 is a very special case. More generally, for d _> 2 and N _> 2, 
there are diffeomorphisms trivial a t  infinity that  do  implement the exchange 
of any pair of particle coordinates. Then the (a) and the (s) representations 
of Eq. (64) are unitarily znequivalent (we omit the details of the proof).18 
We shall see below how such inequivalent representations are obtained from 
one-dimensional unitary representations of the symmetric group SN by in- 
ducing, a technique tha t  generalizes t o  predict more exotic possibilities for 
the quantum statistics of particles. 

To sum up, we first wrote down the  Bose and Fermi N-particle repre- 
sentations in t he  Fock space of canonical nonrelativistic field theory, where 
they are given by Eqs. (64). Now we have explicitly realized them in the 
form of Eq. (68), over the configuration spaces A ~ Y )  =" r ky ) ,  which we 
obtained as K-orbits in S ' (Rd ) .  For distinct N, the measures on S1(IRd) 
corresponding t o  these representations are supported by mutually disjoint 
orbits, and are thus mutually singular; it follows that  the representations 
for distinct N are mutually inequivalent. For fixed N 2 2, and d = 1, 
the (s) and (a) representations of (64) are, however, unitarily equivalent; 
while for d 2 2,  they are inequivalent as  a consequence of the corresponding 
inequivalent cocycles. 

Other finite-di.mensiona2 orbits 

The N-particle orbits are not the only finite-dimensional orbits in 
S1(IW") under the  action of K(Rd). We may, for instance, construct orbits 
containing functionals with terms tha t  are derivatives of Dirac 6-functions, 
or multiple derivatives of them.73 Suppose for specificity tha t  d 2 2, and 
consider the functional - A .  06, E S'(Rd) tha t  is defined on f E S(Rd)  
by the  formula 

where x E IRd is fixed, and where A # 0 is a d-component vector. It is 
straightforward t o  determine the action of 4 E K(Rd) on -A .V6, using 
t he  definition () [-A . V6, ] , f ) = (-A . V6,, f 0 4). Writing -A1 - V6,t = 
$[-A .V6,], we obtain 

"' (x)hk  (3 = l , . . , d ) .  ~ ' 1 ~  = aZk (97) 

we see from Eq. (97) that  the set of pairs {(x, A), h # 0) labels a single 
under h (Rd) ,  which we shall label A',(') C S ' ( R d )  [When d = 1, 

diffeOmorphismS cannot act so as t o  change the sign of A ,  and we have 
in that  case two distinct orbits: {(x, h ) ,  h < 0) and {(x, A), A > 0 )  .I 
 sly with the N-particle orbits, we now also have orbits whose 
elements are sums of N derivatives N of 8-distributions: 

= _, -A3 . Vhxj (A1 # 0, V j )  . (98) 
,-I 

Comparing E q  (97) with Eq. (22), we also see tha t  i t  is natural here to  
interpret A as a (non-zero) tangent vectoi. t o  the manifold Rd a t  x ,  and A' 

a tangent vector t o  I@ at  x ' ;  then A' = (Ad()-'))A. We have, in accord 
witll our conventions, a right action of the diffeomorphism group on the 
configuration space - diffeomorphisms act as usual on the manifold, and 
they lift by means of the usual derrvative map t o  act on tangent vectors to  
the manifold. 

The  Lebesgue measure dxdA defined on the orbit A',(') is quasiinvari- 
ant under the action (97) of diffeomorphisms. Thus we have a unitary rep- 
resentat,i~n of the semidirect product group S(Rd) x K ( P ) ,  in the Hilbert 
space 31 = L;,~~(A''('), C) given by 

\U(f)Q)(x,  A) = exp [ i h  . (Vf )(XI! 'p(x, A) 

In E q  (99), we have chosen the cocycle tha t  is identically one. Note tha t  
the Jacobian of 4 occurs here without the square root sign - one factor of 

results from the action o f )  on x ,  while another factor of 
results from its action in A. 

The  corresponding representation of the current algebra (43) is eas- 
ily obtained from Eqs. (65); but we notice immediately tha t  p(f)  for 
f (x) 2 0 is not going to  be positive definite in this representation - a 
possibility already anticipated in the discussion following those equations. 
Therefore p ( j )  cannot describe the mass density. Let us instead construct 
charge density and electric current density operators from Eqs. (99). using 
p ( f ) i  = (q/i) a. ~ ( a f ) @ l . = ~  and J ( g ) @  = (qh/mi) a b  V ( 4 f ) e / b = 0 .  

We obtain 

[ ~ ( f ) @ l ( ~ ,  A) = q [A. (Vf  Q(x1 A) I 
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qfi 1 
' J (g ) 'y1(x1h) '=-7{g(x) 'v*(~ , i )  m 2% + V . j g ( x ) ~ ( x , ~ ) l )  : To describe a dipole with fixed net charge 'log. 

s ( ~ d )  ~ ( p )  0. the orbit ~ 2 ' "  = { C I O ~ X  + A V 6 x  I x  
yh I a a - O) 

s ' ( ~ d ) ,  T~ describe N identical neutral point dipoles in 
+ --(ajg*)(x)ih'-yl(x,I) + -[Aj@(x,h)]},  (10 
rn 2i 8 X k  urally use the orbit ~ ~ l ( ~ )  as the quantum configuration space. aX k 

rbit is defined analogously, and describes where as L1sual 
Over the repeated indices j and k is assume .- les. T11e more complicated orbit A\:) + A:;'~) '- In Order to interpret 

these equations, let us compare them with a units lql bXj + X~ . ~ 6 , , ] )  describes 2N point ~art;icles Of 
x K ( P )  describing two particles having eqilal 

O1'posite ''large In such a representation, tile charge den 
ordinary particles with charge qorl (and no dipo1e 

liiewise to  be positive definite when f(x)  2 0 ,  
configuration space the X-orbit *(2) 

(]>--I) = { * X I  -6x2 / x, # xz )  c S f ( R  
and with methods that are by now familiar, we obtain: uadrupole and higher multipole point particles corres~Olld to 

rbits in S ( E X d )  under the diffeomor~llism group, 
tations of the local current algebra. The  strmture 

actually ,quite nontrivial, and the resulting particles can be 
interesting, tightly-bound composite systems of three, 

where @ E L~,,,x2 (N) : or more charged components.'3 
urn statistics of dipole, quadrupole, and higher multipole 1 -  now that @ is such, that i t  vanis except for particle separations. For x l  close to x2 (so that can be described by C O C Y C ~ ~ S  on the corresponding 

changes from xl 
xz) ,  we have from the first of E ~ ~ ,  !2 

iety of distinct quantum systems in lRd are described 
of the semidirect product group S(R" x(Rd).  

Many of these are classified by quasiinvariant measures concentrated On 

9IA. (Vf) (x)J@(x1,x2) ,  r finite-dilensiooa1 configuration spaces, that in the case of rep- 

A = (xl - x2) and be  realized as single K-orbits in S '(Rd ). possi- 

= (1/2)(x~ + xz).  the^ we have in ly those associated with the statistics of indistinguishable 
ified by unitary ~ - ~ o c y c l e s  on these orbits. second of Eqs. (101) we write 

~~t not all irreducible CURS of s(Rd) x K(Rd) to quasi- 

[v($)*](x, A) = on s ' ( R ~ )  concentrated on a single orbit. As noted 
earlier, an infinite gas of indistinguishable point particles is described us- 
ing the configuration space r$, which is embedded in S'(Wd) by Eq. (74). 

*he resulting a$) is not a single orbit under K(Rd ) t but an 1mcountable which aPPrOximatelY equals the second of E ~ ~ ,  (99) when a union of orbits. Different techniques must then be used to  construct quasi- are near each 
O t h e r  So for any particular choice of the el invariant measures (see below), leading t o  still more inequivalent 

( f 4 )  ' K(Rd), the unitary representation given by Eqs. the semidirect product group tha t  are essential ior statistical physics. an approximation 
to the representation given by E,-,~. (101) when ~ i k ~ ~ i ~ ~ ,  an infinite gas of indistinguishable point dipoles be de- 

On wave functions describing tightly-bound particles of equal and scribed by the configuration space A $ ' ~ '  C s ' ( ~ ) ,  defined by charge This justifies the interpretation 
of E~~ (99) as describing The 

is riot fixed but variable; it aE,m) = { y ,  hj . v6,, ( A j  # 0; xi # x r  for j # 7 (Io4) 
Over pd - ('1 (when d 2 2 )  T h e  wave function Q ( ~ ,  1) is a pro where { xj 1 c p d  is locally finite. Here, too, the configuration space is 

for finding a neutral particle a t  with dipole moment pA, uncountable union of orbits under the action of the diffeomorphism group. 
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4. Induced Representations 

In See. 3.3, we associated representations describing the different possible 
statistics of a system of N identical point particles in IRd (for d 2 2) with 
distinct 1-cocycles on the N-particle orbits A L ~ )  c s'(kd). The A$ are 

naturally identified with the configuration spaces r$), whose elements are 
N-point subsets of E X d .  Next we want t o  explain how these representations 
of the diffeomorphism group occur as induced repnsentationr obtained from 
the unitary representations of the symmetric group SN. 

4.1. Mackey's Theory 

Inducing is a method developed by George M a ~ k e ~ , ~ ~ ~ ~ ~ ~ ~ ~  that has its ori- 
gin in the study of finite-dimensional Lie groups. It allows one to con- 
struct CURs of a second-countable, locally~compact group G from CURs 
of a closed subgroup H C G. Its generalization to include the infinite- 
dimensional groups discussed here remains to some degree incomplete. Nev 
ertheless, extension of this method to infinite-dimensional groups provid 
further insight into the representations we have constructed. In this su 
section we outline Mackey's method, and in Sec. 4.2 we describe its gen 
alization to N-particle representations of the diffeomorphism group lC(B 
This leads to an understanding of the different statistics that are possi 
for a system of N indistinguishable quantum particles. 

In general let H be a closed subgroup of a group G, and let A = H \ G  
the quotient space whose elements are the distinct right cosets Hg,  for 
G.  Then g H H g  defines a natural projection from G onto A.  Moreo 
G acts on A by right multiplication: for gl E G, gl : H g  + H g g 1  S 
A is to play the role of configuration space, we have defined it here so 
the action of G on A is a right action, consistent with our conventio 
diffeomorphism groups as well as with Mackey's lecture notes." We 
denote an element of A by 7, and write the group action as (g,7) 
but recalling that gy is here a right action. 

The group H is itself a coset, and thus i t  is also a particular element 
yo E A.  With regard to the group action on A,  the elements of H are 
precisely those that leave the element yo fixed in A. Therefore we refer to 
H as the stability subgroup of G for the point 70. For any y E A, define 
the stability subgroup G, = { g  E G 1 gy  = y ); in particular, H = G,. 
Note that G acts transctively on A. This means that any element of A 
can be reached by applying some element of G to the fixed element 7,; 
and thus A itself, if it is a subset of some larger space, is a single G-orbit 

in t,hat space. For y E A, let g be any element of G such that  7 = 970; 
,.a --- 
we observe that G, = ~ - ' H s  

If G is a second-countable, locally compact Lie group, i t  is equipped 
a Bore) o-algebra of measurable sets, and with unique left- and right- 

invariant measures called Hoar measures defined on this o-algebra. Then 
A also becomes a measurable space (equipped with the Borel o-algebra 
induced in H \ G  from the Borel structure in G). An important technical 
point is the existence of a Borel section in G; i e . ,  a measurable subset 
c G that intersects each right coset of H in precisely one point. 
~t ran also be shown that there is a unique class of measures on A that  -" 

are quasiinvariant under the group action. Let v be any such measure on 
A,  and let vg denote the transformed measure satisfying vg(B) = v(gB) 
for any Borel set B in A.  Then, just as in the discussion leading up to 
E ~ .  (70), we have the Radon-Nihodym derivative org = dv,/dv defined as a 

function on A, and satisfying the cocycle equation agIg,(y) = 
a,, (917) "91 (7). 

Suppose now that T(h) is a CUR of the subgroup H, acting in an 
inner product space W. Here W may be the one-dimensional space C, 
the finite-dimensional vector space Cn,  or an infinite-dimensional Hilbert 
space, Let 5 be a measurable function on G taking values in W,  and 
having the property of equivariance under the representation T(h); that is, 

almost everywhere (withrespect to the Haar measure) in G.  Observe that 
T(h )  acts here ori the vector value of 5 ,  transforming it by left multipli- 
cation of its argument by h. If $(g) is an equivariant function, we have 
the desired formula 

We then define a representation of G acting in the space of equivariant 
functions. This is the representation we shall say is induced by T. For 
9, g1 E G, let 

(106) 

That  is, V(g1) acts by right multiplication of the argument of 5 .  It is easy 
to verify that V(gl )5  is lilcewise an equivariant function; indeed, we have 

~ ( h ) p ( g ~ ) S l ( g )  = ~ ( h ) 5 ( g g l ) J =  



as desired, where the last equality uses the fact that  Hhg  = Hg.  I t  is 
equally straightforward to verify that E q  (106) respects the group law in 
G,  using the cocycle equation satisfied by a. 

Finally, the measure v allows us to define an inner product on the 
space of equivariant functions. Given two measurable, equivariant func- 
tions 6 , G  : G i W ,  consider the function (8(g),  *(g))w which is defined 
for each g using the inner product in W. This is a measurable, complex- 
valued function on G. F'urthermore, for any element h E H, we have 

(g(hg), *(hg))w = ( ~ ( h ) a ( g ) ,  ~ ( h ) G ( g ) ) ~ ,  using the definition of equiv- 
ariance. Since T(h) is unitary, this is again (6(g), 'k(g))w. Thus the latter 
expression is a complex-valued function on G that for any g is constant on 
the right coset y = Hg.  That  is, it is actually a well-defined complex-valued 
function on the configuration space A. Set 

and let ?1 be {* I($, 8 )  < m). Restricting c ( g l )  in Eq. (106) to act 
in a ,  we obtain the unitary representation of G that is induced by the 
representation T of H .  

Let us look next at  how a unitary I-cocycle is associated with this 
induced representation. As in Sec. 3.1, let 71 = L:,(A, W) ; with the inner 

product in Z given as in E q  (67) by (@, Q) = 1,(@(y), Q(y)), du(y), for 
@, Q E Z Note that there is no equivariance condition on functions in 71. 
Choose a fixed Bore1 section 6 o C G. For conwnience, we shall select 6, 
so that  its intersection with H itself is the identity element. Define the 
unitary operator Q : 3 i Z by QG = Q, where Q(y) is defined to be 
equal to G(g) with g selected as the particular element belonging to A,  
for which H g  = y. 

Now let us write V(g1) = Q V ( ~ ~ ) Q - ~ ,  in order to define the unitary 
operator V(g1) acting in Z For g E 60 ,  the product ggl may or may 
not be an element of A,; but there exists a unique element h E H sucll 
that  hggl E A O .  Evidently h is determined by g and gl ,  and in turn 
g E 60 is specified uniquely by the coset H g  = y Thus we may write 

our element h as h,, (7). Then we have for Q E Z ,  and for g E with 
H g  = y ,  the action 

1 using ~ q .  (106). From the definition of Q, 

[ Q-'Ql(hg, (ylggi) = Q(Hgg1) = Q(gly) ; 

and from E¶. (1051, 

IQ-'Ql(hg1(r)gg~) = T(hg1(r))[Q-'Q1(gg1). 

Thus 

[ ~ - ~ Q l ( g 9 1 )  = T*(hgl (7)) [ Q-'Ql(hg, (7)ggl) = T* (hgl (y))Q(giy) 

Finally, we obtain 

[ v ( g l ) ~ ~ ( y )  = ~ * ( h ~ ~ ( 7 ) ) ~ ( g 1 7 )  JG. (108) 

Notice that if g iy  = y ,  hgl (y)ggl = g (where g E 8 0  and H g  = y), 
so that hgl (7) = gg;lg-l. If glyo = yo, then hgl (yo) = g;l, since 6 0  

intersects H at  the identity element. In this case T*(hgl (y)) = T(gl) .  
To sum up, we have written the induced representation in aform parallel 

to that  of Eq. (68). We have the configuration space A = H \ G  of right 
cosets. We have the real cocycle a, = dv,/dv, where v is a measure on 
A quasiinvariant under the right group action. And we have the unitary 
1-cocycle xg1 (7) = T*(hgl (7)) acting on the representation-space W of T. 

It is straightforward to check that  Eq. (71) holds for xg1 (7); i.e., that  

Indeed, let g (again) be the element of ho for which H g  = y,  so that  
hg,(y)ggl E 6 0 .  Let g '  be the element of 6 0  for which Hg '  = gly, so that 
hg2(g1y)g1g2 E 6 0. Since Hggl = gly, we have g ' = hgl (y)ggl. Therefore 
h,, (gl y)  h,, (y)gglgz E 8 0 ,  and we have the equation 

h,,,, (7) = h,, (g1-Y) hg,(y) . (110) 

Eq. (109) immediately follows, since T is a representation of H. 

4.2. S o m e  Induced Dif feo~norphism Group  Representa t ions  

Now the groups of diffeomorphisms that  we are discussing do not belong 
to the category of second-countable, locally compact groups. In particular, 
they have no Haar measures. Thus extension of the concept of induced rep- 
resentations to diffeomorphism groups must rely .on measures constructed 



by other means - e.g., the cylinder set measures on N-particle orbits r(N) 
W d  described in Sec. 3.3. Here we describe some results for these orbits, with 

N > 1 and d > 1. In doing so we clarify the role of label and value permu. 
tations, which was left rather obscure in earlier ~ o r l < . ~ ~ l ~ ~  

Consider the action of (let us say) the d i f f e~mor~h i sm  group K ( R d )  
(N) on r,, . For a fixed element 70 E I'ky), the stability subgroup K,(Rd) 

is { r )  E K ( R d )  1 VYO = YO). We have that  KT0(Rd) is a closed subgroup 
of h(FLd). While both groups are infinite-dimensional, the codimension of 
K,(Rd) in K(R') is finite; and the configuration space FLY) is identified 
with the quotient space Kyo (Rd) \K(Rd)  of right cosets. 

Let yo = { Y I , .  . . , YN) C Rd be a fixed N-point subset of C,  N > 1, 
One way for a diffeomorphism r) of Rd t o  leave yo fixed is, of course, 
for it to leave each of the points y j  individually fixed. But  when d > 1, 
7 t L, (R') can also implement any pernulation of the points that  belong 

'0 70- Thus the stability subgroup K,(Rd), for d > 1, maps naturally 
onto the symmetric group S(yo) whose elements are permutations of the 
Set { Y1 , . .  YN). For 61~82 E S ( ~ O ) ~  we define j6,&)(yj) = a2(b l  (yj)),  
Given 7 E K,. (Rd) ,  the corresponding permutation 6 E S(70) is then 
defined by 6 n(yJ) = 7 (yJ), and 7 3 B is a group homomorphism from 

G o  (Rd)  onto S(y0). 
Now a permutation 6 E S ( ~ O ) ,  like a diffeomorphism r) E K y o ( ~ d ) ,  

acts only on the values of the y j  as elements of ad; it does not '.see3' 
the index j we are using t o  label the elements of 70. To relate such 
value permutations t o  index permuta t io~~s ,  we here let SN denote the 
group of permutations of the set containing the first N counting numbers 
1 . . . , N )  For u1,o2 E SN, we take the group law i n  SN t o  be defined 

( ~ 1 o 2 ) k I  = o , [ o ~ y ] ]  for j = 1,. . . , N. In writing 70 = { y,, . , . , yN) ,  
let us index the  elements of 70 in such a way that y~ c . . .  < y N  with 
respect to  the lexicographical ordering in k we introduced in Sec. 3.3. 
Then a permutation 6 of the  dements of 70 acts on the lezicographicaljy 
ordered N : tu~ l e  ( Yl . . . . , YN) to  give the (non-luicographicaliy) ordered 
N-tuple ( ~ ~ ~ l ~ ,  . . . , yUjx i ) ,  where o E SN. For 6,. a2 E S(yo) ,  we have 
[6ld2](yj) = 82(31 (yj))  = c ? ( ~ u l [ ~ l )  = YUl[.,[jll = ~ l ~ ~ ~ ~ ) [ j ~ ,  establish- 
ing the desired isomorphism S(70) " SN.  We also have the  corresponding 

group homomorphism from K, (Rd) to  SN, which we denote by r, + on, 
Note, however, tha t  the isomorphism between S(%) and SN is not canoni- 

cal; it depends explicitly on our introduction of the lexicographical ordering 
of the points in yo. 

Let [@IN denote the space of all ordered N-tuples (XI,  . . . xN)  of points 
in g, and let D C [IRdlN be the set of N-tuples where x j  = xk (for some 
'i + I ; ) ;  D is called the, diagonal in [iKdlN. There is  a natural projection 

p :  lIRddJN - D 3 FLY) 

given by p : , , . .  . XN) i {XI , . .  . x N )  = 7. Thus [OldlN - D is a covering 
of FL$lIt has N !  sheets, (N)  corresponding to  the distinct permutations 

.reah in rR, . More specifically, let us consider as in S e c  3.3 
the preJerred sector of [OldlN - D defined to  be  

where we again use the  lexicographical ordering. The  points in the  preferred 
sector are in one-to-one correspondence with t he  elements of FLY), so tha t  
A, serves as a fundamental domain in the covering space. Again we have an - 
isomorphism S(y)  ?: SN,  with b(xj)  = X.V ]  Let us think of a point in A. 
(c~.ventionally) as associated with the identity element in the symmetric 
group S(7) .  Then each element B E S (7 )  may be regarded as acting on the 
preferred sector of the covering space [IRdlN - D to  generate a distinct sheet 
in that space. The preferred sector Lo will play the role tha t  the Bore1 
section A played in the preceding discussion of induced representations; 
while the covering space [kXdlN - D plays the role formerly played by the 
group G.  

Thus far we have described the action of SN on xO C [IRdIN - D ,  given 
by o : (XI ,  . . . , x N )  i ( x ~ ~ ~ ~ ~  . . . But we have not  yet defined the 

group action of SN ,  or of S(yo), on the full space [IRdlN- D, which requires 
defining the action of o on the other sectors. This is needed to  construct 
a Hilbert space of equivariant wave functions on  [OldIN - D. Moreover 
we have the natural lifting of the action of the full diffeomorphism group 
x ( i t d )  from r$) to  all of [OldlN - D ,  given by 4 : (xOlll,  . . . , x . [ ~ ~ )  3 
(m(xulll), , . , , ((xu,Nl)).  This defines a right action of h-(Rd) on [ P I N  - D. 
But we have not yet defined any left action of K,(ld) on [ R ~ ] ~  - D. We 
now show the correct way to take these steps. 

Let ( y l , ,  . . , y ~ )  be fixed as before, with y~ < - . .  < YN. 
Let 

(xai l l , ,  . . , xaINI)  denote a general dement of (@IN - D, where the in- 
dices are such tha t  x l  < , . . < XN,  and a € SN. For each such N- 
tuple, select a particular diffeomorphism +("- [ l l~  lX*[N1) E K ( R ~ )  for which 
xub = ( ( ~ ~ r l l ~ . . . ~ ~ ~ r ~ l )  (y,); i.e., such that  

(xa l l l ,  . . . , x , ~ ~ , )  = ~ ( x * [ ' ~ ~ ~ ~ ~ l x u ~ " " ( y l ,  . . . , YN) . (111) 



Now for TI E K- ,o /~d)  we write a left action of 7 on [ l d j N  - D as follows, 
in analogy with the left multiplication by elements of the stability subgroup 
H c G in Mackey's theory: 

In short, the action of o E SN on [RdIN - D is as a label permutation, 

and the desired left action of E X, on [*IN - D is by way of the 
label permutation o T  Notice that the result in Eq. (112) is independent 
of the particular diffeamorpllism $(x*[ll* s x ~ [ ~ l )  selected to obey E q  (111). 
Tlie (ubitrary) lexicographical ordering enters only in the choice of the 
lioinomorpliis~n q i o" it does not otherwise affect the result. 

Let us stress carefully this distinction between value and label permuta- 
tions. Diffeon~orpbisms, in their right action on [RdIN - D ,  "see" only the 
values of the points. Say that v E K,(Rd) exchanges the two lowest val- 
ues of the lexicographically ordered set 70: q(yl) = yl and 7(y2) = y l ,  so 
that oq = (12). When TI acts in its rzght action on the permuted N-tuple 
(Y,[IJ.. . - ,Y,[N~) it exchanges the two lowest values of the entries, not the 
first two entries; and when q acts in its right action on some other, general 
element of [ l d l N  - D, it does not typically implement a permutation at  
all. But this is not the action with respect to which equivariance is defined. 
The left action of v on [ l d l N  - D, given by Eq. (112), exchanges the first 
two entries of any N-tuple of points, even when 7 does not belong to the 
stability subgroup of the corresponding configuration. This label action 
defines the equivariance of wave functions on the covering space. 

The (continuous) homomorphism from Ky0 (Rd)  onto SN, that was 
given by 77 -r on, means that any unitary representation T of SN also 
defines a CUR of KT0(Rd). That is, there is a certain class of CURS of 
the stability subgroup that factor through unitary representations of SN. 
Suppose then that T is an irreducible unitary representation of SN acting in 
an inner product space W. Let 5 be a measurable functiorl on !Ed]" - D 
taking values in W, equivariant under the representation T; that is, for 
(XI.. . . , IN) t [*IN - D (not necessarily lexicographically ordered). 

- , . 
U ( / ~ V [ I ]  9 .  . . ~ ~ ( i v ] ) )  = T(o)  G(x1,. . . , XN) 

(113) 
ill [Rd:dlN - D  This is the analogue of Eq. (105) in the preceding subsection. 

Following this analogy, observe that given ally two measurable, - 
equivariant (vector-valued) functions 

and 8 ,  their W-inner product 

( i ( x l , .  . . , xN),  G(xl, .  . . , xN)JW is a (scalar-valued) function that depends 
- 

only on 7 = p (XI,. . . . XN) = {XI, _:. , XN).  Let 71 be the Hilbert space - 
of functiolls 6 for which (@(XI,. . . ,xN),  @(*I,. . . , X N ) ) ~  is in- 

tegrable over with respect to  dxl . . . d x N  in  analogy with Eq. (106). 

tile representation of K(IRd) induced by T is given by 
- 

AS in the preceding subsection, we may write a representation unitarily 
equivalent to Eq. (114) in the Hilbert space H = L ~ , , , . d x N  (r$), W) with 
no equivariance condition Again define a unitary operator Q : R -+ H - 
by Q$ = 19, where yl ({xl,. . . , XN)}) is se t  equal to 19 (XI , .  . . , XN) with 

< . . . < XN; i.e., i t a b s  the value of i on the fundamental domain 
, Then write V ( ) )  = Q B ( ~ ) Q - ~ .  For (XI.. . . , X N )  E Z\O and ) t 
x(Rd),  there exists a unique permutation o E SN such that the N-tuple 
( ) ( x , ~ ~ ~ ) , .  . . . ~ ( x g i n l ) )  E L O .  Here o is determined by 7 = {XI,.  . . , X N )  

and by 4, so we may write it as ~ ~ ( 7 ) .  We then have, for yl E H, 

We have thus written the induced representation in a form parallel to that 
of Eq. (68)) with the unitary 1-cocycle ~ ~ ( 7 )  = T*(fl+(7)) acting on the 
representation-space W of T. The cocycle of Eq. (93) is the special case of 
this C ~ C y d e  that occurs when 1. is a 1-dimensional representation of SN.  



- - 

5 .  Bosons,  Fermions,  Parapar t ic les ,  Anyons a n d  P lek tons  

We have seen that for the configuration space Pi:) of N-point subsets 
y = {x,, . . . , XN} C iRd (d > 1) - or, equivalently, the configuration space 
A$) of generalized functions of the form y = E E l  6,, , with x, # x, 
for j # k - a unitary representation of SN provides a CUR of the sta- 

bility subgroup K,(*) C h(Wd), and induces a unitary representation 
of h(iRd). The latter is characterized either by an equivariance condition 
satisfied by wave functions on a covering space of rk:) (the "coordinate 
spaceJ' on which wave functions obey a symmetry condition), or by a uni- 
tary 1-cocycle for the diffeomorphism group action on rk:) or A;:) (the 
"configuration space" where the permutations themselves act trivially). In 
addition, it can be shown that unitarily inequivalent representations of SN 
induce inequivalent representations of the diffeomorphism group (which, in 
general, describe physically inequivalent quantum-mechanical systems).'' 

The identity representation of SN thus leads to  the (bosonic) Hilbert 
space of square-integrable wave functions on the covering space, symmetric 
under exchange of particle coordinates The alternating representation of 
SN similarly gives US the (fermionic) space of antisymmetric wave func- 
tions In this manner, the one-dimensional unitary representations of SN 
( N  > 1) induce those representations of h ( P )  which are just the N-  
particle Bose and Fermi representations described earlier by Eqs. (64). But 
these are not the only representations of S N  Higher-dimensional repre- 
sentations exist (for N > 2) associated with the possible Young tableaux; 
and these may also be used to construct induced representations. The most 
elementary example is a 2-dimensional, irreducible unitary representation 
of S3. In general we obtain a Hilbert space of multicomponent wave func- 
tions on the covering space, transforming under coordinate permutations 
according to  a higher-dimensional unitary representation of SN, and a cor- 
responding induced representation of the group of diffeomorphisms of iRd. 
These describe pamparticles that obey the parastatistzcs of Messiah and 
Greenberg." 

The classification of inequivalent unitary representations of the diffeo- 
morphism group thus yields both the quantum kinematics associated with 
different spaces of configurations (e.g., N-particle quantum mechanics for 
distinct values of N ) ,  and the different possible quantum statistics (Bose, 
Fermi, or para-) usually associated with systems of N indistinguishable 
particles. What we have done so far is not sensitive to whether we work 
with h(iRd) or D$'(R~). Furthermore, the results are not limited to  

M = ~ d ;  they extend to more general spatial manifolds, as long as the 
di~eolomorpl~i~m group acts transitively on the manifold. 
. ~~t the framework we have constructed leads directly to  additional in- 

duced associated with the topology of the physical space M ,  

in certain situations when M is not simply connected; and to  representa- 
tions associated with exotic particle statistics, when the spatial dimension 
d = 2. Let us next see how this can 

5.1. Diffeomorphisms a n d  the Fundamen ta l  Group 

For the constructions that follow, we shall need some ideas from elemen- 
tary topology.75 TWO (continuous, directed) arcs in a smooth, connected 
manifold A4 having the same end points are called homotopic if one can 
be continuously deformed into the other. This establishes an equivalence 

among arcs; if p : [0,2x] -+ M is such an arc, we denote its homo- 
topy equivalence class by [@]. For y t M, a pointed loop based a t  y is an 
arc beginning and ending a t  y .  Two pointed loops PI,  Pz based a t  y may 
be traversed in succession - Dl followed by 82 - and reparamaterized, 
yielding a third pointed loop p1P2 based at y ;  and a pointed loop PI 
may be traversed in the opposite direction, yielding the inverse loop P r l .  
These operations respect homotopy equivalence, so that  the set of homo- 
topy classes of pointed loops in A4 based at y becomes a group nl  (M) - 
known as the fundamental gmup or first homotopy group of the manifold. 
The homotopy class of pointed loops that can be continuously deformed to  
a point (i,e.,  the class of "trivial" loops) corresponds to the identity element 
in the fundamental group. If all loops in M are trivial, we say that PI is 
simply connected. Nontrivial homotopy classes of loops are associated with 
windings about holes in a non-simply connected manifold. 

The universal covering space 2 of M may be constructed as the space 
of all homotopy classes of arcs in M originating a t  a fixed point y t M. 
If [PI is a homotopy class of arcs originating a t  y-and terminating a t  
x t M ,  then p ([PI) = x defines the pmjection p : M -+ M .  The space 
2 is simply connected, while the distinct elements of pP1(y) correspond 
to distinct elements of the fundamental group r l ( M ) .  If Or C M is a 
sufficiently small, simply-connected neighborhood of the point Y t M , 
then p-l (4) 52 is the disjoint union of neighborhoods of the elements 
of p-l (y) in M ;  and these neighborhoods may again be placed in corre- 
spondence with the elements of n l (M).  We may think of each element 
of p-l(y), and likewise each connected neighborhood within P - ~ O ~ ) ,  as 
belonging to  a different sheet in MI. Finally, note that for [PI t M (where 



B is an arc from y to x) and [PI] E a l (M)  (where B is a pointed loop 
based a t  y ), we may form the homotopy class of the composite arc [AP] 

from y to  x, traversing first the loop and then the arc p. This defines 
a left action of nl (M) on E. 

Consider for example the manifold M = R3 - 2, where 2 is an infinite 
cylinder (interior together with boundary) of fixed radius about the x3. 
axis. Let y E M be a fixed base point. To any loop PI based at y 
we may assign a winding number n(Pl), the net number of times the loop 
circles the missing cylinder 2 in (let us say) a counterclockwise direction 
looking down from positive-x3. Homotopic loops clearly have the same 
winding number, so that  PI) depends only on the class [Dl]; and when 
two loops are traversed successively, their winding numbers add: n(&a2) = 
n(BI) + n(p2). Thus we have in this case n l ( M )  e Z (the additive group 
of integers). 

Now consider the stability subgroup Dz#;(M) of compactly-supported 
diffeomorphisms of M = R3 - 2 leaving y fixed. Imagine further a fixed 
radial path B, coming in from m ,  perpendicular to the x3-axis, and 
terminating a t  y.  For a diffeomorphism q t Diff;(M), let n 0 8, be 
the path obtained by acting on PW with q .  Since q becomes trivial at 
infinity, qo,Bm coincides with P, far away from the missing cylinder; but 
q oPm may wind around the excluded region some number of times - i .e. ,  
the (homotopy class of the) composite path P;l 7 0 4, (beginning at y ,  
traversing first 4;' and then q 0 p,) belongs to the fundamental group. 
Hence we have the map q -t Pz qop, := a:, where /?: is a pointed loop 
based a t  y.  This map defines agroup homomorphism Diff:(M) + nl (M) ,  

which we denote q + [D:]. Thus the left action of n l (M)  on M defined 
above gives us a left action of the stability subgroup Diff;(M) on M^, 
while an irreducible unitary representation T of nl (M) likewise defines a 
CUR of Dif f ; (M).  

Moreover, we have a natural lifting of the right action of the full group 
Dif fc (M)  from M to M as follows. As before let ,B be an arc from the 
base point y to x E M, so that [P] t G. The composite pat11 4, B comes 
in from a fixed direction at infinity, and terminates at x. For an arbitrary 
difleomorphism 4 E Digc (M), the path 40 (,8, 4)  comes in from the same 
fixed direction at infinity, and terminates at $(x),; so that p;l$ o (&D) 

- - originates at y and terminates at Wx). Thus define 4 : M + B by 

81 

Then there springs into being a new family of induced representations. 

Let l' be an irreducible unitary representation of the funda2ental group. ,... 
~~t the Hilbert space H consist of wave functions 9 on M ,  equivariant 

with to  T and square integrable over the base space M (with re- 

spect to local 
Lebesgue measure). In parallel with our earlier construction, 

' the induced by T is given by 

(117) 

where x p ([dl) In the present examplewe fix 0 t [ 0 , 2 ~ ) ,  and set 

T ( ~ J )  = exp ["(Dl) 91. Notice here that M has infinitely many sheets; 

but integration is defined over M, not M, In this example the fundamental 
group is Abelian, but the construction we describe also extends to more 
complicated spaces having non-Abelian fundamental groups. 

We remark, however, that the constructionof a homomorphism from 
the stability subgroup D14;(M) to the fundamental group m(M),  and the 
lifting of the action of D\Bc(db) from M to its universal covering space, 
x e  not completely general procedures. We have made important use of the 
fact that It?? - 2 extends to spatial infinity, while the diffeomorphisms under 
discussion become trivial at infinity. Thus the method applies equally well 
to the manifold R2 - {(O, 0)) (the plane without the origin), or to the plane 
without a set of N distinct points; but not to the case of the circle S1, 
whose fundamental group is also isomorphic to Z. In the S1 case, rotation 
by 2n is just the identity diffeomorphism; thus the stability subgroup of 
a point y is not the disjoint union of components associated with distinct 
winding numbers. For the analogous construction when M is compact, 
one needs to extend the diffeornorphism group. 

To complete our discussion of induced representations, we now choose - - 
a fundamental domain Mo in M; i.e., a continuous cross-section to be 
conventionally identified with the identity element in n l (M).  In the exam- - 
pie, M = i3 - 2, where M is the helical covering consisting of homotopy - 
classes of paths from y to x E M ,  we may take Ma to consist of those 
classes of paths for which the continuous change in azimuthal angle as a 
oath is traversed is greater than or equal to 0 and less than Z n  (SO that 
there are no net windings about 2). 

For [PI E go (an arc from y to x)  and 4 t Diff c(M),  c o ~ i d e r  4 ((A) 
defined by Eq. (116). In general 4 (141) does not behng to Mo, but there 
exists an element [PI] of the fundamental group ---i.e,, a homotopy class 
of loops PI based at y - such that [Dl &([PI) t M o  Since [Dl] depends 
on [Dl and 4, while [/?I E is uniquely specified by its terminal point 



X, we may write 81 = &(x). Then let X be the Hilbert space of square. 
integrable functions on M taking values in W ,  and 0 : 4 be given by 
QG = @, where q ( x )  takes the value $([PI) for [P] E Go and 1/41) = x. 
We have the representation in X that is unitarily equivalel~t to c, 

[v(d)*](x) = T*(8 m(x))~(d(x))J~1(.7. (118) 

5.2. The Aharoaov-Bohm EfSect 

The well-known Ahoronov-Bohm effect in quantum mechanics occurs when 
a charged particle circles a region of magnetic flux.76 Imagine an idealized, 
tightly-wound solenoid of infinite length within the cylinder 2, so as to 
produce an approximately uniform magnetic field in the x3-direction in 
the interior of the solenoid, but effectively zero magnetic field outside the 
solenoid Consider a single charged particle confined to the spatial region 
outside 2 where the magnetic field strength is zero; e.g., by a high poten- 
tial barrier. Solving the time-independent Schrodinger equation leads to 
the concli~sion that  the spectrum of i3, the x3-component of the orbital 
(kinetic) angular momentum, is shifted from its usual values by an amount 
proportional to the magnetic flux through the solenoid. 

In the presence of an external magnetic field B(x), considered not as an 
operator field but as an ordinary vector field on three-dimensional physical 
space, the expression for the commutator [J (g l ) ,  J (g2 ) ]  in the equal-time, 
nonrelativistic current algebra describing charged particles is modified from 
Eq. (43) by the addition of a term proportional t o  p(B  . [g, x g,]).77 
However, in the region outside the cylinder 2, we have B(x)  . 0; so that  
even when the magnetic field behind the barrier is non-zero, the Lie algebra 
of local currents describing the quantum kinematics is unchanged. 

As we saw earlier, angular momentum can be expressed in terms of 
the local, self-adjoint current density operators in a representation of this 
algebra. The currents, in turn, derive from a representation of the dif- 
feomorphism group. The different possible shifts io the spectrum of ts 
may be obtained from the distinct (i.e., unitarily inequivalent) represen- 
tations of the Lie algebra of currents znduced by characters of the fun- 

damental group of M = - d. In fact, the local current operator in 
such a representation describing a single particle takes the familiar form 

JJ(g)*(x) = (h/zi)[g(x) V + V . g(x)]P(x); but the domain of defini- 
tion of J ' ( g )  consists of wave functions P(x)  on 2 - 2 satisfying the 
boundary condition (in cylindrical coordinates) 

*here @ is the total magnetic flux through the solenoid. Extending each - 
function I to a corresponding eq$variant wave function I on the 

universal covering space M by setting Q(T, 4, i )  = *(T, 4, z) on the fun- - 
damental domain 0 < 4 < 2 r ,  and P ( r , d  + 2 5 , ~ )  = e-i@'5(~,4,t), we 
cm demonstrate (omitting the details here) that J 1 ( g )  derives from a one- 
pati~le induced representation of Diff =(!R3 - Z)." 

5.3, Exotic Statistics in  Two Space Dimensions 

The existence of unitary representations of ~ i f f ' ( R ~ )  that are induced by 
unitary representations of the fundamental group of N-particle configu- 
ration space implies additional possibilities for particle statistics in the 
case d = 2 These include the quantum statistics of particles or excita- 
tions in two-dimensional space termed anyons When two identical anyons 
are exchanged without coincidence along a continuous path in the plane, 
their relative winding number m (the net number of counterclocltwise ex- 
change~) is well-defined; it depends only on the homotopy class of the path 
implementing the exchange. The N-anyon wave function 5 is defined on 
the universal covering space of the space $:' of N-point configurations 
{,,, . . . , x N )  c !R2. It can then acquire a relative phase elme under such 
an exchange, where 0 is a real fixed parameter between 0 and 2%. When 
0 = 0 we have bosons, and 0 = ~r corresponds t o  fermions. The name 
"anyons" derive from the fact that "any" intermediate value of 0 is per- 
mitted, so that the exchange statistics of anyons actually interpolates those 
of bosons and fermions. 

Of course the physical world is not two-dimensional, and we do not ex- 
pect to find fundamental particles that satisfy such statistics. Nevertheless 
we have here a new tool for the description of such phenomena as surface 
excitations, or quantum vortices in thin superfluid films. 

The idea of such intermediate statistics was first suggested by Leinaas 
and Myrheim, for whom it was necessary to assume the exclusion of the 
"diagonal" from the configuration eo ace.'^^"^^^ The result was confirmed 
(independently) by my work with Menikoff and sharp,"." where we de- 
rived the quantum theory rigorously from induced representations of 10- 
cal nonrelativistic current algebra and the corresponding diffeomorphism 
group. Here the exclusion of diagonal is a consequence of the representa- 
tion theory, as developed in these lectures. Our early results included the 
prediction of shifts in angular momentum and energy spectra for systems 
satisfying intermediate statistics, and the connection with the topology of 



configuration space and the physics of charged particles circling regions of 
magnetic flux (as in the Aharonov-Bohm effect). 

Subsequently Wilczek introduced the term "anyon" to describe such 
particles, and proposed a model for them based on charged-particle/flux- 
tube c ~ m ~ o s i t e s . ~ ~ ~ ~ ~  Jackiw and Redlich pointed out tha t  in such models 
it is the kinetic angular momentum (not tile canonical angular momentum) 
for which the spectrum shifts away from integer multiples of li,83 which is 
consistent with my earlier development with Menikoff and Sharp. Wilczelc 
also proposed an association between anyons and fractional spin in two 
space dimensions. This is very natural, since bosons are associated with 
integer spin and fermions with half-integer spin; and the latter associations 
are among the most important rigorous results of axiomatic (relativistic) 
quantum field theory in 3 + 1  dimension^.^^ Some applications of ideas 
about anyons t o  surface phenomena and related domains of physics followed 
rapidly.84185 

As in the preceding development, the unitary representations of 
~iff'(IW') describing anyons are obtained as induced representations. Here 
the fundamental group of the configuration space I'iy) is Artin1s braid 
group BN; and this is the group whose one-dimensional representations 
describe the anyonic wave function symmetry. 

A braid b E BN may be visualized as a set of woollen strands connecting 
a row of N fixed posts to another row of N posts, where different crossings 
of the strands above or below each other distinguish different braids. The 
product of two braids is formed by operating with them successively, while 
the identity element e is the braid where strands d o n o t  cross Let b, 
denote an elementary crossing of strand j over strand j + 1, for j = 
1, .  . . , N - 1; then the inverse braid by1 is the elementary crossing of strand 
j + 1 over strand j .  The braid group itself may be constructed as the free 
group generated by the elements b j  and b y 1 ,  modulo the (Yang-Baxter) 
eq~~ivalence relations, 

For N = 1 the braid group is trivial; for N = 2 it is isomorphic to the 
additive integers Z; while for N 2 3, it is an infinite, non-Abelian group. 

In analogy wit11 our discussion of R3 - 2, a braid may also be associ- 
ated with (the homotopy class of) a set of N nonintersecting paths in P, 
coming in from infinity in a specified direction and terminating at the fixed 
points {yl, . . . , y ~ )  = "/o. As in earlier discussions, we have here a homo- 
morphism from the stability subgroup Diff:o(g) onto BN - in general, 

a compactly-supported diffeomorphism leaving yo fixed acts t o  transform 
the homotopy class of the original set of paths from infinity.94x95 Thus a 

representation of BN defines a CUR of the stability subgroup. The 
inducing construction proceeds in parallel with the development for SN. 

The one-dimensional unitary representations of BN are specified by 
the single parameter 8 E [0,27r), with each bj represented as multipli- 
cation by eis. Only the values 9 = 0 and 8 = 7r actually determine 

of S N ;  the other values of 0 lead to the induced repre- 
sentations of the diffeomorphism group describing anyonic statistics. In 
contrast, unitary representations of CN allow distinct relative phases (as- 
signed consistently) when different pairs of particles circle each other. After 
we had identified the braid group as the relevant g r o ~ ~ , 8 ~ l ~ ~  Y,  S. WU ar- 
gued that only the one-dimensional representations of BN should occur 
in quantum However, the diffeomorphism group approach al- 
lowed us also to predict the possibility of quantum systems described by 
higher-dimensional unitary representations of BN (particles later termed 
"plektons") ,86 

There is also a natural homomorphism hlv from BN onto SN, obtained 
by disregarding the braiding and attending only to the posts connected by 
the woollen strands constituting the braid. Mathematically, hN maps the 
generator b j  to the exchange permutation ( j  j + 1). The kernel of hN 
is the set of braids b for which hN(b) is the identity permutation; these 
are just the braids that return each post to its initial position. The kernel 
forms a nontrivial subgroup CN, the colored braid group. This fact means 
that the wave function for distinguishable particles in R2 can also acquire 
an "anyonic" relative phase, as one particle circles another and returns to 
its original position.86 

Many details and much subsequent development has been omitted here, 
including the relation of these ideas to Chern-Simons quantum field theo- 
ries, their application in describing the integer and fractional quantum Hall 
effects, and their role in describing possible mechanisms for superconduc- 
tivity. The reader is referred to more recent review articles, as well as the 
books by Wilczek and by I<hare.90~91-92sg3 

5.4. Fields In ter twining Current  Algebra Representa t ions  

The N-particle unitary Bose or Fermi representations of the diffeomorphism 
group, and the corresponding representations of the algebra of vector fields, 
evidently form distinct hierarchies in a certain sense - the Bose represen- 



tations "belong" together, as do the Fermi representations. Llkewise the 
anyonic representations of Daffc(IR2) for any fixed value of B form a hier- 
archy. To make precise the sense in which this is so, we regard the creation 
and annihilation fields as intertwining operators between N-particle sub- 
spaces (for adjacent values of N ) ,  and consider the commutation relations 
that these fields satisfy with the local currents. In effect, we are combining 
Eqs. (34) or (37) with Eqs. (44)-(45)) and generalizing the resulting system 
to include anyons and possibly other kinds of quantum configurations (e.g., 

extended objects). 
Let U N ( ~ )  and V,(4)  be systems of unitary operators satisfying 

Eq. (62) in Hilbert spaces HN, describing systems of N identical par- 
ticles (or N identical configurations of some other sort) in a manifold M. 
Let p ~ ( f  and J N ( ~ )  be corresponding systems of self-adjoint operators 
in X N ,  satisfying Eqs. (43). Let h E X1, and let $*(h) and @(h) be in- 
tertwining operators labeled by h That is, take $*(h) : X N  + HNil and 
~ b ( h )  : U N + ~  i X N ,  with $(h)  annihilatlng the vacuum state no E Ha. 
These assumptions assert that  the config~~ratioli space on which U1 is mod- 
eled establishes the nature of the configuration that $* is talcen to create, 
and $ is talcen to annihilate; while the state vector h describes the actual 
state in which the configuration is created or annihilated. 

- 
Sharp and I proposed that the necessary and sufficient conditions for 

the indexed set of representations to  form a hierarchy should be 

U N + ~  (f )+*(h) = $*(UN=~ ( f ) h ) U ~ ( f ) ,  

v ~ + l  (d)G*(h) = $*(T/N=~ ( $ ) ~ ) V N ( ~ J )  I (121) 
\ I 

where the corresponding relations for the annihilation field $ are obtained 
as the adjoint of these equations.g5 Equations (121) are very natural geo- 
metrically Let us thinlc of d* as creating a particle a t  x in M or, more 
generally, as creating a possibly extended configuration a embedded in M , 
We think of h as an averaging function, defined on the space of singleton 
configurations. The first relationin Eqs. (121) then asserts that U and $* 
both act locally in M. The second relation asserts that the result of first 
creating a single new configuration and then transforming the state vector 
hy a diffeomorphism of M, is the same as the result of first transforming by 
the diffeomorphism, and then creating the transforlned new object. Here 
the transformation law for singleton configurations is given, of course, by 
the action of VN=I (4) on HI , 

such as filaments or tubes, we expect that the creation and anni- 
hilation fields are not necessarily distrib~ltions over the physical space, hut 

over a space of spatially extended configurations. But p and J 
remain operator-valued distributions over the physical space. 

From Eq. (121), we obtain the brackets between $* and the elements of 
the current algebra. Defining p(f)  and J(g) SO that  p ( f ) P ~  = p ~ ( f  )QN,  
~ ( g ) + ~  = J N ( ~ ) + N ,  we have 

[ ~ ( f  1, $* (h)] = @* ( P N = ~  (f )h) r 

[ J ( ~ ) ,  $* (h )]  = $* ( ~ N = I  (g) h, 3 
(122) 

where again the brackets involving $ are given by the adjoint of these 
equations. Expliclt calculation confirms that the canonical Bose and Fermi 
nonrelativistic fields satisfy Eqs. (122). 

Let us emphasize that only comrnl~tator brackets occur here and in 
Eqs. (43), no anticommutation or q-commutation relations. Tlle point 
is that  if we begin with the indexed family of N-particle Bose or Fe~illi 
representations of the current algebra (or, alternatively, the corresponding 
representations of the semidirect product group)1 we can construct the field 
operators that fulfill Eqs. (122) or (121). Then it is a consequence of the 
conrtruction - no longer an a priori assumption - that the Bose fields 
obey equal-time commutation relations (-) and Fermi fields obey equal- 
time anticommutation relations (+) as given by Eqs. (29), even though we 
assumed only the commutator brackets between fields and currents. As a 
further consequence we obtain Eqs. (41) for ~ ( x )  and J ( x )  in terms of the 
canonical fields, which until this point have been taken to be the defining 
equations for the local currents in these representations. 

Similarly, we construct explicit anyon creation and annihilation fields for 
particles in two-space, obeying Eqs. (121) and (122).",~~ The result, omit- 
ting many interesting details, is that the anyon fields obey q-commutation 
relations, where q = exp U is a complex number of modulus one, the rel- 
ative phase change associated with a single counterclockwise exchange of 
two anyons. With [A,  BIP defined by Eq. (14), we obtain 

In that  this general structure occurs not only for point ~l~~~~ are, of course, generalizations of Eqs. (29); the latter correspond 
particles (includlng bosons, fermions, and anyons), but for extended the choices = 1 or 

= -1. When q # 2 ~ 1 ,  the first two relations of 
I 

2 1 
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Eq. (123) should be interpreted for consistency as holding for ordered pairs 
(*I Y) in a half-space of @ x R2, while in the complement of that .  half.. 
space We have the (l/q)-bracket. The choice of half-space has no physical 
consequences, but establishes an  arbitrary boundary between sheets in the 
universal covering spaces of the N-anyon configuration spaces. 

We also have the fact that Eqs. (41) hold, whereby p(x) and J(x) are 
expressed in terms of the anyon fields. Beginning with thes 
together with the algebraic identity 

[ A s ,  GI- = A[B, GIq + q [A, C],/,B 
which relales the ordinary commutator to  the q-commutator, one v 
that the brackets of 3, and 11.. with p and J a te  in fact in accor 
with Eqs. (122). 

6 .  Conclus ion  

In these lectures, we have reviewed a t  an introductory level how the c 
uous unitary representations of an infinite-dimensional group - the 
of diffeomotphisms of physical space - and the corresponding self-a 
representations of a nonrelativistic local current algebra, describe an 
dict the kinematics of a variety of possible quantum systems. Some o 

possibilities were already well understood; others, such as anyon an 
ton statistics, emerged as predictions of the representation theory. 
also discussed related topics in quantum field theory and group th  

But we have only scratched the surface of many interesting m 
ical and pilysical questions. There is far more t o  say about an 

braid group statistics. The  study of quasiinvariant measures an 
cocycles on the infinite-dimensional configuration space 4. of 
mechanics, especially measures built up from Poisson and Gibbs measures, 

;: continues t o  evolve rapidly. There are also many exciting developments and 
.:+$$ partial results for quarltum theory on other infinite-dimensional configura- 
i; tion spaces. These include families of qua~iiirvariant mewures derived born 
i: self-siimilar random processes on the generalized configuration s 

of countable subsets, and the quantum mechanics of extended obj  
as vortex configurations. 

Hopefully lectures at future COPROMAPH conferences will address 
some of these important topics, carrying the development further. 
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