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LECTURES ON DIFFEOMORPHISM GROUPS
IN QUANTUM PHYSICS

GERALD A. GOLDIN

Departments of Mathematics and Physics
' Rutgers University
Piscataway, NJ 08854, USA
E-mail: gagoldin@dimacs.rutgers.edu

" Infinite-dimensional groups and algebras play an increasingly important role in
physics. This presentation describes from an elementary starting point how diffeo-
morphism groups and their unitary representations enter nonrelativistic quantum
theory, making connections with local current algebras and various topics of current
interest. Along the way some fundamental ideas from group theory and quantum
field theory are introduced and discussed, with illustrative examples of unitary
group representations and the physical systems they describe.

1. Introduction: Groups, Representations, and Symmetries

My goal in these lectures is to give a broad, mostly self-contained intro-
duction to local current algebras and diffeomorphism groups. I hope to
highlight how these infinite-dimensional algebras and groups help to unify
certain ideas in quantum theory, and connect with other topics in physics.
Thus we shall focus on elementary ideas, overarching themes, and impor-
tant physical intuitions, rather than on rigorous proofs of theorems.

As we proceed, fundamental concepts will be introduced from group
theory, quantum field theory, and topology. We shall construct illustrative
examples of unitary group representations and the physical systems they
describe, explaining and making use of some necessary techniques from
infinite-dimensional functional analysis and differential geometry. Hope-
fully the result will be a fully accessible presentation that develops the
connections among a number of areas often considered separately.

For those familiar with other work on infinite-dimensional algebras and
groups in physics, the content of these notes can be considered comple-
mentary to the excellent books by Pressley and Segal,! by Mickelsson,?
and by Kac,? with which there are important points of contact but only a
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A linear operator @ : V| — V), is unitary if it is invertible and preser
the respective inner products in V4 and Va. In particular, U : lf—) VV(?S
unitary if and only if U* = U~!, where “*” denotes the a:ijoinlt o era.toIS
Tw.o r:.apresentations m, 72 of G, in V, and V, respectively, arreJ callez
unitarily equivalent if there exists a unitary operator @ : W )—) Vs such
thE.lt (Vo € G) Qm(9)Q = ma(y). Especially important in physizcs are
unitary representations of groups, which we denote by Ulg), g € Q. Thus
Ul(g) preserves the inner product of all pairs of vectors in 1)). Whe.n V is
the one-dimensional complex vector space C!, so that U(g) assigns to each
9 € G a complex number of modulus 1, U is called a character of @

A representation 7 of a group G in V is called irreducible when ‘V has
no closed subspaces, other than {0} and V itself, that are invariant unde
all the operators 7(g), g € G. Equivalently, any linear operator in V thaz
commutes with all the 7(g) is a multiple of the identity. Under appropri
ate conditions, an arbitrary representation of (& may be decomposed i?lt(;
a direct sum of irreducible representations, so that the unitary equivalenc
f:]asses of irreducible representations of the group become fundamental be
jects in the study of the symmetry the group describes. Tt is evident tlo 1;
1-dimensional group representations are always irreducible N

For the case of NHj, we have two inequivalent chara;:ters of S3 (
equivalently C3,) — the trivial one, where all group elements ar oo,
resented by 1, and the alternating representafion, where group elejnrelt)_
obtained through an odd number of elementary (pairwise) exchan eseerx1 :
represented by —1. A class of two-dimensional irreducible ur’litarg rere
resentations of S3 also exists. Once obtained, these representati(};ns if
the syrgmetry group pertain immediately to the electronic structure of the
me?m.a molecule (via symmetry-adapted molecular orbitals), and to the
Cjz(r::iit;:s)c_)sf molecular vibrations (via symmetry-adapted displacement

The trivial and the alternating 1-dimensional unitary represenfations f
Sy exist for all N > 2, and are pertinent in quantum mechanics to t}iJ
description of bosons and fermions. Higher-dimensional representat;i i
of Sy are classified by means of Young tableaux,® and pertain t lilrlls
description of particles obeying parastatistics (see Séc. 5 below).!0 o

Now a crystal in three-dimensional space consists of m'ulti‘ple copi
of a fundamental (bounded) region, the unit cell arranged in a 'pcllt'as
laltice that we idealize as being of infinite extent,. The symmet per;o hlc
configuration within the unit cell is described by means of a ﬁ.n'ig.o .
the point group H. The lattice (called a Bravais lattice) is describedglj}cf)ualill

1

Abelian group L of discrete translations in physical space that leave the
lattice structure invariant. The symmetry of the whole crystal is described

- by a larger group called the space group, obtained by combining point

group elements and translations, together with screw axes and glide planes.
The ¢rystallographic point groups and space groups have been completely
classified — there are 32 point groups, and 230 space groups. Their study is
important to the theary of molecular orbitals in quantum chemistry, ta the
relationship of X-ray diffraction patterns to crystal structures, to the theory
of correlated electron systems, and to many other topics in the fundamental
physics of condensed matter.!!

Let us write the elements of the lattice group L as vectors a € R3.
The group operation in .L is then vector addition, denoted by the + sign.
Any element h € H also acts naturally on L; for a € L, we write this
action as ha. By applying elements of I and H successively and keeping
track of what happens, we obtain a semidirect product of L with H. The
semidirect product group is the set L x H, with the group law given by
(al,hl)(az, hg) = (al + hlag, hlhg).

Symmetry groups may be finite or infinite. The point groups associated
with many geometric shapes (e.g. the tetrahedron, the cube, the octahe-
dron) are finite, as is the symmetric group Si. The groups of translations
describing periodic lattices, on the other hand, are infinite discrete groups,
while the symmetry groups of the circle, the cylinder, or the sphere are
infinite continuous groups.

A normal subgroup of a group G is a subgroup N C G having the
property that (vn € N)(Vg e G) g7'ng € N. That is, NV is invariant as a
set under conjugation by elements of G. For any subgroup H of G, and
for g € G, the right coset Hg is { hg | h € H}. It is easy to show that any
two right cosets Hg, and Hgs are either equal or disjoint. Similarly the
left coset gH ‘is {gh | h € H}. A normal subgroup of GG is thus a subgroup
for which gN = Ng (Vg € G). Let us denote the space of all left cosets
by G/H, and the space of right cosets by H\G. When G has a normal
subgroup N, one can form the quotient group G/N, whose elements are

the distinct (right or left) cosets by N, endowed with the group law for
cosets, (Ng1)(Nga) = N(g192).

A simple group is a group G, containing more than one element, whose
only normal subgroups are itself and {e}, where e is the identity element in
G. Thus the simple groups.are the analogues in group theory of the prime
numbers in number theory — they are the fundamental building blocks
from which other groups may be constructed. The complete classification




of the finite simple groups, long a dream of mathematicians, required about
500 journal articles by about 100 authors, mainly published from 1955 to
1983. One of the most interesting of the finite simple groups is the largest
of the sporadic groups, dubbed “the Monster” due to its extraordinary size
— it contains 246.3%0.5%.76.112.13%.17.19.23 .29 31 .41.47.59.71
elements. The Monster is the automorphism group of a vertex operator
algebra, and has deep connections with Kac-Moody algebras and groups
and with quantum field theory.?

But groups do not describe everything that is crystalline in nature.
A new horizon opened in the mathematical and physical study of crystal
symmetry with the 1984 discovery in nature of quasicrystals — materials
with quasiperiodic structures.'® These are configurations in which (ideally)
every local structure repeats infinitely often, though there are no global
symmetry transformations. The X-ray diffraction patterns of quasicrystals
show, for example, pentagonal symmetry, which cannot occur in any of
the 230 permitted space groups. Indeed, it is likely that the well-known
existence of a complete mathematical classification of the possible crystal
structures in R3 actually inhibited the discovery of quasicrystals. Thus
history teaches us not to be too rigidly constrained by known structur es, but
to he alert to ways of relaxing constraints or generalizing ekisting categories.

Ordinary group theory no longer suffices to characterize quasiperiodic
patlerns, and one must make use of other mathematical techniques.*

1.2. Lie Groups and Lie Algebras

To this point our examples have been discrete groups, but equally important
to physics are the continuous groups. Cylindrical syminetry is described
by the group SO(2), of rigid rotations of R? about the origin. Spherical
symmetry is likewise described by S0(3). Choosing an orthonormal basis
for R?, we can realize SO(3) as the group of real 3x 3 orthogonal matrices
under the operation of matrix multiplication. ,

A Lie group is simultaneously a group and an analytic mamfold (real or
complex), where the group operations of multiplication and inversion are
analytic mappings. The group manifold for SO(2) is the circle S, while
the manifold for SO(3) is three-dimensional. Ancther example of a Lie
group is the group SU(2) consisting of the coniplex 2 x 2 unitary matri-
ces, well-known as the two-sheeted universal covering group of SO(3). The
irreducible unitary representations of SO(3) and SU(2) give us, respec-
tively, the orbital angular momentum states of the hydrogen atom (or any

other quantum system having rotational symmetry), and the spin states of
fundamental particles (or composites). The group SU(3) describes an ap-
proximate symmetry of the strong interactions; its irreducible unitary rep-
resentations give us quarks and antiquarks, as well as multiplets of hadrons
describing families of baryons and mesons.

These are examples of Lie groups that are compact. Intuitively, com-
pactness means that their group manifolds neither “extend to infinity” nor
are “open” in any direction. Closed intervals in R are compact, while open
or half-open intervals are not; spheres are compact, while infinitely-long
cylinders are not. Mathematically, a compact topological space is a space
for which every covering by open sets has a finite subcovering; or equiv-
alently, one for which every continuous real-valued function assumes its
maximum value. The symmetries of space-time, on the other hand, are de-
scribed by noncompact Lie groups — the Lorentz group, or its semidirect
product with space-time translations, the Poincaré group. The Poincaré
group is actually the group of all transformations of Minkowskian space-
time leaving invariant the indefinite form [(z, — yu)(z* — y*)], where we
use the common notation g = 0,1,2,3, 2# = {ct,x), and sum over repeated
indices: z,2* = ¢*t* —x +x. Sometimes we restrict ourselves to Pomcare
transformations that preserve the directionality of the time coordinate z°
or preserve spatial parity, or both. Irreducible unitary representations of
the Poincaré group are labeled by particle masses and spins.!8

While Lie groups describe physical symmetries globally, the local (or
infinitesimal) description of symmetry is achieved through Lie algebras. A

_Lie algebra G is a vector space (here taken to be real or complex), equipped

with an additional binary operation that is written as the bracket of two
elements: for all X,Y € G, [X,Y] € G. The bracket [X,Y] is bilinear with
respect to scalar multiplication. It is antisymmetric, i.e.¢ [X,Y] = ~[¥, X);
and it satisfies the famous Jacobi identity, '

(X, [Y, 2|+ [V, (2, X1 +[Z[X,Y]|=0, (VX,Y,Z€G). (1)

Then, associated with a Lie group G, we have the corresponding Lie algebra
G, whose elements are tangent vectors to the Lie group manifold at the
identity. The elements of G are the infinitesimal generators of 1-parameter
subgroups of G; for X € G, the exponential map a — exp (aX),a € R,
defines the corresponding 1-parameter subgroup.

Alternatively, one can think of the elements of the Lie algebra § as
left-invariant vector fields on the group manifold of G. If X and Y are
two elements of G, their Lie bracket [X,Y] as vector fields is defined as
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the vector fleld that corresponds to the infinitesimal outcome of flowi
infinitesimally by each of the two vector fields, in succession. and thng
! ) en

flowing backward infinitesimally by each
of the vector fiel i
to order a?, the equation rfields. That is, taken

| exp (—aX)exp (~aV) exp (aX) exp (V) exp (2[X, ¥)) )

serves to define the bracket in the Lie algebra § of the Lie rou ’16

When a Lie group is represented by unitary operators ?n Vp'th '
responding Lie algebra may be represented by self-adjoint o ,t e‘ cor-
with the bracket in the Lie algebra corresponding to the cg::?ﬂ Otrstm V,
linear operators in V. We shall use the same bracket notation for :hﬂ .o
mutator of linear operators, namely [A4, B]=AB - BA. It éh 14 elcom-
he clear from the context whether we refer to.the Lie-b;acket cc):fl o il
vector fields, the bracket operation applied to elements of a Lie ]a Eauj of
the commutator of linear operators. If [X,Y] = Z in the Li alg? o
we shall require for a self-adjoint representation of § that the :da gebra G,
[0(X),0(Y)] = i0(Z), where o(Z) is the self-adjoint operator ;ﬂmUtator
ing Z. The extra factor of i on the right is needed to allow for a sel:pfje'se‘mt_
rather than a skew-adjoint representation. The concepts of irred jil joint,
1‘esentaltions (fOli which there are no nontrivial invariant Sub'spa.ctl:sc)1 aen;elc));
unitarily equivalent representation , )
Lie algebra as at the level of the grso)uaprfply saually well at the le‘vel of the

The L.ie algebra s0(3) of SO(3), for example, is three-dimensional, and
isomorphic to the Lie algebra su(2) of SU(2). The three generato s arl;
represented in V' = C” by the well-known Paull spin matrices o oen e
whose commutators satisfy o1, 02,03,

[oj,00] = 25000, j k=123, (3)

The components of 5 = (1/2)(01, 03, 03) correspond respectively to tl
y, and z components of angular momentum for a spin-3 pa,rticley For e
vahie Of.the spin s = £,1,3,2,..., there is an irreducib2]e self—acli'o'mt .
resentation oy (j =1,2,3) of the Lie algebra su(2) Obeyi:q B é)ln rfep_
in the complex vector space C2*!: and there is E.L corresgon(clil'( e
representation of SU(2). For integer s, this representation Ii)s alsmg Ul'l-lta,ry
representation of SO(3); for half-integer s, it is a projecti i a‘unltary
tion of §0(3). Unitaﬁry representations of SO(3) also dJescri‘{)ee r;plesen.ta_
angular momentum L, in which case we label the generators (I, MEOMEMZ
corvesponding to the z,y, and z components of L., ke bs)

Another important example for quantum mechanics is the Hej »

algebra. Consider the Lie algebra with three generators Qe Pe‘lZir(libeég
! 1
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together with the bracket operation
[Q’P]:C’ [Q’C]:[P)O]IO'. (4)

Gince C is a central element, it must be represented by a multiple of the
identity operator in an irreducible representation acting in V; that is, c -
ikI, where i is & real constant. For any two such representations acting in
spaces Vi and Vg respectively, a unitary transformation Q: Vi = Vy self-
svidently obeys Q(z’fiII)Q‘1 = ihil, (where I; and Iy are the respective
identity operators). Thus distinct values of K must correspond to unitarily
inequivalent represéntatipns of (4). :

Fixing % and letting @ — 4§, P — p, we have the famous Heisenberg
-algebra obtained by quantizing the particle position g and momentum p

coordinates,
{4, p) = ihl, (5)

where 1 = h/2m (h being Planck’s constant). But Eq. (5), unlike Eq. (3),.
does not have any nontrivial finite-dimensional self-adjoint representations.
Rather we have an irreducible representation, well-known from quantuin
mechanics, that acts in the infinite-dimensional Hilbert space of complex-
valued, Lebesgue square-integrable functions on the real line, H = Liq(ﬂk)‘

Writing ¥(q) € H, we have
4%(q) = ¢¥(q),

d¥(q) (6)
dg :

The uniqueness of this representation up to unitary equivalence (demon-
strated by von Neumann), together with the symmetry between position
and momentum variables that is evident under Fourier transformation of
Eqs. (6), are beautiful properties that have been regarded for many years
as advantages of the usual, simple prescription for quantization of kinemat-
ics based on position and momentum operators. We shall see shortly an
exquisite contrast with representations of Lie algebras of local currents and
diffeomorphism groups in quantum mechanics, where we have a different
kind of beauty — a rich multiplicity of unitarily inequivalent representa-
tions that describe physically distinct quantum-mechanical systems.

Notice too that in Egs. (8), ¢ and p are unbounded self-adjoint oper-
ators. This means that the ratios ||§¥||/||¥]| and ||7 |}/ |1¥||] have no

upper bound, where || ¥]] = [ [ |¥(q)|>dg]}/? denotes the usual L>-norm
of ¥. Among other things, this also means that the domains of definition

pU(q) = ~ih
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of the operators § and p are not all of H, but dense subspoces of H
The ?ommutation relation (5) malkes sense on a still smaller dense domair;
that is invariant under the actions of both ¢ and p. In contrast, unitary
operators are bounded operators, that are defined on all of . ,

. A unitary representation U(g) of a Lie group G in a (finite- or infinite-
dimensional) Hilbert space H is (wealkly) continuous if the inner product
(®,U(g)¥®) is continuous in g (V&, ¥ € #). Suppose that we have such
a 1'e1?resentation. Let exp(ad), a € R, be the 1-parameter subgroup of G
obtained from the fixed Lie algebra element 4. Then U [exp(ad)] is just
a continuous 1-parameter unitary group acting in H. There now exists a
(not necessarily bounded) self-adjoint operator a(A4), defined by

i 1
o(A)¥ = lim o~ {Ulexp(ad)] ¥ — ¥}, (7)

where the domain of definition of o(A) consists of those vectors ¥ € H
for which the limit in Eq. (7) exists (with respect to the Hilbert space
norm). From Eq. (7) we typically obtain from U (under the right domain
conditions) self-adjoint operators giving us a representation o of the Lie
algebra of G.
. Conversely, given a (not necessarily bounded) self-adjoint operator A
in a Hilbert space #, there exists a continuous 1-parameter unitary group
U(a? = exp(iaA) from which 4 can be recovered by means of Eq. (7)
Ag:alln under the right domain conditions, we can exponentiate the' self-.
adjoint representation of the Lie algebra to a unitary representation of the
corresponding Lie group. '

As an illustration, let us exponentiate § and p in Egs. (6) to obtain
I-parameter groups of unitary operators. For a € R, define [U(a)®)(q) =
[exp (—1ag )P)(q), which is just the product function exp (—iag)¥(g). (Re-
c.aLll t.hat ¢ is an operator, while ¢ is a real variable. Here the ;m'nus
sign is a convenient choice.) Similarly, for b € R, we define [V (b)¥(q) =
[exp (—ibp ) T](q); this is just the translated function U(g — bh) using Tay-
lor’s formula. Notice that the power series expansion of exp [—bh (d/gq) ]\}I,f
c‘onverges only when ¥ is analytic in ¢, which is a very restrictive condi-
tlotu; lzut(}i;he resulting formula ¥(g — bA) for the limit of this power series
ertends (by continuity in -1 i
e (by diﬁerentiyable;{) to all square-integrable functions (even those
y We caxi now .calculate what T;he.: group operation should be. Since
: (b?U(a) = exp(ihab) U(a)V(b), it is natural to write a group element as
vtriple (@, a,b), where @ is 2 complex number of modulus one, a,b € R
md W {a,a,b) = alU(a)V{b)isto be a unitary group representat,ion,v Ther;
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it is easy to see that
(a1, a1, b1 )(@2,60,02) = (cacgexp[ifiash], ar + aa, by + Do), (8)

which is one form of the Heisenberg group.

More generally, a useful equation that often permits direct calculation
of a Lie group operation from the Lie algebra bracket, or the product of
exponentiated linear operators from the commutator bracket, is the Baker-
Campbell-Hausdorfl formula

A A_ 1
e*Be A =) —(ad A"B, (9)

n=1
where (ad A)B = [A, B]. Using Eq. (9), we have immediately from Eq. (5)
that exp(—ibp) g exp(ibp) = § —ib[p, G} = 4 — bAl, from which the
Heisenberg group law of Eq. (8) follows. .

In a representation of Eqs. (3) or (5), a vector ¥ corresponds to a quian-
tum state. To describe the dynamical time-evolution, we let- ¥ depend on
the time t with ih8%/dt = HY, where H is the self-adjoint Hamiltonian
operator. Thus H also generates a 1-parameter unitary group acting in the

" Hilbert space. When the time-evolution respects the rotational symmetry

of R3, i.e. when H commutes with all the unitary operators representing
SO(3), the commutators of the angular momentum operators f,j with H
are zero and angular momentum is conserved. Likewise when H commutes
with the unitary operators representing translations in R3, linear momen-
tum is conserved. But the description of angular or linear momentum by
means of se1f~adjdint generators of unitary group representations does not
make use of the particular choice of Hamiltonian. It is important to note
that the description of the quantum kinematics. works even when the dy-
namical equation of motion does not respect the kinematical symmetry.
The Lie groups we have discussed in this subsection are all finite-
dimensional as manifolds. This means that even if they are not compact,
they are locally compact — every element has an open neighborhood whose
closure is compact. The Lie algebras of finite-dimensional Lie groups are
finite-dimensional as vector spaces. . :
Finite-dimensional Lie groups come equipped with natural measures
on the group manifold invariant under the group operation, called (left or
right) Haar measures: if E is any measurable subset of the Lie group G,
left Haar measure g (for instance) satisfies pe(9F) = pe(E). When the
group is compact the Haar measure is finite, so that we can also choose
to set ue(G) = 1. Haar measures are extremely useful in the theory of
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unitary representations of Lie groups, and one of the difficulties in treating
infinite-dimensional groups is their absence.

1.3. Infinite-Dimensional Algebras and G'roups

The study of gauge symmetry, among other topics in ph)?sics, brings us to
the study of infinite-dimensional groups and algebras. Suppose that G is
a compact Lie group such as U(1) or SU(2), and let M be the space-time
manifold. Then it is natural to consider the geuge group whose elements
are’smooth mappings from M to @, denoted by Map (M, G). The group
operation in G is then applied pointwise to define the group operation in
Map (M, GY; that is, for a pair of mappings g1 : M — G'and 93 : M — G,
we define (919:)(¢,x) = g, (¢, x)ga(¢, x).

A loop group is'a map group whose elements take the circle S! to G.
We can think of Map (S, @) in either of two ways — as a rule associating
an element of G to every point in S', or as a parameterized image of S!
seen as a subset of the target space G, .

The Lie algebra associated with the group Map (M, G) [or, respectively,
with Map ($*, G)] consists of maps from M [respectively, S1] to the Lie al-
gebra G of G, with the Lie bracket defined pointwise. We shall write this Lie
algebra map (M, G) [respectively, map (8',6)), using a lower-case letter
m. Now there is a unique extension of map (S*, G) by one additional dimen-
sion, such that the new elements commute with all the original elements
of map (S',G). This 1-dimensional central extension is called an affine
Kac-Moody algebra and the corresponding group is a Kac-Moody group.
Kac~Moody groups and algebras find application to conformal-invariant
quantum field theory, to nonperturbative string theory, and in many other
physical and mathematical contexts. They are naturally related to another
infinite-dimensional Lie algebra, the Virasoro algebra, which we shall intro-
duce in the next subsection. :

Let us mention here still another infinite-dimensional group, one that en-
tered mathematical physics relatively early — the Heisenberg-Weyl group
of canonical quantum field theory. Consider the field # (t,x) and its canon-

ical conjugate w(t,x) = 8,¢(t,x), satisfying the equal-time commutation
relations ’

(62, %), 6(t,¥)] = [n(t,x),7(t,y)] = 0

H

[qﬁ(t,x),‘rr(t,y)] = 25(3>(X - y) I, (10)
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where I is the identity operator. Equations (10) arg a kind of generalization
of Eq. (5) to describe infinitely many degrees of freedom. Here ¢ a,n~d ‘7r a:)Lth
linearly in a Hilbert space M, but they a.re r}ot bona ﬁde‘ operators 1m
Technically they are operator-valued distributions — that is, t'hey are /l\r:{eil
maps from a test function space of smooth, real—valuled funct»10ns on - 0
the self-adjoint operators on H. For fixed ¢, we may mte‘rpret Eqs. (1 l)y
choosing test functions f and g that depend.on Fhe spatial varlllabt‘e x on‘);.l
Then (suppressing the time coordinate) we write formally 3t‘e iSl:l’l{-}ale‘

fields” ¢(f) = [ga®(x)f(x)d*x and m(g) = fRaw(x)g(x)(l z, wlucf; ’a;e
actual (unbounded) operators. From Eqs. (10), we easily obtain the fixed-
time commutation relations’

[¢(f),8(g)) = [n(f),7(9)] = 0,

[¢(f),m(g)] = i(f,9) 1, (11)

where (f,9) = [gs f(x)g(x)d*z is the formula for the 1.lSLlE.L1 L? innerlprod—
uct of functions. Notice that the singular Dirac lé-fur‘xcmon.m (10)' no or;gier
appears. Equations (11) thus represent an infinite-dimensional Lie algebra,
' n the test function space. .

mofe]:ducs) exponentiate Egs. (11), setting Ulaf) = exp[.—mqﬁ/(f)]—lanii
V(bg) = exp[~ibn(g)). Using Eq. (9), we have that V(g)#( lex] (sglbtai;
$(f) — (f,9) I, or V(@QU(HH)V(9)™' = exp[z(f,g)_]U(_f)- Wed 1111 o
the infinite-dimensional Heisenberg—Weyl group, likewise mo e(? on‘

test function space, whose elements are triples (c, f, 9); w}.lere o is again a
complex number of modulus 1, and f and g are test functions. The group

law is now given by .
(cr, f1,91) (2, f2,92) = (acaexpli(fa, g1) ], fr + f2, 91+ 92) . (12)

This should be compared with Eq. (8), which defined the Heisenberg group

as a 3-dimensional Lie group. . .
Equation (12) generalizes readily from the L2%-inner product to

(en, fi, 1) (@2, f2,62) = (a,ag'exp[iB(fg,gl)], fut fa g +g2), (13)

where B is a positive definite bilinear form on the space of test funct.lons.f

Let us close this subsection by mentioning an important eXtens-lO?ﬁ
the theory of groups, whose importance developed from work by“Drmte d,
Jimbo, Manin, and others in the 1980s — the study of so-named - QLllla,n m:
groups”. A quantum group can be constructed from a @athemat1ca y na 1
ural deformation of the enveloping algebra of a simple Lie algebra by a rea
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or complex parameter . It can also be defined as a mathematical object in
its own right, a Hopf algebra (or, possibly, a more general object, as the ax-
lomatization of quantum groups is not really compléte). Quantum groups
describe a kind of generalized symmetry, where the notion of the inverse
of an element is weakened. The word ‘quantum” here does not mean we
have “quantized” a classical theory, since representations of ordinary non-
commutative Lie groups and algebras already describe quantum-mechanical
systems. But quantum groups have application in physics to conformal field
theory, quantum inverse scattering, exactly solvable lattice models, exotic
quantum statistics, and other domains.!”

Later, when we discuss braid statistics, we shall have occasion to make
use of g-deformed commutation relations, where the commutator [4, B] of
field operators is replaced by the g-commutator,

[4,B], = AB - qBA, geC. (14)

1.4.  Diffeomorphism Groups and Algebras of Vector Fields

Next let us focus attention on a particular sort of infinite-
the group of diffeomorphisms of a manifold. Let A

finite-dimensional Riemannian manifolds,
infinitely)

dimensional group,
and N be smooth,

A diffeomorphism is a (k-fold or
differentiable homeomorphism ¢ from M to N » whose inverse

¢~' 1 N = M is likewise differentiable. For there to exist a diffeomorphism
between M and N means that the two manifolds are, in the sense of
differential geometry as well as topology, equivalent.

We now give attention to diffeornorphisms that map a manifold M to
itself. Any two such diffeomorphisms ¢; and ¢, ., acting successively on
M, give a third diffeomorphism @2 © $1 where o denotes composition;
Le, [¢aog1](x) = ¢o(ds (x)). Since the operation is associative, since the
identity map is automatically a diffeomorphism of M, and since the inverse
of any diffeomorphism of M is again a diffeomorphism of M , we have a
group under composition. '

Here we have a choice as to convention. Suppose that a group G acts
on a space M in a way that respects the
and x € M, we write (g,x) — Ly(x), and call the action a left action,
when (Vgi,9: € G) L,,,, = Lg, o Lyg,. We call it a right action and
write (g,%) — R,(x) when (Vg;,gs € G) Ry, = Ry, 0 Ry, . If the group
product of ¢, and ¢, is defined to be simply ¢) o ¢, then the action of
the diffeomorphism group on M becomes a left action. ‘

But we shall shortly allow diffeomorphisms of Af to act on the space

group multiplication. For g € @

" of ¢ real-
,{ To obtain
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valued functions f defined on M, by moving the argumenctlz to[
left action on the space of functions, we would then nefe lo
f= fi ¢! this gives us [g1 e do] S = ¢1 - (B2 fJ. Alternatively,
. d).ay define the product of two diffeomorphisms by setting
we m

frs = 420 1, < (15)

. . . . . ] l .

hat the action of the diffeomorphism group on M is a right a(;tlon ;I‘t;;s
'SO th‘er onvention we shall actually adopt throughout these lec \llre n t.OH.
b Ce let ¢f = fo¢ (without the inverse), so that we have a left acti
Then w = ‘

oup on the function-space. , -

o t?’\Eﬁlfeg;lsopwamt the diffeomorphism group to be a \.w?ll-beha\ id izi)gzlc;gn

! group, and this requires (in general) some additional restric
ical gr )

- -V 1 Ed
. the diﬁeomorphislns- ILeCau that the S’U-ppa"t O{ a rea] or COmpleX al

' i tion of all closed sets
i 1 a space M is the Infersec
Conmn]l\]/.;ms f:\;nsill;:fﬁroi ¢ 2‘, f(x) = 0. Define then the support ofj;
q 5 Sl;nsm ¢ of M to be the intersection of all closed sets €' C i
dlﬁfxotn}lxoipfor x € M~C, ¢(x) = x. Note that if f € ¢ (M) has compac
such tha , N
subport then for ¢ € Diff¢(M), fo ¢ also has comPact Supp:;t —_—
N ’the set of 0 diffeomorphisms of M having comp .
iti up
bit ao“), support forms a group under composition. We call.tclsMg)rob;
y 111 » _
Dlz']g“(yM) where the superscript ¢ stands for . compact .1 Diff f(uniform
OINES & t;)pological group when it is endowed with the topo ogy O o
zonvergence in all derivatives in compact sets. Of Cours&:f;.l;; rna(r)lr i M
itself is compact, Diff ¢(M) is just the full group of C" i eom.t ) ome
lDz';f (M). Ttis an infinite-dimensional group, whose contmu?us un(li a;y Sic;:;
resentati.ons (CURs) are of great interest for both rr?athel?atxis ;x;e paléebra.t
i i ; is the infinite-dimensiona
ssociated with Diff¢(M) is . e
vecﬁ(M) consisting of the C* (tangent) vector field:)ox;nlclllovlvleacxlrl:igtﬁothe
, ishi i ct set),
t (i.e., vanishing outside some compa ende .
iéCtbi‘:c)lI::tr (c(f1 Fq. (21) below). Let us consider the relation of t:-;ii
ie . . ‘ e
algebra vect¢(M) to the group Diff¢(M), by exploring the exponen !
of vector fields.

Integral curves of vector ﬁelds‘

Suppose that v(x) is an arbitrary (not necessarily compa(':tly ;;p;;ofri\;c?
¢ vector field on M (or, more generally, some ope-n ;eg;s;met(;r. g
Then v generates integral curves x(a), where a is a x‘ia-::in SR
is. for each X € Mg, there is an interval Ix C ]R{ con &}1 E : ,ation
giat for a € L., the function x(a) solves the ordinary differential equ

x)
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Oax(a) = v(x(a)) combined with the initial condition x(0) = x. For each
initial value x € My and each parameter value a € I, define ol {x) =
x(a); so that in particular, P (x) = x (Vx € Mp).

Then, where it exists, #; (x) is actually C in both x and a. More-
over, when a, o', a +a' € I, we have as expected the composition law

b5 (85(%) = 9y (%). (16)

Thus one may visualize a fluid filling the region M, with v(x) describing
the magnitude and direction of the fluid’s velocity at x (taken as if un-
changing in'time}. Then x(a) is simply the trajectory of a mote of dust
suspended in the fluid, carried along by the velocity field.

Furthermore, we have :

explav(x) V] f(x) = f(pY(x)), Q)

as long as the infinite series expansion of the left-hand side is defined and
convergent. However, even when v(x) isa ¢ vector field defined on the
whole manifold 27, it may well be that 7, depends on x in such a way
that there is no fixed interval of values for a on which ¢y (x) exists for all
x € M. That is, while an arbitrary smooth vector field on a noncompact
manifold M can be exponentiated locally, it does not necessarily generate
a one-parameter group of diffeomorphisms of As.16

Ervamples for M = R

Let us look concretely at how these things may happen in the special

case M = R, where integral curves can be calculated explicitly.}® A vector

~ field on a domain in R is given by a smooth, real-valued function g(z)
since the tangent vectors are 1-dimensional. Suppose that g(z) is C® and
has no zeroes in a certain open interval 7 = (z1,22) C R (we may allow

%; = —oo0 and/or = = 0o0). For specificity, take g(z) > 0 on the interval,
Fix zq € 7, and define

3

¥odg!
Gle) = /m i@ (18)

for 2 € Z. Then the function y = G(z) is C* and strictly monotonic
in z (increasing, when g is taken to be positive). We have G(zq) = 0
and G'(z) = 1/g(x), where “’” stands for the first derivative. Denote the
inverse function by ¢ = G7'(y). It is defined on the range of (, which
contains the region about y = 0 bounded by G(21) and G(z) {which may
possibly be ~oo or oo); with g positive on Z, wehave G(21) <y < G(zy).

B T
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-4y : ! =1, so that
' -1 ~ . we calculate (G™Y)'[G(2)]G ("c) s
Sll;]fc(e )G ggc[;ém—)ll(y) ]5“1 Now let a be a real parameter. It is straightfor-
G = - )
Enard to verify that the function

#8(x) = G G(a) + o]

- (19)

i the
ives the desired integral curves of g, where ¢9(x) is deﬁnedglee)asf ér(l,c)l}‘
goma'm of values {(z,a)|z € (z1,22), G(z1) = Gga,) < t;i<th ¢g2 el
On this domain, we indeed have 8¢ (2) = g(ft)ﬂ(a:)) i thnggrmma T
well as the composition law in Eq. (16). Notice too tha. ? formula 0
%S (19) leads to an answer that is independent of the c 01che.o . gonstant)
de?i-".me G(z); in fact, replacing G(x)G!i)l' (G(m)c—; C;O(\t}\]r]k;etr;g (;;; 2 constent)
hat G~ (y) is replaced by y— ), g
mi?nietq’p::ct to t(hg choice of C. Equations (18)—(19) alre.zllms elementary,
on 3 (z) explicitly.
las that allow us to calculate ¢ :
;:ftﬁll;orx;ea we recover Eq. (17) by observing that under the change
1 >

of variable y = G(z), we have

>—d—1f<w>=e><p[a§ywoe—‘1(y>'=[foc-11<y+a>. (20)
dzx

con

exp ag(z

ibili ing the vector field; i.e., of

We’ B thehgzglefl;zzsil ‘;)l)h'tzil(c)if ggj(iglézgrgl .:he translated interval

iy 9(7“) i ﬁx(éd b € R, The consequence is that G(z) 1s replaced by

:II:{E )I+ béf(:—al?)ywith H{zo+b) =0; and H(y) = ?‘l(y)—f- ll))) El;eln_:hbe

int(:gral curves ¢h(z) for o € T+ D ar; gweri%y G '{G(z |
o identicfa . ﬁ?:saisossmvz sgezial czlises of vector ﬂeld‘s. First
L e D e i is certainly C* on the whole real line, but

3 .
suppose g(z) = z?, which % = 0 we have g(0) = 0, so that

When
which grows large when jz| — . '
¢2(0) = 0 (Va). Considering the region z > 0, we have

1
1 - -t
Glz) = —5 + €, G0) = T==p
where C > 0 is fixed; and using Eq. (19),
- z

1 -1 ___*
dim =l -2 = e

‘ i  greater 0, ¢i(z)

: iven initial value of z greater than , $ilz

T e e toerences becoming infinite while a is still finite. Thg
hich ¢4(z) exists is bounded above by
f {z) decreases

grows

without bound as a increases,
i for w
interval I, of values of a .
1/(2¢)?. For x < 0 we obtain the same formula, so that ¢
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without bound as a increases toward 1/(2z)2. Despite the continuity of
9(z), its rate of growth means there is no fixed interval containing a = 0
on which ¢9(z) is defined for all z € R,

~ On the other hand the choice 9{z) = z, which grows more slowly as
lz| = oo, gives us straightforwardly the one-parameter group of dilations
#5(z) = ze®, defined for all values of z and q.

As an example where the vector field vanishes at co, consider 9(z) =
1/coshz = 2/(e® + e7®). Here g(x) is C* and as |z] = 0o tends toward
0 (together with all its derivatives) faster than the reciprocal of any poly-
nomial in z. Then G(z) = sinhz + C, and ¢2(z) = sinh™[sinhz + al,
which for all values of = is defined for all o € R, Thus we have a ogne-
parameter group of diffeomorphisms of R. When 1 is very large and posi-
tive, sinhz = /2, so that sinh™'(y) ~ In2y. Then ¢3(2) ~ In(e® + 2a),
which grows without bound as a — o0, The integral curve through any
initial point eventually reaches any point to the right as increases, albeit
very slowly as the growth with q is logarithmic. .

In contrast, if we choose g(z) to be a ¢ compactly-supported vector
field, then the one-parameter groups ¢4(z) give us integral curves that are
bounded above and below.,

Finally, some interesting formulas for integral curves of vector fields
result even when the latter are only partially defined on R. With glz) =
a’(r # 1), we have formally G(z) = 77 /(1—r) + C, and G y) =
((1=7)(y = C)]YO="), Then 95(z) = [2'" + (1~ r)a) /07, Suppose
that v = 1/2; then 9(z) = /=, which is defined, positive, and ¢ for
% > 0. The growth as |z] = o is moderate, since /2 < x and we
lhave already exponentiated the vector fleld g(z) = z. In fact, we have
dix) = [Va +a/2]% = (1/4) [4z + da /7 + a?), which at first glance
appears to be defined for z > 0 and for —co < a < o0, and which is
identically = when a = 0. But here the appearance is somewhat deceptive.
Notice that although the vector field 9(z) vanishes at ¢ = 0, $3(0) is only
zero to first order in a; so that z = 0 is not behaving like a stationary point

of the flow. This is related to the fact that g(z) is not differentiable at
2 = 0. Notice further that if a/2 < —\/z, the application of #9. to ¢g(a:)
does not respect Eq. (16). Even if we augment the definition of g by setting
9(z) =0 for z < 0, s0 that #%(z) = z for & < 0, the vector field ¢ does not
exponentiate to a 1-parameter group of diffeomorphisms.

Recently Duchamp and Penson found some interesting uses of Egs. (18)-
(19) in studying the combinatorics of orthogonal polynomials.” Their work
has motivated my inclusion of the above examples in these lecture notes,1?
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Lie algebras of vector frelds

Returning to the case of a general manifold M, a compadly«supportei
C°° vector field v on M always exponentiates. toa one—pararﬁeter g%guinod
¢ diffeomorphisms of M. That is, Y (x) is deﬁnedbfor a ea ira;neter
oY (¢Y (%) = ¢Y,(x). Conversely, let a —) ¢o (a € R) be adorf; -: rameter

: aof diffeomorphisms of M, smooth in a. Such a group defines ‘

o M. whose value at x € M is just the tangent vector to the
e 0“. d’curve ¢a(x) at a = 0. Thus we have 8,¢a(x) = v(¢a(x)),
par e =x énda do = @Y. We call ¢ the flow generated by the
e ¢?—‘1=(ic(1x3/ _If ;he ﬂowagi)}.’ haus support in a compact region K, then v
Ve?tor l? van%shes 6utside K. The space of all such vector ﬂelds_, un.(ler
e\c,)licllli:/tis}e addition and multiplication by real scalars, is of course infinite-
y i this is i ra vect®(M). -
dim,:r;msct)lng?;stt};j Eytléz;l((;)ilgi?bvl and \(/2 belong to vect“(]'V[), Fh»eii.r L;;
bracket [vi,v2] is the vector field that corresponds to the (11;1ﬁ]n£eis:12§c—
of flowing (infinitesimally) by each of the two vector fie !
OU;;ZTE and then flowing backward (infinitesimally) by each of the two
S'thor llcields. In local coordinates,

vayva (%) = va () - Tva(x) = va(x) - Vva(x). (21)

The Lie bracket of two C*°, compactly-supported vect.or fields on tMﬁ 1:
]ain a C°, compactly-supported vector field. The Lie bracket s::czs}\ /[e;
tal%;e Jacobi i(i,entiby (1), and defines the Lie algebra structugrebont;)ec djomi

ie gr its own Lie algebra y the adjo
In general, a Lie group G acts on i ra : ;

e r?segntation defined as follows. For 4, B € G, the adjoint act1oln of G (;n
T y ‘ .
it;:%lf is given by (ad A)B = [A, B]; see Eq. (9). At the group leve ;K?atinz

btain Ad(g)B (writing Ad with the capital letter A) by exponenti: "
?ad A)B. Alternatively, with L(h) = gh denating left mult1pl}ca}mt,10n dlr; im;
and Ry(h) = hg denoting right multiplication, we may define the adj it

- : a . _ - o
action é;f G on itself, Ad, : G = G, by the composition Aj(gi -;(’R)g 1 th;
jugati re Ady, o, (h) = (Ad,, © Adg,)(h), so

.e., conjugation by g. We then have Ady 4, dg, © Ad, ‘
f4€d, ilikie Ig/ ) is a left action on G. Letting B be the 1r3ﬁn1t<?s1mal generte]ﬁ:;)rll
assf)ciated ;ith a curve hq in G passing throughrth.e identity, leve c;xlr\ll —
obtain Ad(g)B by differentiating Ad(g)ha with respect to a antate;;'n uatne

: ; G. The adjoint represen
ata=0. Thus Ad(g) : ¢ = G, forg € ' s o
Lie algebra is also a left action, satisfying Ad(gl)Ad(gg)B. = Af-(glglr;)w .
Having established our convention for the group mul;m};hca ‘1801;1‘,6“ o
i i = o ¢, the adjoint representation .1 :
igf;n;j;phlsm;’;ilffl *¢Q1;1_1 01 ¢y o #1. It is then a straightforward
1)$2 = ¢1 1 =
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calculation to obtain the adjoint representation on the space of vector fields
in local coordinates; it is

[Ad@) v = 220 vt ), (22)

Oz

wlhere our convention is to sum over the repeated index &. From Eq, (22),
it is easy to check that (ad v,)v, = [v1, V2], in accordance with Eq. (21)

We remark further that the set of compactly-supported C* diffeomor-
phisms of M (for & = 0,1,2,8,...) whose inverses are likewise C* also
form a group under composition. But the Lie bracket in Eq. (21) involves
taking a derivative, so that in general the bracket of a pair of C* vector
fields is only C*=!. Thus the requirement that we have a Lie algebra nat-

urally restricts us to the C™ vector fields, for which the group elements
should be C'* diffeomorphisms.

1.5. Semidirect Products and Other Eztensions

Lel D(M) be the set of C* real-valued functions on M having compact
support. Then defining addition pointwise, D(M) is an-Abelian group.
Endowed with its usual topology of uniform convergence in all derivatives
. In compact sets, it is a topological group. A diffeomorphism ¢ ¢ Diffe(M)
acts naturally on D(M) by transforming the argument of each function;
e, for feDM), ¢: f — fo¢. Furthermore the map (f,) = fogis
jointly continuous in f and ¢. Then we have the natural semidirect product
group D(M)x Diff¢(M), with the semidirect product group law given by

(J1,80(f2,02) = (fL + i1 fo, d1a) (23)

where as noted above, ¢, fa=Faog, and ¢ ¢y = ¢s 0 &1. At the level of
the Lie algebra, we have a semidirect sum of the commutative Lie algebra of
compactly-supported scalar functions on M with the Lie algebra vect®(M).

But D(M) is just the subgroup of Map(M,R) consisting of the
compactly supported maps (regarding R as an additive Lie g'roup). Thus it
is usefnl to introduce more generally the subgroup Map®(M, ), of smooth
maps that equal the identity element in & outside compact sets in M. A
compactly-supported diffeomorphism ¢ of M then acts naturally on the
compactly-supported maps g : M — G by (@ 9)(x). = g(8(x)), respecting
the pointwise group operations. We have the natural semidirect product
Map®(M,G) x Diffe(M) for a general Lie group &, with the group law
(91, 81)(g2,92) = (91(¢1 92), B1ba) , and the corresponding semidirect sum
of the infinite-dimensional Lie algebras map®(M, G) and vect®(M).
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Let us now consider the case M = R4, correspgn?ingd to. d—dimensionalf
physical space. Here an important.subgroup of .chﬁ‘ gR ) is the group ]o

- or volume-preserving diffeomorphisms SDiff ¢(R¢), d > 1, whtere.t e
o letter 'S’ stands for “special”. When d = 2, this subgroup coincides
pr’eflxthi group of compactly supported symplectic diffeomorphisms of th.e
g;:é. When d = 1, however, the group is trivial. The corresponding Lie
;uba]gebra is svect®(R?), which is the algebra of divergenceless Con.lp?Ct]?{-
supported vector fields. Unitary representations of the group .]SD%ff (:Rqr)l
and the algebra svect®(R%) arg i;npml*tant to ‘the quantum theory o 8
i i ible fluid in R¢, d> 1. .
1(1€a;:hlscczr§§irtizsrlbthat diffeomorphisms be compactly suppm:ted can l?-e
weakened in various ways in R¢, modifying the group topologl); appg.offpel;:
ately while maintaining the correspondence between theuéfsa 1tng X;mte
morphism g&oup and a Lie algebra of C° vector fields on hat ger

global flows. For example, one possibility is to include diffeomorphisms

that, in the limit as [x| — oo, approach the identity m;'ip rap,li]dyy in il]
derivatives (here rapidly means faster than any polynon}lal)‘. b 1TS, g;i),e;)
can be given the topology of uniform rapid Com‘/er_gen'ce in ‘al ] er;_\a 1con:
and has been called K(R?). The natural cc.)yrespondmg L1<’e alge r; o
sists of vector fields with components belong.mg to S.chw'artz spa.ce : (eS ai
the space of real-valued C* functions of rapid decrease in all derlv?elgzn tale
property respected by the Lie bracket of Eq. (21). We saw an exa_m{,-/ in th
preceding subsection in the vector fleld on R ddeﬁne§ bcy %(m) gthen ha;,é'
In place of the semidirect product group D(R?)x Diff (R f) \]:g o
a semidirect product S(R?) x K(R?), whose ele‘ments sat1§ y Eq. 2 .tl t
Consider as a further alternative all C™ dlffeomorphls.ms of 1&;
coincide with some (uniform) translation outside of an arbitrary compa

. ; d
- region K € RY. These form a group that we may call Difftrans(R?). We

e (pd
can obtain any such diffeomorphism by composing in element of Dlzﬁ (tli?ia)t
with an element T of the translation group 7 (R®). Note fpfrt 1¢tr ot
there is a natural homomorphism from T(R?) to the group of au O?S
phisms of Diff¢(R%): for each translation T, we have the.a\.ltomorp ;l n:
¢ — TogpoT~). This lets us write Diff "2"*(R?) as a Sfemldlreilt.f]f)ro 11(1;_
T(R4) x Diff ¢(R%).. We can enlarge this group as well, to 1nc]1.1cle. i ég? -
phisms which, in the limit as |x] — oo, approach a translation rapidly
o Cé?:l?;ﬁ:;l‘;esv‘ve may define groups of diffeomo.rphisms. th.at colncide \:;:)h
(outside compact sets), or rapidly approach (in the l%mlt as‘l§| —)1) ;
the following: a rotation or a Euclidean transformation (for d > 1),
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dilation, or a linear or affine transformation. When we work with the
area- or volume-preserving diffeomorphisms, it is natural to extend them
by Euclidean, special linear or special affine transformations.

For each such extension of the diffeomorphism group we have a corre-

sponding infinite-dimensional Lie algebra of vector fields on R?, wl

here the
vector fields coincide with (outside compact regions) or rapidly approach

{as |x| = o0), the infinitesimal generators of a finite-dimensional L

ie group
acting globally on RY.

An important special case occurs when we consider the Lie algebras

of vector fields on the line R! or on the circle S!, and the correspond-
ing diffeomorphism groups. In this situation of a one-dimensional man-
ifold there is a natural, nontrivial one-dimensional extension of the Lie
algebra called the Virasoro algebra and, correspondingly, we have the Vi-
rasoro group. For the example of the circle; it is natural to parameter-
ize the manifold by 0 < § <« 2m, and to choose a basis of vector fields
9n)(0) =iexp(ind), n =0,+1, + 2,... for the (complexified) Lie algebra.
Then Eq. (21) becomes [ g, 9y ] = (M —n)g(myn). Adjoining to the Lie
algebra a central element I (that commutes with all the g(,), the extended
bracket is given by the formula :

[96m)> 9] = (M = 1) g(mny + c W bm—nd,  (24)
where the coefficient ¢ is called the central charge. Tt is straightforward to
verify that Eq. (24) satisfies the Jacobi identity.

The Virasoro algebra and group are the natural analogues for Diff (5!)
of the affine Kac~Moody algebras and groups for Map(S',G). Its repre-
sentations have important application to quantum field theories in (14 1)

dimensional space-time, to exactly solvable models in statistical me
and to many other domains.

chanics,

In the next section, we introduce some basic ideas from quantum field
theory. This permits us to see how representations of algebras of vector

fields (and, correspondingly, groups of diffeomorphisms) occur naturally
within such a theory, representing local currents.

2. Local Quantum Fields and Fock Space

A profound idea that deeply influenced the development of particle physics
is the notion that fields rather than particles are the

fundamental physi-
cal quantities.

The particles that we observe in nature are then actually
quanta of fields. For instance we understand photons to be quanta of the

electroma,
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gnetic field, heavy vector bosons to be quanta 9f the weak ﬁeldd,
and gluons to be quanta of the field that ‘t?inds quarks into baryons an
interactions.
G ar'ld acfg)u;:i i)oerrzl;;rsdtzlnai ;n:/eay to quantize a classical relativistic
Eq‘llztclzlr;i field &(t,x), describ'mg_theoretically. a neutral scalar boson
nl?UtTa "After writing the commutation relations for the fields, the
o mass" t resent them by self-adjoint operators in Hilbert sl?ace,
challep e e o ators such as the Hamiltonian (describing interactlo.ns)
o Ot? :; Oli)‘farld operators, and to deduce the particle interpretation.
;]h“;ser;?z;am ies essentially complete for free (i.e., noninteracting) quantum
1 N

fields, while major challenges have been overcome and others remain for
elds, ‘

; o 20,21,22
interacting theories.?

Let us discuss first some nonrelativistic quantum field the0ry:

2.1. Canonical Nonrelativisti_c Fields

i i i amiltonian in quantum mechanics
C'OHSiier tl’lilrejlr?g}e;jrj—nfl?/l g)ot;gl,n?;so'l;?Eqs. (6), the action Dof H may be
reprosented EPH\IJ@ = —(W*/2m)d*¥(q)/ dg® + (k/2) ¢*¥(q), where
rep‘rese}zlte art};cle mass. We recall from elementary quantl'lm mechanics
I;le;tst;eesciutions to the time-independent Schrddinger equatloan\;Z(q) i
E, U, (q) are Hermite functions, with energy levels En 1‘: (dn i—hzs)e gi,v: =
0.1,2,..., where w = y/k/m. A‘l‘;pptroprlatell}/'2 n((;&r)mz:;zih;t o B

b ort i he Hilbert space Lj ; ms n)

gn Ortgzgigrrlrlgalt}laeasrjisfiirg tand lowering Operatc;]rs ixz th?husual wa(}ir, a ;
(1271;1.711»)‘1/2 [mwd — ip] and @ = (2mhiw) /2 [mu*/q + 1p]l, we Iilrlnu:;sioi
from the Heisenberg bracket of Eq. (5) that a and a* obey the co

relation

{ﬂ,.a*]— =qaa*—a‘a =1, (25)

while

| 1 26
H:(a‘a+§)ﬁw. (26)
2
i i hat a®,, = n'/?¥,_,,
* = n¥,. Tt is straightforward to see t
T'T;ls a\IJa \IJHO' WT;1'11:3l a* ¥, =(Mn+ 1)1/2‘Pn+1. Thus we have a represgnta—
‘W1 aW¥og = U, " A
“tion of Eq. (25) by linear (unbounded) opere;t101§ 1;1 Ldz(tli.zion Cestend of
' i her possible interpr .
1 ‘a representation has . anot : ‘ ‘
thrilluclé zboﬁt the energy levels of the oscillator, we can think otf vzﬂz?z
. think . ’
describing the number of Bose particles in a given quantum state
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occupation number). Then ¥, the lowest energy state, is the vacuum;

a is the particle annihilation operator, a* is the particle creation operator,
and a*a is the number operator. There is of course no limit to the number
of bosons that can occupy the same quantum state
is unbounded (as are a and a*) ’

; S0 the number operator

If we want to describe Fermi particles that obey the Pauli exclusion
principle, however, we must restrict the permitted occupation numbers to
be only 0 or 1. Such a system is obtained by replacing the commutation
relation in Eq. (25) by the anticommutation relation _

(6,04 =aa* taa=1, (27)

where again the number operator is a*a. Now

a representation is given by
aly =0, a¥, = Ty, a* Uy = ¥y, and a*¥, =0

To describe Bose or Fermi quantum particles occupying a family of .

distinct states indexed by the subscript «, with occupaticn numbers ng,,
we can write

[0a; aps = [ag, aZ?]ﬂ: =0,
[@a, 0f]x = 8,51, _ (28)
The number operator with eigeﬁvalues Nq 18 then af a,.
In nonrelativistic quantum field theory, we posit the field operator
¥(t,x) and its adjoint 1 (t,x), obeying fixed-time canonical commutation
(-) or anticommutation (+) relations, given by (suppressing t)

)

W), ¥(¥)x = [ (x), 9" (v)]x = 0,

[0, " (V)]s = 6@ (x - y) 1. (29)

These equations are sometimes interpreted as a second quantization of the
Schridinger wave function ¥. Notice how they may be regarded as general-
izations of Eqs. (28), with the discrete index o replaced by the continuous
spatial coordinate x.

One representation of Eqs. (29) is the Fock representation or particle-
number representation, which we introduce using positional coordinates.
{We disregard here the possibility of particle spin.) Let us define the N-
particle Hilbert space Hy, N = 0,1,2,..., as follows. For N = 0, we have
a one-dimensional Hilbert space Hy = C, which we interpret as the ray cor-
responding to the vacuum state. For N 2 1, Hy consists of complex-valued

wave functions ¥ which are square-integrable functions of X1,...Xn, with
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c R®. We have the standard L? inner product (, ) in Hy, given in
X :
’HJO by ¥oW¥o, and for N > 1 by

= X X Ju 8 ---'dS'E (30)
] d ‘I’N X1, .. XN)d I IN.
(CP‘N, ‘I"N)N / . N( 1_; y N) ( )
A ual in quantum mechanics, we are often interested in wave func-
s us

ions that satisfy specified exchange statistics. We may ].et the ?ymmet;1F
pone Sn act on Hy by permuting the N indices labeling particle co
group

dinates (in Sec. 4.2 we shall discuss the action of Sy in greater depth).
" dina .4

' ..o[N]). Let {(¢) = 1if o is an
. Sy, set o (1,...N) = (o[1], o] . gis an
o rm[;[tation and ((o) = —1if o is odd. The Hilbert space My c'on
et i () mmetric under exchange of particle
sists of wave functions ¥/ that are 5 .
coordinates; i.e., they obey the condition

s 1
B G,y x) = TN (Ko, o Xol8) (3D

fane 2/(8) _ 9 ) (s) _
for all o € Sy. For notational convenience, we take He = Ho al;d ’;L(lf S
x . .
H in S tensor product O
As usual, we can obtain M}’ as the symmetch p : -
, i () — 3/ ®: Y Alternatively, the
copies of the 1-particle Hilbert space: Hy' = (a)l . ey, B8
' N ists of wave functions ¥}’ that are antisymme
Hilbert space Hj,~ consists
under coordinate exchange, so that

; o) gle : 32

B (x1, ) = (~DHOTR (opa], o Xot) (32)
it @) g @ N A

for all ¢ € Sy, and we write Hy = e e |
> The Fock Hilbert space is then the infinite direct sum H=EBpn_ocHN

o e at is, we
or in the fixed-symmetry cases, HEOE) = P _ Hy' . That i

can identify a vector ¥ € #H with an infinite sequence T = (\I'{\/)e,s,.]\;;1
0.1.2. ..., such that the infinite series Zﬁzﬂ(\ll,.\/,\I'N.)N 'conv?g :
-li,l'e’wi,s; f,or @) (@) ¢ g2 The inner product in M is given by

18

(@,‘I’)= (‘I’N,\I’N)N<OO. ‘ (33)

Z
Il

0

1 i (5)~(3) .
imilarly for the inner product in : o
andI\?lml ‘r\i;eyare ready to write representations of the flelds sa:.llsfym{g1
o ' fith sma
Bgs. (29), acting in the appropriate Fock spaces. We follow (with s

) 20
modifications) the notation in Schweber’s book.
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Fields satisfying fixed-time canonical co
sented in (%) by:

[Ty (x), .. xy)
[¢¥*(x) ‘I’(’)]N (x1, WXN)

il

W+ D290 (e, 3, %),

v .
=NTV2N" 60 (x - x;) v (e %, XN, (34)

j=1.

~ where the notation ®; means that the particular tri
omitted, and where [#* (x)T()]
functions, we know immediately th

ple of coordinates X5 is

at these expressions define Not Operators
but operator-valued distributions — like the relativistic fields in Eq. (10),

they must be interpreted as mapping test functions to
tors in the Hilbert space. Thus if fi(x)
we write, just as we did in obtainin
and ¥ (f3) = fos * (%) fo (x)d?

nonrelativistic fields modeled o

and fa(x) belong to D(R?) or S(R3)
g Bq. (11), 4(f)) = Jra () f1 (x)d %z

z. This gives us the Lie algebra of canonical
n test-function space,

[0, 9" ()] = (fu, fa) I, (35)

lied to the tést functions.
rather than the more technically

where (f}, fo) is the 1?2 inner product formula app
We often speak loosely of field “operators”
correct operator-valued distributions. .

We can see that $(x) is an annihilation operator, and *(x) is a
creation operator. If the initial vector W(s)

is, for example, a one-
particle state (0, \I'gs)(xl), 0,0,0,.

), then ¢ (x)W(s) jg Just the zero-particle
state (lllgs)(x), 0,0,0,0,....) while ¥*(x)T1) becomes the fwo-particle state
(0,0,8(x = x3 )T (x5) + 6(x — x2) 09 (x,),0,0,...),

The smeared versions of Eqs. (34) are easily obtained,

['¢(f)‘1’(s)]N(X1,-~-XN) =

= (N+ 1)1/2 IRS \I’SLI (XI: -..,XN,X) f(x)dam1
WP (a1, xp) =

N

=N7V2S" ) ) (xs, Ry X)), (36)
Jj=1 .

again with [y*(f)w(9)],

= 0 as befits the interpretation of »v*(f)
creation field.

as a

mmutation relations are Tepre-

o = 0. Note that because of the Dirac 6- -

actual linear opera-
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i i i I i T W h
case tlcommutatlon [ ) e nave a [‘ep
1 Of the Ca-nonlcal an ations
In the !

resentation in #4(8) given by:

(a}
[(x) T @ (1, .. XN) (N + DYEURL, (X1, XN, XD,

0t (0T (1, xn) =

. N ) a .
( 1)N+1N—1/2 Z,(—l)j+1 6(3) (X”Xj)‘llgvz_l (xla"ﬂle"')xN); (37)
= j=1

i tion
[*( )\Il(a)]o — 0. and with of course a corresponding representatio
Wlth X - Vs
ared fields. B . ‘ N
of the smeber operator in these representations may I?e written o op =
o 3z. The eigenfunctions of Nop have as elgenvalue.s ep
Je i ’;h der in which 9* and ¢ are written is very important
i . The order 4 :
ticle nu(;ngre;tli\orn of Nopl But let us remark that be(.:ause P (;c)ﬁa{ltc.liof(f);i
e _valued distributions, there is no a prior: genera.l e 1m nor
he Oper'a:;orct at a point x. Indeed there are well-known difficulties .
. . -ti commuta-
T,hell I:et'mg pointwise products of field operators,.or e.qual m;[;ec vt
H.ltefp lations of currents constructed from such pointwise pr.ot- tl.le L
o r'e es such as taking “normal ordered” products, or split mgf e potnts
tedmlq: time, are needed in relativistic theories to make sense o t ;)tion
I , i lations in a represen .
te commutation re :
r to correctly calcula ' presentatior
l\17\C7t"‘:hgut such techniques, making only formal calp.ulatixons, ;;o;: i uall_)time
lt of field operators typically come out to be infinite, wtntorsqOf e
ot t commutators that cannot vanish (such as commu a“ > of fime
it 5 components of local, covariant currents) are neverthele o oun
! e_ ' 3 - l ray
WItllyl Sp::o The missing terms (which are restored with more carelul p
to be zero. (
cedures) are sometimes called .S'chwm'ger terms. s to b checked
The interpretation of the expression for Nop thus o b el
fully. Here, in the nonrelativistic context, it (turns %uN‘I’ e
ffculty ’ ' = (0,... Ny 0y )
1 ] 0,...,0,Tn,0,...) a0, .
fliculty. We have just Nop(0,..., . o
d\lf\r ey H#®) . Since each W™, N = 1,2,3,..., can be ldme ed
( hN tA',cular subspace of H{*):(® invariant under Nop, we W
with a parti \
= ke explicit
ShorOtf]Z;erse we have constructed the Fock space so as to ma aLtorsptha‘c
th rticle r;umber content: and we have written the field opethemte oot
it | annibil; ' heless, let us rei
ticles. Nevertheless, > ¢
icitly create and annihilate par e ot
E);?Illltmgfyview that the quantized fields are the more fundamsnotfathee e
l’_j[‘he particle number interpretation is viewed as a consequenc
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sentation of the fields, with the particles themselves occurring as the quanta
of the fields. '

Let us make a further philosophical comment about the quantum-field-
theoretic approach to physics. Many (though not all) physicists have held
the intuition that the fundamental physical entities — 1.e., those that “re-
ally exist” as distinct from those that are merely auxiliary constructs — are
local in space-time (with any apparent “action at a distance” being a conse-
quence of local interactioﬁs). In classical physics, one imagines these could
consist of finitely many quantities describing matter (such as the mass den-
sity, the charge density, and so on) and the dynamical state of the matter
(such as the momentum density, the electric current density, and so on).
As the description of electradynamics by means of field strengths proved
so powerful, we could imagine the fundamental local entities to consist of a
finite set of observable field strengths, depending only on space-time points.
Then quantities such as the mass density would be derivable (locally) from
the gravitational field strength, and the charge density and the electric cur-
rent density would be obtainable (locally) from the electric and magnetic
field strengths. The dynamical equations (i.e., the equations of motion)
would then form a system of coupled partial differential equations, first-
order in time, telling us the classical time-evolution of such a fundamental
set of local, physical fields — a “classical theory of everything”.

But we have learned that classical physics fails as subatomic phenomena
are taken into account. In the Schrédinger description of quantum physics,
the (complex-valued) wave function is an essentially nonlocal construct.
It is not a function on physical space-time; rather, it is a time-dependent
function defined on the configuration-space of a multiparticle system. Thus
& quantum state described by the wave function is nonlocal in the special
sense that it can encode information descriptive of quantum correlations
among spatially separated particles.

To recover a picture in which entities defined locally in space-time are
fundamental, the quantum field operator is introduced. The latter is in-
dexed again by the coordinates x and ¢. But as an operator-valued distri-
bution in an infinite-dimensional Hilbert space, the quantum field necessar-
ily encodes infinitely many degrees of freedom. From these field operators,
then, we hope to be able to construct algebras of local observables modeled
on localized regions of space-time.

We then expect the local causality property of the observables to ex-
press itself through the property of local commutativity. That is, when two
regions O, and O, of space-time are causally separated (e.g., because one
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‘ 1d need to travel faster than light to reach a point in O, from a point
wou

. O, and conversely), all the local observables associated with.measure—
o O, commute with those associated with measurement in Oy. In
T leitivistic case, we can anticipate fixed-time observables associated
th'e nonr'e s of hysicai space. Galilean local causality then takes the ﬁ?rm
wf1 - rjigr‘i?lrg; thalz when two spatial regions do not intersect, the equal-time
Zo;friutation relations between observables associated wiph measurement

in the respective regions are zero.

2.2. Local Cur'rent'Algebms

Neither the field operators ¥(f) and »*(f), ngr self—ba;djo(iir‘xt htr;eachoc;n;k::‘;
i t physical observables directly.
ations of them, actually represen . “
:;lhing we always have the possibility of replacing % and * by exl?(zﬁ)w
d ékp(—i@)w* respectively, where 8 is a fixed real parameter., without
a}?an ing the physics. This corresponds to a gauge transformation of the
]c‘i tiz’nd in quantum mechanics, so that the field operators are gauge de-
o tually observe
i 'tantly, we do not expect to ac
endent. Perhaps more impol ,  not . ‘ —
Ic)han es in the particle number in nonrelativistic physics, while tl.1e opera
tors 5}( #) and ¢*(f) implement annihilation and creation respectively.
r » .
These are initial motivations for the introduction by Dashen and .Sl?atr‘p
of local density and current operators as descriptive of local, nonrelativistic
antum observables.2? Another motivation refers back to the early successf
u ) . .
gf current algebra in describing features of the electro;:ezask Lnteract:;ns :s
i i ' cu
ivisti — ly interacting particles. et us dis
relativistic hadrons strongly iscus
this relativistic background first, and then elaborate on the nonrelativistic

current algebra.

Relativistic local current algebra

The famous “eightfold way” associated vari'ous 'familie.s cl>f ha(.:ltr;)rns r(:;:
cluding octets of both baryons and mesons) \fVlth 1rreduc1.b e tum mi'netry
resentations of ‘SU(3), is the Lie group which is an approxml\a te silna ey
of the strong interactions.?® Various parts of the wealﬁ and elec treot" ng e
currents can be combined into an eight—corgplor;er;t isvaecic;rrsnctz ndex [as
’ o) (a ='1,2,...,8), where p = 0,1,2, ' meex |
;ztfl,%e( u)se( here t},1e 4-vector notation z = (aio,x)., w1fth x = (:r“a,xai:ai ai/ e)g-
The axial vector parts of the weak currents hkev%'lse orm an Jaxia vee
tor octet” F5%(z). Gell-Mann hypothesized th time co.rnpon:)ammutoation
F$ of the vector and axial vector octet to satisfy equal-time c
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relations,?” using the structure constants of f*¢ of the Lie algebra su(3)

of SU(3). More specifically,
[F3 (2%, %), F3(y°,¥) Jeo=yo = i6®) (x — y) f 24 F(a, %),

[F;'(.’Eo,x), FUSb(y01Y)]$°=y° = 16(3)(3( - Y) fabdFOSd(zolx)1

[Fga(mo’x)’ Fl)sb(yoy}')]z":yo = i6(3)(x - Y) fabd Fg(xo’x)' (38)

When the F§ are integrated with test functions f(x) on B® (for fixed
%), and the F§® with test functions g®(x), Eqs. (38) represent an infinite-
dimensional Lie algebra of the type map(R?,G); where the mappings are
given by x = T, [f%(x) Q® + ¢g%(x) Q52]; here Q° and Q°°® are charges
that belong to the finite-dimensional Lie algebra G. Integrating out the

spatial variables entirely thus leads to the equal-time algebra G of charges .

Q at z°, used (for example) in obtaining the Adler~Weisberger relation.?

It is natural, then, to try to extend the idea from Egs. (38) to a Lie
algebra that would also include the spatial components F¢ of local currents
at equal times. Further, since Eqs. (38) are not explicitly dependent on how
the currents might be constructed from underlying canonical fields, one can
imagine the possibility of expressing the Hamiltonian operator directly in
terms of such local currents, bypassing the field operators entirely.

In 141 dimensions, we have available the Kac—-Moody and Virasoro alge-

bras, where the (finite) central extension plays the role of a Schwinger term. .

But difficulties occur with this idea in relativistic models in Minkowskian
space-times of dimension higher than 1 + 1. Here the Schwinger terms for
local currents that are defined from canonical fields are typically infinite,
suggesting that equal-time current algebras — if they can be used at all —
need to be written down independently of any underlying fields.

In d+ 1 dimensions, d > 1, relativistic models with finite central or non-
central Schwinger terms were proposed by Sugawara and by others,28:3%:31,32
The Sugawara model, which turned out to be perhaps the most influential
of those proposed in the late 1960s and early 1970s, is based on the following
infinite-dimensional Lie algebra: at the fixed time z° = yO;

[J5(x), Jo(y) = 169 (x —y) f¢ Jd(x),
(T30, J] = 89 c ) £25¢ Jg(o) + iesmt D g®x—y),

[JE(x), Ji(y) = 0, (39)
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where J2 = (J§, J2), k = 1,2,3 is again a 4-vector, the f“'bd are the struc-
ture constants of the Lie algebra for an arbitrary compact internal symme-

- try group G, and c is a constant. The Sugawara Hamiltonian is given in
" terms of the local currents by the formal expression,

i 3
= /Rs 2lc ;[Jg(x)z + g JE(0)? dix. (40)

Aﬁ excellent discussion of Kac-Moody and Virasoro algebras, as well as the
Sugawara model, is provided by Goddard and Olive.3?

Nonrelativistic local current algebra

The problem of Schwinger terms does not arise for the nonrelativistic
current algebra defined in terms of the canonical fields satisfying Eqs. (29).
Let us define the mass density operator p(x) and the momentum density
operator J(x) at fixed time ¢ by

p(x) = my™ (x)h(x),

160 = T { (V) - (99 ) ()

where it is understood that the products of field operators at a point must
be interpreted within a specific representation of the canonical fields. But
in the Fock representations, these products do have unambiguous and satis-
factory meanings when the fields act in H(®) or #(®) according to Egs. (34)
or (37). We observe immediately that here, fpsp(x)d>z = m Nop, which
is consistent with the interpretation of p(x) as the total mass density.

Note that before the second quantization, the above formula for p(x)
would just be the mass m times the usual expression for the 1-particle
probability density in positional space, while the formula for J (x) would
just be the mass times the probability flux density.

Using Eqs. (29) formally, we can calculate the (singular) fixed-time com-
mutation relations for the current algebra from the commutator or anti-
commutator algebra of fields. The result for p together with the spatial
components Ji of J is,

1), p(3)] = 0, o), Je(3)] = =ifi 5z [690x = y) o], (42)

(e (), Je(y)]

in {1096~ ) )] = 0 (500 =) TG
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where in the nonrelativistic theory we have no Schwinger terms. Further-
more the result is the same whether the canonical commutation or anti-
commutation relations for ¢ and 1)* are taken. This is a very important

fact. It means that whereas the information as to particle statistics (Bose

or Fermi) is encoded in the algebra of fields, it is not encoded in the Lie
algebra of local currents. Rather the choice of particle statistics is, in gen-
eral, encoded in the choice of representation of the algebra, (up to unitary
equivalence), as we shall see. .

To obtain a bona fide Lie algebra from Eqs. (42), the final step is to
integrate p and J with test functions. Define p(f) = [pap(x)f(x)d3z and
J(8) = [ps MUNM_ Jr(x)gF(x)d3z, where f and the components g* of the
vector fleld g belong to D(R®). Then

(o(f1), p(f2)] =0, FS_ J(g)] = ikolg - V),

(J(g1), J(g2)] = —ihJ([gy, g2)). (43)

Notice that what we now have is a representation by self-adjoint operators
of the semidirect sum of the Abelian Lie algebra of compactly-supported
C scalar functions on R?, with the compactly-supported C™ vector fields
— precisely the Lie algebra that is associated with Eq. (23) above.

This is perhaps a good place to observe that the current algebra of
Egs. (43) respects nonrelativistic local causality — if the supports of f and
g in R? are disjoint, then the equal-time commutator of p(f) with J(g)
Is zero; and if the supports of g1 and gy are disjoint, then the equal-time
commutator of J(g;) with J(gs) is zero.

2.3. N-Particle Representations of the Nonrelativistic
Current Algebra

Let us refer back now to the canonical fields in the Fock representation,
given by Egs. (34) or alternatively Egs. (37). We may use these expressions
to obtain — for each WV, and for each choice of exchange statistics (s) or

a) when N > 2 — a self-adjoint representation of the local current algebra
satisfying the commutation relations of Eqs. (43). These representations,

which we shall be discussing from several different points of view, are given .

by the pair of equations,

N
(PR EF P00, ) = m Y STy, xw), (44)

j=1
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Mk\@&.?vﬁmv Gmimv J(x1, .y XN) =

g N . .
=iy wﬁm?_v.ﬁ O 0y, ) + V5 (8000 e xen) T

= (45)

Note that the N-particle subspaces Hy remain invariant under the actions

of py and Jy in Eqs. (44)-(45). These operators are also symmetric in the

‘N variables X1, ..., XN, and thus manifestly respect the permutation sym-
.H,Eﬂw, of emv or ewv. It turns out that the representations of Egs. (44)-(45)
‘for different N and fixed exchange symmetry are irreducible and unitarily
H,nmn_:?&m:ﬁ to each other, which is not surprising. It also turns out that

for d > 1 and N > 1, the representations with the same N and different

exchange symmetry are unitarily inequivalent.!® We shall see shortly why

- this is s0, and why the case d = 1 is special. .
A% Let us ask how distinguishable particles should be described, which we

no longer expect to be quanta of a single field operator. In terms of mass
.and momentum densities, the most straightforward way to tell the particles
apart is by assigning to them distinct masses m;. We then remove the
uperscripts (s) or (a), and work in the Hilbert space # = D Hn .
'The action of Jn(g) remains formally the same as in Eq. (45), so that the

. mxma-m.‘\EEmoQ subspaces remain invariant subspaces for all the momentum
FEAT

density operators in these representations. However, the operator-valued
distribution p becomes

. N

LR ) By Y, k) = > my )TN (X1, XN, (46)
‘E.mmxm:m the permutation symmetry.

. Looking at Eqgs. (44)-(45) [or Eq. (46)], we can see how our interpre-
tations of p as the mass density operator and J as the momentum density

. [Operator make sense for ordinary N-particle nonrelativistic quantuin me-

chanics. As usual it is important to distinguish clearly between the space of
ordered N-particle configurations (x;,... ,xy) that are the arguments of
the wave functions, and the physical space of points x (written here without
a subscript), over which p and J are operator-valued distributions.

- " Consider first the representation where N = 1. Let the particle
mass be m. Then the expectation value (¥1,pv=1(f)T,) is given by
™ fos D)) (x1)[2 d%2y, which is consistent with the usual probability
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amplitude interpretation for ¥;(x,). If f(x) approximates an indicator
function xp(x) for a Borel set B C R®, then [pn=1(f)¥1](x1) approx-
imates m xp(x1)¥1(x;1), which is the mass times the usual localization
operator projecting ¥; to the subspace of wave functions vanishing out-
side B. And if f(x) is {(approximately) §{(x ~ xo) for a fixed point x¢ in
physical space, we obtain the mass times the probability density |¥;(xp)|?
for the expectation value of pn=1(f). When g tends toward a constant
vector field in some spatial direction (let us say, in the z!-direction), then
[Jn=1(g)¥1](x1) tends toward —ik&Ty(x;)/Bz, which is just the appli-
cation to ¥, of the usual operator for the (total) 1-particle momentum in
the z'-direction.

When N = 2 or more, the expectation values are sums. For example,
let B be again a Borel set in R® and consider f & x g, which gives us

(Tn,pn(f)TN) =

miwf

N
/ ON Gy xn)P [ dP2n. (47)
j=1 x;€B Jx, € R3 (k#7)

k=1

Here the j th term in the sum is the j th particle mass times the (marginal)
probability that an idealized measurement detects particle j in region B.
In Eq. (47) we have integrated over all possible values of the positional
coordinates of all the other particles. The expectation value of py(f) as
f(x) tends toward d(x — x¢) becomes a sum over j of the expected mass
density for particle j at the point xp, similarly calculated.

Of course (as is indicated by our earlier discussion of the need in quan-
tum mechanics for infinitely many local degrees of freedom), not all the
physical information about ¥y when N > 1 can be contained in its expec-
tation values with respect to py(x) and Jn(x). One must also consider the
correlation functionals among multiple points in physical space. We need,
for instance, the 2-point functionals defined by (¥n,pn(X)pn(¥)¥nN),
(TN, pn(X)IN ()T N), and (Tn, IN(X)JIn(¥)TN), for x,y € R®; and like-
wise the higher correlations. ' '

The N-particle representations are then characterized by systems of
identities among the N-point functionals of p. For example, in a smgle-
partlcle representation, p; satisfies the 1-particle identity,

p1(x)p1(y) = md(x —y)p(y)- (48)
Some time ago Grodnik and Sharp, who considered such identities, also
introduced the discretized local current algebra in momentum space, with
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sspect to which the N-particle identities characterizing Eqs. (44)—(45) take
a nice form.3¢ Let n = (n;,nz,n3) be a triple of integers, and write the
tiial operator Fourier coefficients

P(m) = /exp(—in-X)p(X)dsw,

Je(my = /exp(—in-x) Je(x)d*s (k=1,2,3), (49)

re we consider the integrals to be over a 3-torus of linear dimension
(that is, a “box” with periodic boundary conditions). Taking p(x) and
Ji(x) to obey Eq. (42), we have a Lie algebra modeled on an integer lattice
in nomentum spéce:

[Py p(y] = 0,
(o> Je 0y ] = Mk P(ntnr) »

[k(nys Jemy] = neJk(min) = Mk Je(nn) - (50)

;Ijr'l‘one dimension, this algebra is just the Virasoro algebra with central
éh_arge zero, and is sometimes called the “Witt algebra”.
" A formal representation of Eqs. (50) may be written

Pm) = MZ(n),

5]
Jem) = Z Tk Z(n-l—n’)_—az(n’) , (51)

where the operators act on a space of functions of infinitely many complex

. variables z(,). The expressions here can all be given rigorous meaning for

quite general representations of the local current algebra, including the
N-particle (s) and (a) representations discussed above. 18

In terms of the operators p(,), the 1-particle identity given by Eq. (48)
becomes

P(n)P(x') = MP(ntw’) (52)

while the 2-particle identity for identical particles is

P(n)P(n')P(nrr) = M[Pm)P(nr4nr) + P(n’)P(ntnr) + P(nr)Pntn') ]

- 2m2p(n+n’+n”) . (53)
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When the N-particle identity is satisfied, all of the N'-particle identities
for N' > N are necessarily also satisfied; but not conversely.

We have obtained the above “N-particle representations” as descriptive
of the kinematics of nonrelativistic quantum systems. But it is worth noting
that creation and annihilation fleld operators obeying equal-time canonical
commutation relations, together with a corresponding Lie algebra of cur-
rents, exist within relativistic quantum fleld theories too. Let us take a
moment to see how this occurs. '

To write the relativistic Fock space representation of a neutral scalar
field obeying Eqgs. (10) at a fixed time ¢ we proceed in the following standard
manner.?® As usual, we write 4-vectors = = (z°,x) and k = (ko, k), with
ko = wy = [k2+7112]1/2 >0; and kz = k,z* = koz® — k- x.

Let ax and aj, be annihilation and creation operators for states of 4-
momentum (wy, k), satisfying the relativistic commutation relations

[akﬂakz] = [a):waltz] =0,

[ax,, af, ] = wi 6@ (I ~ ky). (54)

" The Fock space carrying a representation of Eqs: (54) can again be writ-
ten as the direct sum of N-particle spaces: formally, |ki,ks,..., ky) =

(N!)_I/Qa;‘(la;‘(2 -«-ay |0), where |0) is the vacuum state. The normaliza-
tion is established so that (00) = 1, while

<kll,k2’,...,kilwlkl,k2,...,kN> =

= (Oun/NY D7 w8 (a = k) - win 6@ (kv = k). (55)
g€SyN

Next write the so-called positive and negative frequency parts of the field
operator:

oM (z) = [2(2m)3]71/2 / % exp(—~ikz) ay (56)

and ¢(7)(2) = ¢(H)(z)*. Then with ¢(z) = () (z) + ¢(~)(z), we have

[¢(2), ¢(v)] = iA(z —y), (87) .

where A(z) is the famous invariant distributional solution of the Klein—
Gordon equation with initial conditions A(0, x) = 0, BA/Bx Meozg =
~ 66 (x). Defining the operator-valued distribution 7(z) = 8¢(z)/0z°, we
obtain Eqgs. (10) from Eq. (57) at equal times z° = y°.
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i If we now introduce the positional annihilation operator
d3k )
hn(a) = (2m)7 [ R explikm) 8
k

gﬁd its adjoint, we have that ¢1 and ¢} satisfy the equal-time canonical
commutation relations in Egs. (29) — the same as we wrote for nonrelativis-
tic second-quantized fields. Then ¢ (t,x)¢1(¢,x) has the interpretation of a
partlcle number density in position-space at time ¢, and me7 (¢, x)¢1 (¢, %) is
the mass density. However, compare the form of Eq. (58) to that of Eq. (56)
and note the extra factor of wk/ (so that we are no longer respecting the
'Lorentz covariance).

Likewise we can define a 3-momentum density operator in terms of ¢,
gnd #% at a fixed time. Thus we have obtained from these operators a rep-
resentation in the relativistic Fock space of the same local current algebra in
Eq. (43), which decomposes as before into N-particle Bose representations.
However in Minkowskian space-time the resulting operators are nonlocal
and noncovariant. The current algebra extended to commutation relations
at unequal times leads to operators that do not commute at spacelike sep-
arat1ons nor are p'and J the components of a 4-vector — that is, {p, J) do
not transform covariantly under the Lorentz group.

Nevertheless the occurrence of a representation of the equal-time Lie
algebra of currents modeled on vector fields in relativistic quantum field
theory is significant. Although the physical world is relativistic, we know
that nonrelativistic quémtum mechanics provides good approximations to
observations at low velocities. While local, relativistic algebras of observ-

~ables necessarily connect subspaces in the Hilbert space corresponding to
"different numbers of particles, if the local particle number makes sense there

should exist mathematically (in a given reference frame) a system of op-
erators for measuring the spatial locations of the particles and the flux of
the particles. Here we see this is indeed the case — the “nomrelativistic”
local current algebra can exist at a fixed time even in relativistic models,
and generally does. At low energies in particle theories, it is this current
algebra that (approximately) describes the kinematics.

We have shown, then, that a family of self-adjoint representations
{p{® L@ N =0,1,2,...} of the local current algebra can describe
the k1nemat1cs of distinct systems of quantumn particles.

But we can go somewhat further — we can also express a nonrela-
tivistic Hamiltonian operator H = Hy + V, with kinetic energy Hy and

- potential energy V derived from a 2-body potential, in terms of the lo-
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cal currents.® To do this, we begin with the. kinetic energy expression
Ho = (r2/2m) Jrs V¥* (x) - Vip(x)d®z. Then, using Eqs. (41), we can
rewrite Ho formally:

/R[—Vp —23(x)] - [%Vp(x)-%—ZiJ(x)]daz, (59)

s m p(x)
while
1 v(x —~ Y) ‘ 3 43
V == —_ d°zd”y. 60
5 /}R . p(x) =—==p(y) d’zd’y (60)

The mathematical interpretation of Eq. (59) requires treating not merely
the product of operator-valued distributions at a point, as in the Sugawara
model, but the reciprocal of an operator-valued distribution. Despite its sin-
gular appearance, it is nevertheless possible to make sense of this expression
as a bilinear form on an appropriate domain of vector-valued distributions
in the N-particle Hilbert space.

Having reached this point, we shall want to reformulate the theory so
as to think of the self-adjoint representations of the Lie algebra of local
currents as the fundamental entities, and the field operators as a kind of
auxiliary construct derived from and relating these representations. We
do this in Sec. 4, after developing more about unitary representations of
diffeomorphism groups.

2.4. N-Particle Representations of Diffeomorphism
Groups

Now the algebra of scalar functions and vector fields entering Eqs. (43)
exponentiates to the semidirect product group D(R®)x Diff¢ (R®) or
S((R?) x K(R?), according to the choice of limiting condition as |x| — occ.
So it is natural to write the unitary group representations of Eq. (23) that
correspond to Eqs. (44)~(45). In general we shall write such unitary rep-
resentations in the form (f,¢) — U(f)V(¢), so that U(f) represents the
subgroup (f, e) where e(x) = x is the identity diffeomorphism, and V{¢)
represents the subgroup (0, ¢).
The group laws become

UAU(f) = U+ f2),  V(e)V(és) = V{d160),
VU = U ooV (@), (61)

or equivalently

UMV(@)U (f2)V(d2) = U(fi + b1 £2)V(d1¢2), (62)

4

"recalling our conventions ¢1f2 = fa © ¢1 and ¢1¢2 = ¢ 0 ¢1.

The corresponding N-particle unitary representations that satisfy

-:Eq (62) in HN) or H(a) can be derived from Eqs. (44)—(45) as follows.
“For a,b € R, let us define continuous one-paramete)r( unitary groups by
exponentiating the self—ad]omt density operators ps\, ( f) and currents

;7(8),(2) (g) respectively; thus:
U}\f)'(a)(af) = exp [ (ia/m) pN (). (a)(f)]

VAN (55) = exp [(ib/R) T ()] (63)

Then we obtain

' N
(U O (1)@, xw) = | ] & [1/6e)] | €00, x),

xpy) = U@ (g(x)),... $p(xn)) \J?I To(x;) 5
| (64)

PO,

where Js(x) is the Jacobian of ¢ at x. Notice how the square root of this
‘Jacobian is just what is needed for Eq (64) to give us a unitary representa-
tion of Viy — the change of variable x' = ¢(x) transforms the inner product
(®n, %), expressed as an integral, to the inner product (VN ¥n, VN ¥n).
~ Our perspective now is the following. Suppose we are given a con-
tinuous unitary representation (CUR? U(f)V(¢) of Eq. (23); for exam-
‘ple, one of representations U,(V) (e VN (=) , or some other CUR. We then
have immediately the continuous 1- parameter unitary groups U(af) and
V(¢E), a,b € R. Continuity of these unitary subgroups is a consequencSe of
‘'the continuity of the representation with respect to the topology of D(R®)x
Diffe (R®) or S((R®) x K(IR?). The operators p(f) and J(g) can then be
recovered in the representation as the self-adjoint generators of these 1-
parameter unitary groups, using Eq. (7); i.e.,

o(N¥ = m lim = [U(af)¥ - ],

J(g)¥ = A lim = [V(2F)¥ - T]. (65)

The meaning of p(f) as the spat1a11y—averaged mass density observable, and
J(g) as the spatially-averaged momentum density observable, allows each
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such representation of the group to be interpreted physically. In particular,
Eqs. (44) and (45) follow from Eqs. (64) using Egs. (65).

Should the spectrum of p(f), for f(x) > 0, fail to be positive definite in
the representation, we need not immediately discard the representation as
unphysical. We reserve the possibility of modifying Eqgs. {65), and changing
our interpretation of the operators. For example, we can multiply the
right-hand expressions by g/m, where ¢ is the unit charge, and interpret
the resulting operators p(f), J(g) as the spatially averaged charge density
and the spatially averaged electric current density respectively. A situation
where doing this is natural occurs in Sec. 3.3 below.

2.5. Diffeomorphism Group Representations and Local
Symmetry in Quantum Mechanics

We have seen that the unitary representations of the diffeomorphism group
are not unique, and that inequivalent representations can describe the kine-
matics of quantum systems that are physically distinct. Although the dif-
feomorphism group is infinite-dimensional, representations exist describing
Systems whose configuration-spaces are finite-dimensional. Later we shall
obtain still other representations, with infinite-dimensional configuration
spaces. Let us first digress briefly to discuss why the diffeomorphisms of
R4, or those of a more general manifold M, should be fundamental for
quantum mechanics. »
From the point of view of symmetry, think first of a diffeomorphism ¢ of

M as acting actively, taking whatever might be located in a neighborhood
O of a point xq, and moving it (while smoothly turning and distorting
it) to a new neighborhood #(O) containing $(xq). Just as we identify

the self-adjoint momentum operator P1 in quantum mechanics with the

infinitesimal generator of the group of translations in the z-direction, or the
self-adjoint angular momentum operator L with the infinitesimal generator
of the group of rotations about the z-axis, we have interpreted the self-
adjoint operator J(g) as the infinitesimal generator of the flow generated
by the vector field g — a “local symmetry” of physical space.

This identification is also kinematical. Just as the self-adjoint operators
generating translations or rotations (as group actions on the spatial mani-.
fold) describe linear or angular momentum respectively, and do not depend
on the Hamiltonian operator H being translation- or rotation-invariant, so
do the self-adjoint generators of the flows describe local currents for N par-
ticles, independent of the particular dynamics. The description depends
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only on the fact that the diffeomorphisms ac't smoothly as afgtr}(:ugéoc;riiflllxﬁ
physical space (along with appropriate technical properties of the

u i ntation).

Ouézlrilzletrag:tigvre(;spv:: pcraerfet}?ink 03 a diffeomorphism ¢ as acting passively,
'.dgéning a general coordinate transforszation thaft prqvides a srrtlo;)tha:t/i)i
to modify our description of the locations of objects in spage g hrﬁ;zl i
:,uiar time. The time-evolution operator (and consequent?y t (}33 ;:the rgb-
tequation) will not be invariant ugder such a transformatlclm. ; 1t1 u piven
ability amplitude for a system i? \Ilsta‘tlje )\Ill' to bz o::sgéec; SH; Ziigede; ,nid "

: e inner product (¥4, ¥,), is under :

Z.S.ﬁlicitzialtilr)r}:e;thand the E?colla'pse of the wav.e packet” is not 11;s_elf1 a d};]l;a;m;:
‘igal précess. Then (¥, ¥,) should remain unchanged by such a chang

" of description — i.e., we expect the modification of coordinates to be ir;l—
'plémented in H by a unitary operator V(¢$). And we plausibly expect the

correspondence ¢ = V(¢) to be smooth and“to respect the c.(n:pt%sg;))n
of diffeomorphisms, providing a continuous L}mtar;; re.apresentatw anno';
or at least a projective representation, of Dzﬂ‘(l'{ ) 1T1 H. B;lt. we ch et
expect the expression for the Hamiltonian to belmvanant under iut(;l e Ogries
't;,ral' coordinate transformations — at least, outside th(.a conte'xt of | o
(such as some possible descriptions of quantum gravity) that are wholly
i f a background metric.
1{“ -de\ifznszrglitnoto see t}%e generality of the diffeomorp}xis_m g.roué) :iprzizlg
to quantum theory. Still another aspect of this des'cnpthn is 3t a the;cs >
we have a local symmetry group, we are not restricted to R° as ;t)ed
tial manifold. We can easily consider the group of com;')actly—supi)otrion_
diffeomorphisms of a manifold that lacks global translation- or ro atake
invariance, one that is not simply-connected, and so on. Suppo?s? weX ”
physical space X to be a manifold A/ with bf)unda'ry aM; ta <1nrg a o
be compact, the natural group consists of C™ invertible homeomo p e
whose inverse is C°°; and these preserve M (as a set). 'Thlfs, even w t
total momentum or angular momentum operators‘ do not ij1st or are no
uniquely specified, we have a natural way to descrlbe. the kmematlcs._time
Consider next the general coordinate transformations of tt}e spafc«:i o
manifold R4+, rather than just of R?. A natural group conms?s of di :01-1 ‘
‘morphisms ¢ : R4+ — RY+! that respect the causal structure; let us ca
tions causal diffeomorphisms. X v
Suc?ntgl:lﬁz;?:pace—time, this means that the point ¢ (t'l ,%1) prece('les }tﬁz
point ¢ (t2,x2) if and only if (t1,%1) prec‘ede's (tz,x'z)' (i.e, t1 < t;)(,th )
q;(h,xl) and ¢(t,x2) are simultaneous if and only if (t1,%1) and (f2,%2
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are simultaneous as well (i.e., ) = t;). The identity map is causal, and a
diffeomorphism ¢ is causal if and only if ¢~! is causal; so we again have a
group. A general Galilean causal diffeomorphism may be written,

(t',x") = ¢(t,%) = (r(t), ¢+ (x)), (66)

where 7 : R = R is a diffeomorphism of the time axis only, and ¢,(x) is
a parameterized family of diffeomorphisms of R* depending smoothly on
t (not necessarily a flow, however). In effect, we consider R*! as a bun-
dle over R (the time axis), and take the group of bundle diffeomorphisms.
Evidently the Galilean boosts (¢’ = ¢, x’ = x — vt) belong to this group,
as well as the time translations. There is also the natural embedding of
Diff¢(R%) in the larger group of causal diffeomorphisms of R¢+? given by
t' =t, x' = ¢(x). Representation of this group of bundle diffeomorphisms
may be interesting for the description of quantum mechanics in nonuni-
formly moving or accelerating reference frames.3®
In Minkowskian space-time, there are four possible causal relations be-
tween two points ¢ and y: (1) space-like [i.e., (z — y)u(z —y)* < 0],
(2) light-like [i.e., (z — y)u(z — y)* = 0], (3) time-like with = preceding
y lie, (z-yulz —y)* > 0and 2° < 4°], or (4) time-like with = fol-
lowing y [i.e., time-like with 3° > y°]. Causal diffeomorphisms must be
such that the relation of ¢ (ct;,x;) to é (cta, xz) is the same as that of
(ct1,%1) to (cta,x2). In (1 + 1)-dimensional space-time, a diffeomorphism
¢ of the Minkowskian plane with this property acts independently on light
cone coordinates. This means that if we write a point (ct,z) in the form
(X1, —=x1) + (x2,X2), where x; = (ct —2)/2 and x2 = (ct + z)/2, there
exists a pair of diffeomorphisms ¢; and ¢, of two different real lines (the.
left and the right light cone through the origin) such that with x1 =&1(x1)
and X3 = ¢a(x2), ¢ (ct,2) = (x{, —x!)+ (x4, X4). We thus realize a certain
group of causal diffeomorphisms of the Minkowskian plane as the direct
product group Diff °(R) x Diff °(R). Note, however, that even when ¢; and
¢2 are compactly supported on [ qS is not compactly supported on R?,
The appropriate local currents here are light cone currents, not fixed-

time currents. The appropriate representations are projective representa-

tions of the Lie algebra, accommodating Schwinger terms — so that we have

not just two copies of the algebra of vector fields on R, but two copies of the

Virasoro algebra, leading into conformal field theory in 1+ 1 dimensions. It
is then possible (but nontrivial) to take a nonrelativistic limit, recovering
the nonrelativistic local current algebra of Egs. (43) in 1-dimensional space,
and the corresponding group. )
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In Minkowskian space-time of greater than 1+ 1 dimensions, the group
of causal diffeomorphisms is finite-dimensional (as is the c'()nf0.1rmal group).
We have Poincaré transformations that respect the time~d1rectlon,_togeth'er
with dilatations; but we can no longer deform the space-time locally. Sp?‘mal
relativity in three or more space-time dimensions has a causal structure' lt(zo
rigid” for the diffeomorphism group. But when we move'z from specia. 'o
general relativity, the group of diffeomorphisms of a spacehke? surface e.:nte11s
explicitly again. Here it plays the role of a gauge group, for instance iu the
superspace formulation of quantum gravity.*7:38

3. Representation Theory for Diffepmorphism Groups

There are several approaches to studying unitary repl‘esent?,tions (?f diﬁ('eo-
morphism groups. In Sec. 3.1 we describe a very gener-al picture, iu wl'uch
the group is represented in the Hilbert space of square-x{ltegrablfe functlon‘s
on some configuration space. Then in Sec. 3.2 we consider VaI‘lOl%‘S candi-
dates for such spaces of configurations. In Sec. 3.3 we -develop the met.hod
of semidirect products,” and realize the /N-particle group repres?ntatlons
that were described in Sec. 2.4 on particular orbits in a conﬁgurat.lon space
of distributions. We also introduce some additional represen'tatlons that
are associated with other orbits in the same space of distributions.

3.1. Configuration Spaces, Measures, and Cocycles

We shall see that the following picture provides a quite general frame-
work. First consider a continuous unitary representation (CUR) V(¢)
of Diff¢(M). Typically M = R?, but more generally we can t‘ake M to
be a C, oriented Riemannian manifold that has all the deslred topo-
logical properties — for example it is connected and loS:al'ly simply con-
nected (though it is not necessarily simply~co‘nnected); it is Iocally com-
pact, o-compact, second-countable, and memzable‘ (and ther'efore I.-Iaus;
" dorff). Often one can then realize the representat.lon V(¢) in a Hilber
space H = Lﬁﬂ(A,W) , which is the space of functions ¥(v) on a conﬁg{:lt~
ration space A taking values in an inner product space w, square.-mtegra e
with respect to a measure p on A, We write the inner product in H as

(8,0) = /A (o), B (), (67)

where (, )y denotes the inner product in W. When W = C, Eq. (67)
becomes (8, 0) = [, &(v)¥(y) dp(v)-
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For the inner product Eq. (67) to make sense, we require that A be
a measurable space. That is, there must exist-a o-algebra Ba of subsets
of A (the “measurable” sets), closed under countable unions and intersec-
tions and under complements, that includes A itself. The measure 0 is
then a positive real-valued function on Ba obeying the usual assumptions,
including countable additivity.

We shall shortly see how to obtain some examples of the configuration

space A. For any such example, there must be a natural group action by

Diff¢(M) on A; i.e., a (continuous) map Diff (M) x A — A respecting

the composition of diffeomorphisms. We shall also write ¢: A A, or

Y = ¢, for v € A and ¢ € Diff¢(M). We further require B, to be

invariant under the action of Diff (M), so that if B € Ba., then ¢ B € Ba.
Then V(¢) is given by the important formula,

VU0 = xeEomn| TL0) (o), (68)
whose meaning we shall now discuss.

First we remark that since we are working in an L2-space over A with
respect to the measure p, functions on A are defined up to equivalence: two
H-square-integrable functions are “the same” if they differ only on a set of
#-measure zero. The abbreviation “a.e.(u)” in Eq. (68) stands for “almost
everywhere with respect to 4,” and means that the equation may fail on
some p-measure zero set in A. Note that the failure set for Eq. (68) may
depend on ¢; it may even do so in such a way that there are no elements
7 € A where the equation holds for all d.

Next observe that in order for the group ‘representation property
V($1)V(a) = V(gi¢y), as in Eq. (61), to be consistent with the factor

¥(4vy) in Eq. (68), the action of Diff¢(M) on A should be defined as a
right action; 7.e.,

[froh]y = d2(177) (V.o € Diff {(M),~ € A). (69)

Now the transformed measure He occurring in Eq. (68) is defined by
te(B) = pu(@B) for all B € By. It is required that p have the important
property of guasiinvarionce under the action of Diff¢(M). This means that
for all ¢ €Diff (M) and for all B € Ba, u(B) = 0 if and only if u(¢B) = 0.
Equivalently, B has positive measure if and only if ¢B has positive measure.
This condition is necessary and sufficient for the existence for all ¢ of the
Radon-Nikodym derivative in Eq. (68) — dpg/duy is a positive measurable
function ay(v) defined for almost all -y € A, with dpg(y) = ag(y)du(y)
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Note that thé Radon-Nikodym derivative in Eq. (68) satisfies the “chain
rule for derivatives”_

04,62 (1) = g, (d17) 2 (7) (70)

almost everywhere in A. Eq. (70) is likewise satisfied b?r a¢(7)]i, making
Eq. (68) consistent with the group law. Equation (70) is called a cocycle
equation, and we say that ay(y) thus defines a real 1-cocycle. .

In Eq. (68), we have ¥(y) € W. Then x4(y) : W — W is a system

of unitary operators acting on W for v € A, defined a.e. (). Unlike the
‘real-valued cocycle a4(7), the operators x4(y) do not in general commute

with each other; so it is important to write the order of operators carefully
in the cocycle equatioh they satisfy. In order that V(¢1)V{(¢2) = V'(¢1¢2)
we need [V (60)[V($:)®])(7) = [V(#142)®)(7); then Eq. (68) implies the
cocycle equation for x4{(7),

Xo192 (V) = Xo () x42($17) B0 (1) (71)

Equation (71) is permitted to fail on a set of g-measure zero that can
depend on ¢, and ¢;; again, there may even be no elements of A where
the equation holds for all diffeomorphisms. e

Given the quasiinvariant measure ;2 on A, we can always choose W =

and x4(7) = 1, so that Eq. (68) already defines at least one unitary group

representation. When W = C we have complex-valued wave functions, and
in that case y is a l-cocycle of complex numbers of modulus f)ne. We.can
in fact obtain additional, nontrivial complex cocycles by setting x¢(7) =
ag(7)* = exp [iAInag(7)], for arbitrary A € R.. Note that because .of thtlec
square root of the Radon-Nikodym derivative in Eq. (68)., evaluation o

the inner product (V(¢)®,V (¢)¥) using Eq. (67) gives precisely (&, ), by
making the change of variable v/ = ¢ in A. o .

Thus we picture CURSs of Diff (M) as described by quasiinvariant mea-
sures on configuration spaces, together with unitary l-cocycle.s. 'To have
an irreducible representation, it is necessary that u be ergodic in a cer-
tain sense for the action of Diff ¢(M) on A: namely, given any measurable
set B € Ba that is invariant under all diffeomorphisms, either w(B) = 0
or u(A — B) = 0. Indeed, if there exists an invariant 'set B € -BA' with
p(B) > 0 and u(A — B) > 0, then the set of functions in H va%mshmg on
B is a nontrivial invariant subspace for the representation. But in Sgc. 3.2,
we demonstrate a more precise result. _

Imagine now that A is a subset of a larger measurable space, so.me
“universal” space II of all possible configurations in a class of theories,
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equipped with the o-algebra Bn. It can be useful to have a topology on II
for which By is generated by the open and closed sets (i.e., for which B
is the Borel g-algebra). The diffeomorphisms of A must act on I with a
right action in a natural way, so as to leave the g-algebra B invariant.

Taking this point of view, it is actually the quasiinvariant measure z on
H that, in effect, singles out some class of configurations associated with the
particular representation in Eq. (68). The configuration space A C II is a
set that carries the measure — it is invariant under the action of Diff<(M),
and it is of full measure with respect to y in the sense that the measure of
its complement is zero. ‘

We then distinguish two ways in which 1 may be ergodic in the above
sense for the action of Diff (M) — either (1) A may be chosen so that
the group acts transitively on it (so that A is a single orbit of Diffe(M)
in II), or else (2) A is an uncountable union of orbits, the measure of each
of which is zero (in which case y is called strictly ergodic). Both cases
are important to physics. The single-orbit case is typically associated with
finite-dimensional configuration spaces, and the strictly ergodic case with
infinite-dimensional spaces.

Having chosen a quasiinvariant measure thus concentrated on a config-
uration space A C II, it turns out that the inequivalent choices of X¢ for
Eq. (68) — i.e., the noncohomologous cocycles — are at least in some cases
associated with nontrivial topological phase effects in quantum mechanics,
and the quantum statistics of particles. Then the classification of the CURs
of Diff (M) by configuration space, quasiinvariant measure, and cocycle,
allows us to predict or describe an extraordinarily wide variety of quantum
systems within a single framework.

3.2. Choices of Configuration Space

There is 10 single, agreed-upon universal configuration space for the repre-
seutation theory of Diff (M) (or, for that matter, for the physics of systems
having infinitely-many degrees of freedom). ' This can possibly be under-
stood not just as an absence of consensus among physicists working in
different domains, but as a gap in our present level of physical and math-
ematical understanding. Let us therefore survey several interesting choices
that have been made, according to the physical context under discussion:
(a) the space of locally finite point configurations, (b) the configuration
space of closed subsets, (c) spaces of generalized functions (distributions),
(d) the configuration space of countable subsets, () spaces of embeddings

-unitary representations.
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i And immersions, (f) marked conﬁgurﬁtion spaces, and (g) configuration

spaces derived from generalized vector fields. Each has its advantages, and

‘allows the convenient description and interpretation of certain classes of
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The space of locally finite point configurations

: The space that has played a preeminent role in statistical mechanics
as well as quantum mechanics is the space I'yy whose elements are locally
finite subsets of M (where typically M = R%). That is, we let

[‘M:{'yCM|(VKCM,Kcompact)l'yﬁK|<oo}, (72)
;vhere |y N K| means the cardinality of v N K. We can write
Tw = || O[] 05, (73)
N=0 N

: . ) . o
where Fgé;’) consists of all N-point subsets of M, F&‘f consists of all infinite

- but locally finite subsets, and U is the disjoint union. For some purposes,
it is useful to omit 'Y which contains just one element — the empty

M
configuration. .

For v = {x;}j = 1,..., Norj = 1,2,...}, the n'atural action o_f a
diffeomorphism ¢ of M is given by ¢y = {#(x;)}. With our convention
@102 = ¢y o ¢1, this defines a right action (as desired). Note that the
:physz'cal space M is naturally identified with (but is no.t the same as) the
I-particle configuration space, which is the class of 1-point subsets of' M.'

The space I'ss may be topologized by the wvague topology, which is
the weakest topology such that for all continuous, compactly supported
"real-valued functions f on M, the functions from I'p — R defined by
Y = ¥ cey f(x) are all continuous. The corresp?ndmg 'Borel o-algebra
makes I’y a measurable space. In addition the Riemannian structure of
M allows T s to be given a natural differentiable structure, introduced and
studied by Albeverio, Kondratiev, and Rdckner. For M = R?, a mea,s.ure :
on I‘va) equivalent to (local) Lebesgue measure describes an N-particle
quantum system; so that I‘(,{,,V) is the N-particle configuration space (s&lee
below). Poisson and Gibbs measures on I‘(A‘ff) describe equilibrilﬁlqsatqa:.eji :1;
statistical physics, or infinite gases in quantum theory!8:3%40:41, H13,40,45.48

The configuration space of closed subsets

A much larger configuration space, introduced in early work. by
Ismagilov,®+74849 i5 the space fpr of all closed subsets of the manifold
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M. As in earlier papers, one may for certain purposes want to omit the
empty configuration. Then for C € Qy, we have that ¢C={g(x)|xeC}
also belongs to Qy, defining a right action of the diffeomorphism group.
A o-algebra for , making it a measurable space, is generated by the
family of sets in Q4 consisting of all closed subsets of a given closed set.
That is, for C C Qs closed, let N = {C'€Qp|C' CCY; then let By,
be the smallest g-algebra containing the family of sets {Qc}ecmclosed -
This o-algebra can also be obtained as the algebra of Borel sets with
respect to. a topology on (1, for which a subbase is the family of sets
{ClCﬂO;ém}OgMopen- . .

Lvidently any locally finite configuration v € Ty is also a closed subset
of M, so that in general T'ps C .

Configuration spaces of generalized functions (distributions)

Still another choice, convenient to the method of semidirect products
discussed. below, is to take the dual space D'(M) to the space of O
" compactly-supported functions D(M). That is, a configuration F € D'(M)
is a continuous, linear, real-valued functional on D(M) — a distribution or
generalized function on M. We shall write (F, f) for the value of F on the
function f € D(M). Diffeomorphisms act on D!(M) by the dual to their ac-
tion on D(M); i.e., ¢F is defined by (F, f) = (F, f o'¢) for all f € D(M).
With this definition and our earlier convention, (¢1d:)F = ¢q(d,F), so
that we have a right group action as desired. A o-algebra in D'(M) may
be built up directly from cylinder sets with Borel base,*® or D'(M) can
be endowed with the weak dual topology and measures constructed on the
corresponding Borel o-algebra.

When M = R?, it is also convenient to use the. configuration space
of tempered distributions S’(R?), dual to' Schwartz’ space S(R4). Since
D(R?) ¢ S(R?), we have S'(R?) C D'(R?). The somewhat smaller config-
uration space §'(R?) is convenient, for representing the group L(R?) or the
semidirect product group S(R?) x KC(R?), as described in Sec. 1.4.

Evidently T'ss, or more specifically T'p«, may be identified naturally
with a subset of D'(M), or S'(R?), by the correspondence

T =Y Ok, ()

xg -y

where 6 € D'(M) or S'(R4) is the evaluation functional (i.e., the Dirac .

d-function) defined by (8, f) = f(x). The vague topology in I'p is in
fact the topology it inherits from the weak dual topology. While '/ is
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! d i
¢ a linear space, the larger spaces D'Y(M) and S .(R ) are. In. a(.jdl
n.o linear combinations of evaluation functionals (with possibly dlst%nct
tlc;r]l . efficients), D'(M) or S'(R4) contain other kinds of configurations
co ) ) ‘
ri hysical importance. For example, configurations rr‘xay mc'lude termi
(sh F; are derivatives of d-functions, or generalized functions with suppor
a
on embedded submanifolds of M (see below).

The configuration space of countable subsets

A natural configuration space still larger than s, that Mosehell..at and
I have found especially useful, consists of the space Ty of all finite or

countably infinite subsets'of M. We write

oC

N (c0) 5

Swo= | o) | = (75)

N=0 ) .

) | (00) i f all countably infinite subsets.

“where I‘%fv) is as above, and X}’ consists ol a niinite subse’s.
Evidently 'y C Xps, but now there can also be accumulation p ‘

Jziﬁgurations in ES;’;” giving us the possibility of fractals or of point-

C )

like approximations to manifolds embedded in M. Let us-adopt the same

ention for s, Sar, and Qur, of including the empty configuration.
conv , ,

Since M is separable, the closure map 7 : Ypm QM is sur?ecmve. o
The space S is of special interest because of its relation to rar;v[
point processes in M. Let M™ denote the Cartesian product ];/I X M ;( - tl(z

ojective limit of M™ asn — o0; thus is th
times), and let M *° be the projec | o M e
space ;f infinite sequences (x;), J = 1,2.,3, ... of elemen(ii;s ifto S
in probability theory, M*® is endowed with the weak produc h'p \ g ,1 .
: ith respect to this topology.
ith the o-algebra of Borel sets wi
113;1uﬁsnili(l)lewrlnap p: M® — T to take the (ordered) sequence (x;) toh‘the
e ) . - .
(unordered) set {x;}. Then the natural right action of the QLIfCeomorz 1ﬁs;1;
group on these spaces commutes with p; that is, for ¢ € Diff ¢(M ),E e -
5 M® = M® by $l(x;)] = (#(x;)), and define ¢ : Zar = s
;)] = {6(x;)}, whence po § = ¢ op. :
gi){{l\lje}x]t wi ir(lt;oduce in Ty the o-algebra Byr,,, deﬁne.d to be th([ai ltz:,rgéeisf—
o algébra with the property that p is measurable; By, is Pres;etrve gabn
‘ bili es on M project to pro -
hisms of M. Now probability measur pr .
f:;rgoer;sures-on %I p which, for certain classes of self-similar rind%r;lx. point
finvari tion of Diff¢(M) on M. This per-
rocesses, are quasiinvariant for the ac . v o
fnits the construction of unitary group representa.txonasg cgiassczr;?;gssﬁe; o
“clouds” of particles having a point of condensation.™ "=
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While the vague topology on Ty does not have an analogue on
one may instead extend the topology described above on Q4 to Zum. Todo
this, let a subbase be the family of sets {o € £, lonO # PYoc Mopen .
But the Borel g-algebra for this topology is not large enough to allow us
to measure the number of points in a given open set.in M. A stronger
topology of interest is the Vietoris topology. This is actually a topology
defined on the space of all subsets of M » for which a subbase consists of the
family of all sets {X c M|{X N0 % 0} ¢ Mopen, together with all sets

of the form {X C M| X C OYo ¢ Mopen - Restricted to 2, it provides a
useful topology, whose Borel o-algebra is contained in Bx,,.

Configuration spaces of embeddings and immersions

Yet another way to approach the characterization of quantum config-
urations is to consider a given manifold or manifold with boundary I,
together with the set of maps @ from I to M . obeying some specified
regularity and continuity properties (for which there are numerous possible
choices) that are respected by diffeomorphisms. Then I is the parameter
space for a class of configurations, and M is the target space. For example,
L might be the circle S, or the closed interval [0,2n], so that config-
urations are (respectively) closed strings (loops) or open strings (arcs) in
M. Further possibilities include configurations that are ribbons, tubes, or
higher-dimensional submanifolds of M. ' '

When « is injective (so that self-intersection of the image of L in the
target space is not permitted), we have a configuration space of embed-
dings Emb(L, M); without this restriction, it is a space of immersions
Imm(L, M); so that Emb(L, M) C Imm(L, M).

Note too that we may consider either parameterized or unparameterized
configurations. A parameterized configuration is just the map a(d),d ¢ L.
For ¢ € Diffc(M), ¢ : @ = ¢ o a defines the (right) group action on the
space of parameterized configurations Imm(L, M), and this action leaves
Emb(L, M) invariant as a subset. But in addition, the group Diff (L) acts
on Imm(L,M). Tt does so (as a left action) by reparameterization, so
that for ¢ € Diff (), v : o = ao ¥. An unparameterized configuration
is just the image set a(L) C M, where the parameterization has been
disregarded. Alternatively, under the right conditions on a, we can obtain
the set a(L) as an equivalence class of parameterized configurations modulo
reparameterization; thus, a; ~ ay if and only if 3¢ € Diff (L) such that
a1 °Y = as. Observe that the configuration space of unparameterized
immersions of L in M is a subset of the configuration space ), that is
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. ariant (as a set) under the action of Diff¢(M). Thus this descrlptllori
imvan to refine Qs as sensitively as desired, according to the topological
allows us : .
broperties o eXtenisdsec; rtlii?rrzt;(;?:;neterization'invariance has very. nice

e shal C?me uantum mechanics, when expressed in terms of dlff'eO-.
conSeq.UenceS e esentations. Note that we can consider the N-particle
morphls™ 'group rep;‘ ) as a special case of Emb(L, M) modulo regaram~
Conﬁguﬁatlon 'StILa(f —Nil ...,N}. The group Diff (L) reduces ir(lmt)hls case
crerze o W; ic r;up .’SN. ’Likewise the configuration space ¥}, ' can b’e
o thz:ﬁ?fh; spgecial case in which L = Z (the integers), and Diff (L) is
regar

the group S of all bijections of Z

wration spaces
Ma:fedbc? nrj:g let M be the manifold of physical space. Let S be' another
‘S ! the “internal space” or mark space, introduced to d.es.crlbe some
manff()ld? o 11 degrees of freedom of the particles in a statistical theory
possib® mte”;a Iy gFrequently S will be a homogeneous space for Sf)me
. tleto ’ roup. A single-particle configuration is then des‘cnb‘ed
il;ltemil:zlr:rxlrtleo;yagbund.le space M over M equipped with a projection
y o -1 =
: M ith fibers (x) =2 8. '
i pt‘hiw m—())stf\{r,)t‘;l;i}slting apglications M is non-compact, wh11.e.S1 1;nay
" t be compact, Restricting ourselves to the case of a tr1v1a.. ‘unt
o e to M = M x S and p(x,s) = x. Naturally M x S is jus
e e 'foldﬂand we might consider the group Diffe(M x 5) ac;—
mether' nglt a, eneral diffeomorphism of M x S does ’not’ respect the
ing on - ‘; cgo of S to each particle. Writing (x ‘,s). = c?(x,s),
aSSlgnm?n‘} ° E:Li'ffelt))};norphism of M x-S, the condition desired is that
W%lere o :hille s = Y(x,s) — that is, x' depends only on x and
o Here ¢ is a diffeomorphism of M, while for each fixed x
the On‘cf'.t' g = 1(x,8) defines a diffeomorphism of .S: Then ¢ red—
e “0‘; is a bundie diffeornorphism, in tl}‘afu po¢ is wﬂell—deﬁneﬂ
SPZCteS fal:n¢ OISP With ¢35 = d1¢s, we have ¢3(x,5) = [¢_51¢2](Xa;)¢~
. = 2
'22(¢1?X),¢1(x78)) = (2 (1 (%)), %2 (B1(x),%1(x, ), s0 that @5 = o1
while s = 13(x, ) = Ya(1(x), %1 (x,5))- i M e o be
We also require the support of ¢ to be .comp{ac n Tl,lis o b
tained in a set J x S for some compact region K C M- .
;:sorsltftl)nger than requiring ¢ to be compact}y supporte;ﬂ, 1ts fn_ea: o
x outside the region K, we not only have x'= x blu‘t rissoirl et 6
constraints respect the composition of diffeomorplhis



54

they define a subgroup whereby S is treated differe
respect, to the action of diffeomorphisms.

For some applications, one may impose additional conditions according
to the particular situation. For instance, when S is a homogeneous space
for a finite-dimensional internal Symmetry group G we may restrict our-
selves to diffeomorphisms ¢ such that for all x € M, the diffeomorphism
P(x,5) of S corresponds to the action of an element of G on'S. The
semidirect product Map®(M, G) x Diff*(M) introduced in Sec. 1.5 is real-
ized naturally by setting S equal to the group manifold of G , S0 that it is
a homogeneous space for the action of on itself by right multiplication.
With g1, 9o € Map®(M,G) and s € G, we then have s' = sg, (x) = ¥1(x,5)

and s" = sg) (x)g2(¢1(x)) = sl (¢, 92)](x), consistent with the semidirect ,

product group law (g1,1)(g2, 62) = (91(d1 92), b1 ).
Now the space I'ps of locally finite marked configurations is defined by

Par = {3 € Tarws | (¥x € M) 50 ({3} x S)| = D or 1) (76)

where Tpsys is defined from Eq. (72). For ¥ € f‘M, there is a unique
corresponding configuration y € I'js given by {x|An({x} x 9 =1);
and a single point s € S is associated with each x € 4,
one particle can occupy a point in the physical space. :
This framework is natural for describing various physical examples, such -
as a gas of hadrons with internal quantum numbers derived from SU(3)
symmetry. Other possibilities include letting S be a higher-dimensional
sphere or torus, with G = Diff (S), to model the compactified spatial di-
mensions in a critical string theory; or letting S be an infinite-dimensional
space of pointed loops in a target space M', with G = Diffe(M )59

S0 that at most

Configuration space derived from generalized vector fields

The final possibility we mention here is to make use of the coadjoint
representation of the group Diff (M), which leads to a configuration space
that is natural in the geometric quantization framework,

Earlier we described the adjoint representation of a Lie group @, with
Ad(g) : G — G for g € G. Now let G' be the dual space to G; that is, the
space of continuous linear functionals on G. Forne g’ let (n, A) denote
the value of n at A € G. We next define the coadjoint representation of &
as a right action on G', given by (Coad(g)n, A) = (n, Ad(g) A). For finite-
dimensional groups, ' is isomorphic as a vector space to G; but when G

is an infinite-dimensional group of the kind that we consider, then G’ is in
a sense larger than G,

ntly from M with

- components belong to D'(M).
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icular. the dual space to vect®(M) is the space vect®(M)’ of
I D e 1ds; that is (intuitively speaking), vector fields whose
o T The coadjoint representation of Diff C(A/Ql
i . It might seem, then, that we cou

acts thus O g“er]l\j(r)a;hzzdox‘;fcct:gif?ge\lxcrlzsxtion spice.' However, from ?he point
Just take e (etfic guantization, this space is not the con.ﬁguratlon spac:e
of view Of'georg ather to a classical phase space. A bit more WOI‘k.IS
but COITGSPOU'S‘T uish the “position-like” coordinates (that cha..racterxze
P d'mmgace) from the “momentum-like” coordinates, in a way
the Cc‘mﬁguréttlonts\}:/ith the group action. When we consider a coad]f)mt
that’ N COHSIZ?;“(M) configurations may be identified (uAnder the right
OTbZt_ L‘mder 'tzh leaue; in a foliation of the orbit. Then equwale.nce classes
Condlt‘ons? i tor fields define the elements of the configuration 'space'.
! geneml‘wed' 1)ecoh coadjoint orbits of the group of volume-preserving dif-

' Quant}zatl‘?n specially useful in the description of quantized 'vortex con-
feomOT_PhISI_nS 'lfl:alp incompressible superfluids. Further discus?gsnsi)fﬁ stlétﬁese
ﬁgu‘rat%o?elyr;rlld th)e scope of the present lecture notes.”:60:61:62,62,6%,60.
topics 18

gengralz'zed v

rbits in §'(R?) |
3'3.1' ° bsection, we consider how the “method of semi%irect.produc:;z’r
B btai,n measures on the space S*(R?), quasunvarlz?nt un1 :
e t(l))‘;c(]}&d) or the larger group K(R?) of diifeorrforphlsms tu.s.
e e i }11 all derivatives become rapidly trivial at inﬁnl.ty. We obt_zf.lr;
o s an sponding irreducible representations carried by N-poin
configurs E'md o sp i) regarding. each of these (for fixed N) as an
Conﬁguratlo'n Spaced e iffeomorphism group. We also cons'\der.
b Axﬁz]\p e o d‘d' to I')che N-particle Bose and Fermi
i On’ thesei (;I:lgj, g);es(gz;l 1;ﬁese results enable us t.o understandl
representajz'lolns ivresentations of the diffeomorphism group in the gen?:
;h:mjz;vrj)iic 1Seescrrilt))ed by Eq. (68). Finally we mention some other orbits
arnd their possiblé physical interpretations.

Then in Sec. 4.1, we give a concise review of Mackey’s theory of in-
en 4.1,

p ta ns. SeCtIOIl 4 2 Hla.kes use Of 1deaS Hlotlvated by
duced represen tio

this theory to understand the inequivalent cgcycltesticz)nnst};ef :lfl):c:;m]fl‘ggt—
This leads to important insight into how representa et
ic gr Sy enter the picture. In Sec. 5, we see how t F:se rede
r“ll:? gi)(l)cl)1 pica{\’,’ effécts when the physical space itself is. non;il?zp]y conn ,
“e?c};tic g;tatistics” for particles in two space dimensions.™



56

Measures on a space of distributions

For specificity let us work with the group S(R?) x K(R?), and see first
in detail how to obtain Eq. (68) on the configuration space S'(R?).

The function space S(R?) has many useful technical properties as a
topological space. In particular, it is a nuclear space. in the sense defined
in the important book by Gelfand and Vilenkin.3? Following the discussion
there, the (generally linear) complex-valued functional L(f) on S (R%) is
called positive definite if and only if

m. .

MeML(fi~ fi) > 0 (Vfi, o fm € SBRYY (A1, A € C).
Fk=1 :

. (77
Using the fact that S(R?) is a nuclear space, we then have the following
theorem, which is the analog for nuclear spaces of Bochner's theorem: The
functional L(f) is the Fourier transform of a cylinder set probability mea-
sure (4 on the configuration space S'(R?) if and only if L{f) is positive
definite, (sequentially) continuous, and L(0) = 1. In that case, we have

L(f) = / eI qu(F), (78)
Fes'(RY) :

Suppose now that we have a CUR U(f) of the additive group S(RY)

in a Hilbert space H. The representation is called cyclic if there is a

vector § € M such that the set {U(f)|f S(R?)} spans a dense
subspace Ho of H. Then § is called a cyclic vector for the representa-
tion. Given the CUR U(f) with normalized cyclic vector Q, the functional

L(f) = (Q,U(£)Q) satisfies the conditions of the preceding theorem, and .

is thus the Fourier transform of a measure poon SY(RY), In this case,
we can realize the Hilbert space H as LI (S"(R%),C). The cyclic vec-
tor is given by the function Q(F) = 1, and the inner product is given by

{(2,9) = [ona O(F) U(F)du{F). The unitary operators U(f) act by
SRy

multiplication,

U(NT)F) = Ny (F). : (79)

So we have simultaneously “diagenalized” all the operators U(f), which
are associated with the positional densities of the particle numbers or the
particle masses. o

Next suppose that U(f)V(¢) is a CUR. of the sernidirect product group
S(R) x KC(R?) in H. Then for any ¢ € K(R?), the vector V()1 is likewise
a cyclic vector for U(f), and Ly (f) = (V(9)Q, U(f)V(¢)Q) is likewise the
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oo transform of a measure pg. But by the semidirect product group
Fourier

jaw.in Eq. (61), Le(f) = L(f $71); so that

gy pes
_ / ei(F.fqu'l) dp(F) = / d- e A du(F)
Ly(f) = re &R e s ®Y

- / MR du(pFy, (80)
FeS'(R9)

i = bF).
the last step is just a change of variable. Hence d;ij(F)l du(dF)
ghirfrom the inner product in the definition of L4(f), we also have
u B

= DV (GNP du(F) . (81)
L) = [ €OV

bserve directly that dug(F) =
ing the two Eqs. (80) and (81), we 0 ; ' .
Compafi]l?;‘)\ZZu(F). Hence pg is absolutely continuous with respect tTOhI;
var)lihg that any sét of p-measure zero is also of py-measure zero).
a i « . .
g:calon—Nikodym derivative exists, and is given by

-y = V(AP (82)
dpt

VP = xel)y TEE) ac.(w) (83)

v ' i dulus one on
i i lex-valued function of mo
for ¢ given, x,(F) is a comp | »
:;}’IF];) dedfilfed almost everywhere with respe‘j:iz q:)o tthe me:;:;levictor oo
e hitary operator 0age
g & app;\),' ot ; ) . € ©), and using Eq. (61), we have
Ha. Writing € =3, A U0 (3 €0,

. and

N
S - = ©NU(fi o)V ()AL
V($)E = V() D MUEIVOTIVOR [}_j ;U
= (84)
| ] : 1 (pd
As U takes the general form ¥(F) = E;\;l Aj fa’(F'” in L3,(S (R ),C), we
then obtain from Eq. (83) the desired e‘xpress-lon,

’ d : 85
[vw)wF)=X¢<F>w<¢F>\/7’i§(F> ae. (1), (85)

' o = (F,fo¢). We have

i f & on F is given by (¢F, f) ( f o
where the action f(? ¢ la in Eq. (85) on . o; but the continuity of V(¢)asa
demonstrated the iormu Al holds

u in he same form
bOUIldEd linear operator in H allowsus tol fer that the s e
1
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on the closure of H g, which is all of #. The complex-
in Eqs. (83) and (85) satisfies, for any pair of diffeo
equation (71) almost everywhere (1)
F.

valued function x4 (F)
morphisms, the cocycle
» With v standing for the distribution

To sum up, we have realized an arbitrary CUR. of S(R?) x C(R%),

cyclic for the unitary representation of the Abelian subgroup S(R?), in the
general form given by Eq. (68) but with the specialization W = C, We
have done so using as our “yniversal configuration space” II = S'(R¢). The
non-cyclic case, which we shall not discuss here (but see the discussion of
induced representations in Sec. 4), requires that ¥ take values in a higher-

dimensional space W, and that X¢ define a unitary operator-valued 1-
cocycle acting in W, '

Ergodicity and irreducibility

Next we consider in a little more detail the relationship between irre-
ducibility of the representation realized in this way,
measure 4 under the action of the group.

Suppose we have a configuration space A that is a measurable space,
a group G acting measurably on A, and a measure pon A that is quasi-
invariant under the action of elerenis g of G. We call a measurable set
B C A almost surely invariant (with respect to p) if and only if (Vge @),
wgB - B) = 0. Evidently such sets include (but are not restricted to)
invariant sets as well ag arbitrary sets of y-measure zero. But the measur
zero set 9B — B may depend on the choice of g, and there is in general no
guarantee that the union (over g € @) of all such sets is .of zero measure.
‘Thus let us call u ergodic for the action of G if any almost surely invariant
B that is of positive measure is necessari

measure of its complement A — B is zero. This is a logically stronger sense
of ergodicity than that mentioned in the previous section. '

Now we shall show that the representation U(f)V(4) is irreducible if
and only if u is ergodic.

First, suppose p is not ergodic. Then there exist measurable sets
By, By C S'(R?), with the properties that 1{(B1) > 0 and u(B,) > 0,
and with pu(¢B, — B)) = 0 and w(@By ~ By) = 0(V¢ € K(R)).
Let #; be the subspace of. functions that vanish almos
S'(R*) ~ By, and similarly define Hs.
spaces of L7 (S'(R?),C). By Egs. (
all the operators U(f) and V{

Conversely,

and ergodicity of the

e

ly of full measure; that is, the

t everywhere on
These are non-empty, closed sub-
79) and (85) they are invariant under
¢), and the representation is reducible.

suppose that the representation is not irreducible, so there
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. . . t P be

. nontrivial, proper closed invariant subspace Hy C H. Le oo
exists a tor of orthogonal projection onto Ha; then P commu_te§ w !
the Operators U(f)V(¢). Because P commutes with the U(f), it is easy to
the operato '

w ipli i 18] ator
it tS as m kllph 1 Oper

’ hat on the dense subspace ’;‘[Q 1t ac as a u cation e

sho t t

i i ds to all
; = [POY(F). This action exten
asurable function P(F) = [P{] , o )2 =
o ?tih(; mfontinuity of the operator P. Since P is a( p;Othlfrll’eii S i ”
of 7t by © - P(F) = Oa.e. (). And
so that P(F) = lor .
p(F) & (ét),an(ii not all of H, P is not the zero operator or the l.der;f:-).;
is non-emlso}’that P(F) is not almost everywhere zel:o or almost .evexy(::itive
opera;‘(;lre;re must exist disjoint sete By, By € S'(R )};bOtlilﬂlhaV:}l)gsy?ace o
oneé. d P(I"y =0on By. Thes
ith P(F :101’181&“ )
measur jivst to tl(le )set of I? functions that vanish almost eveéywl;ire :r;
Lcsolr(rnz:y)mn B,. Applying V(¢) for arbitrary ¢ to the vectorB P) EO 1’fhus
- o : ; implies u(¢By ~ Br) = 0.
. (85) that invariance of H; imp < ot
o f o zi?no(st s)tirely invariant set of less than full measure, and pisn
B, is an ‘
; i letes the argument. _ e e .
ergodic. C;l‘hlts CtO;ZE is necessary and sufficient for irreducibility in the cycl)trc1
CI1LY, » R R
Erggui tlg:ere are two rather different ways in which a mea.surle; Zrbit
calse.d ould be ergodic. First, it might be conCEr.xtrated on a smgso o
§ gR'(%&dc ). Alternatively, the measure of every orbit could lbe Z(;Efr(;;bits "
in mvar{ant set, of positive measure is an uncountable union .
any

this case, we call p strictly ergodic.

Measures on N-particle orbits

l,et ns con ](l T some exan es 01 O )1t8 ()]le a])])r()a(:h is to take a
a thl]laI element Of&S (R ) a.nd COIlSlder a.u EIBmentS [¢] a«_lne Y app &ng
par 1 da bt d b

i hisms to it. . ] oo
dlﬁesomoi)ieljve start with the evaluation functional dy € S'(R), (for fix
upp

' 'bi inin

¢ RY) defined by (6y, f) = f(¥) (Vf € S(RY)). Then the 9_11)(1; cc;n’iad)) :g

?SI s the set A = {44, ]9 € LR} E'lut (¢6y,f)Rd—) (3;,6 i

F6(3)) = (ba, ), whence 63y = by, Sncs (9 € W) G6 € KT

= ¢(y), we have the K-orbit A = {0y R

igzhnz};iltra;{ action of the diffeomorphism groupi.va'llt;lrll(te ItL(:)e i:s%mmediatdy

u )

d'x . sz; .n;x;:(::jrs I;nR; )’(?l);d inc),orrxtzist?:eg Sr? A1) that is quasiinvariant

gives u

under diffeomorphisrms. N .
i { space

Then we have the Hilber : . :

du =dx, Hyis straightforwardly identified with the usua.

i hoice
= L2 (A1) C). With thec
e du( 1 1-particle Hilbert
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space L2, (R%,C). For T ¢ Hy we may write ¥ = ¥(dx) a.e. {u). Then
UG = D u() < o 00 ), (56)

Taking the cocycle in Eq. (85) to be identiéally one, as we may always do,
we complete a representation on the I-particle orbit by writing

V($)2)E:) = B(350) %‘3(&). | (87)

Thus we recover the 1-particle representation of Egs. (
replaced the particle coordin
identified with I'{;. \
We remark that if Q(6,) =1 isto be a (normalizable)
in the immediately preceding discussion, so that L(f) = (Q,U(£)) is the
Fourier transform of a probability measure as in Eq. (78), then we need
#(AW) = 1. The Lebesgue measure dx itself does not qualify, since it is
infinite. Instead we must consider a normalized measure equivalent to it.
Therefore, we may make the choice of writing du(dx) = |®o(x)|2dx, where
|®o(x)|? is integrable, positive almost everywhere, and [|®4(x)|?dx = 1.
Then NQ(0,) € L%, (AN, Q) is cyclic under the representation in Eq. (86).
A second, alternative choice is to replace du(dx) by the Lebesgue mea-
sure dx, so that @, is the vector cyclic under the representation U given

by Eq. (86). With the first choice, the square root of the Radon-Nikodym
derivative in Eq. (87) becomes

ate x by the distribution &,. Thus AW ig

dits s | 1R0GLD] |
au ) = Tagogy VIR %

which is defined almast everywhere (1) because [Bo(x)| > 0 a.e.(u). With
the second choice, the square root of the Radon-Nikodym derivative is
simply 1/7(x) asin Eqgs. (64). It is natural to think of choosing the vector
®45 to be the lowest-energy state of a 1-particle Hamiltonian: H®y = Eyd,.
More generally, let us obtain an orbit by starting with the distribution
B, 8y, € S'(RY), for a given set of (distinct) points {y1, ...,yn} C R?,
Because we have a sum of d-functionals, such a distribution depends only
on the set and not on the order in which its elements are listed. Applying a
diHeOInorphism ¢ to the distribution gives us 2?':1 5¢(y1.). Moreover, for an
arbitrary N-point subset {x1, ..., xn} C R?, there exist diffeomorphisms

¢ € :C(Rd) for which Bf7, 6, = o, 84(y;)- The desired orbit is therefore
AWM _

re = {BL) 6 € S'(RY)}x; € R*,x; # xforj # k}, and we have a

64), having simply -

cyclic vector as
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e it wi f
] identification of the distributions in this orbit with the elements o
natural i .

)
the Configuratlon SPaC: ;idcéntra.ted on A;(Rl:) that is equivalent (locally) to
Again, any me:slrl; dx, - - dxy is quasiinvariant under diﬁeomorphisr?s,
the Leb?sg‘{e ntli?) Sse thelLeb esgue measure, but it may be more instructive
Ttis eamestjrliialize d measure u (see below). The former choice allows 'l:S
:O ‘;Zilgrr\f:t the Hilbert space Hy =‘L§xr~~dxw(AN’C).’ then we write
) 3

: (N
2y as a square-integrable function on the configuration space Apa -
¥ ecHn

We have . J.f)_ "
[U(F)T(BI, bx;) = € o= S DU, 8))

— e iT ) W(E;-V:I 8x; ) (89)

’ ith f Egs. (64).
i mpared with the first o . ) ' A
Whllc\lh Sil Ov:/l;dt:lfecshe important step of making an 1dent1ﬁcat}3n b;;;w;za:
ex . _ ‘ '
1 or 24®) and Hy for N > 2 (which was not a problem for
N

i i () @) e
Il that tg,tally symmetric or antisymmetric wave functions Yy or¥® Nxar)
a i ey Pl
Zlaﬁned on the coordinate space of ordered N-tuples of points (x1, N
€

" . lue
ith x; € RY; but each satisfies a symmetry condition wh‘ere‘t{y t1;;5i Zatﬁe

e ]such J’V +uple actually determines its values at N! p;l)m i o
ne ] ' 5 -

. o(;dinate-space that are related by permutations. Let ES Ht ;Or o

(t:'c;iguish a preferred sector in the coordinate space. Wfa z z:( i e

1 i istinct points ,
i ' i R?. Given two distinct p ‘
tionally for the manifold en & X 2 N

;:ttoduce the “lexicographical ordering whereby x <y 1f£ k<:yN N

when zi =y for j < k then zF+t < y¥+1 (from k :<1 up o

Sr wi . X e ,
The preferred sector will then be {(x1, ., xN) | itlh e
oints are in natural one-to-one correspondence W R4 L onitac
" Now either Hilbert space ’Hf\s,) or HE@’ (N > 2) may be mappe (S;J.l'll \IJ(H})/
2 A ), just by restricting the values of wis) or

o de‘mdm( s and 1 i functions with a factor

to the preferred sector and normalizing the wave ~ A i

of vVN1. Then it is easy to see that the representations Uy e inNHN

Fags (64) are unitarily equivalent to each other — wher.l rvlvll; e bosonj(,;

b0t1:1 representations act according to Eq. .(8.9)‘. The fermlont e (and

N-particle representations of the nonrelativistic local curcrle1 e

» ing semidi are thus modeled on

the corresponding semidirect product grou.p) o ST, eqnipped e

configuration space, obtained as the K-orbit Aga’ in ,

a measure locally equivalent to the Lebesgue measure.
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Cocycles on N-particle orbits

If these representations are to be unitarily inequivalent, they must be
distinguished not by the multiplication operators constructed from the mass
density operators py(f), but by the associated representations V,Sf ) and
ij,a) of the diffeomorphism group constructed from the momentum density
operators Jy(g). Mathematically, the different exchange statistics for finite
particle systems will enter not through the measure on S ‘(R4 or, corre-
spondingly, the choice of quantum configuration space Aé{j), but through
a complex-valued (unitary) 1-cocycle for the action of the diffeomorphism
group on that configuration space.

It remains to rewrite the representations VS Y and VISL) in Hilbert spaces
of square-integrable functions on Ag). This is a convenient point at which
to introduce normalized measures. Suppose that the totally antisymmet-
ric N-particle wave function @éa)(xl, L XN) € 7—[&5) is a cyclic vector
for the operators U,(f) in the fermionic (a) representation of Egs. (64),
with [{fP(Oa)H = 1. Similarly let the totally symmetric wave function
(I)((f)(xl, LX) € ’Hg‘}) be a normalized cyclic vector for the bosonic
representation U,(\?). As these are cyclic vectors, they are nonvanishing
a.e. (in the measure dx,---dxy). Note also that l(ﬁéa)(xl, oo xy) P
and 185 (x,, ...,xn)J? are independent of the order of the arguments
X1, ..., XN, and thus are fully specified by their values on the preferred
sector. The measures

du (D) 8y;) = 188 (xa, ..., xw)Pdxy - dxp

A (B 64,) = 188 (x4, ..., %) 2dxs - - dxy

are equivalent to each other on Aé{f) (i.e., they have the same class of
measure zero sets).

Now define the linear operators Q)

QW :%5\5’) - LS;L(.,)(ASZ’, )» by:

AN = L0 (08,0 and

dula) R4 ¢

[Q(a,s) q,(a,s)] (ZJN:I 5x,») — ‘I’("“S)(xh .,xN)fI’((,a's)(xl, o xn)T (90)
Since ¥ and 3 (respectively, ¥} and <I>§;)) have the same exchange
symmetry, and @ga) and <I>((f) are almost everywhere nonzero, the right-
hand side of Eq. (90) is independent of the order of the arguments and
is a well-defined function of SJ., 4., (a.e.). From the definitions of du(@

<o

| iR
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| (8) it is easy to check that Q® and Q® are unitary. We also have

and dpt™’y1 e o = 1

g = 0@ =1, and Q¥ &g . - f

Q? )‘I’P - thforward to determine that the two unltaryé)ep{f)sentatzg)r}li ?
1t is strailg b roup Q(a)V,(\ya)(QS)[Q(a)]—l and QOVY (4’3,&? ’

the S e , ) (C) or L?i,u.(-l(ARd ,(C) as

2
act (respectively) on vectors ¥ € L2, (Ape

follows:

(Q(a,s)vh@.(ﬂ(¢)[Q<a.s>]-1q,) (B, &) =

N
88 (g(x1), ..., 9(x)) B(EI, Sgep)y| L] Tolx) - O
— ———’—’—'__‘___——_—.——_ - .
B @E}a'S) (x1, .- ,XN) =t
(a)(8) nder permu-
. try of @ under p
Again because of the antisymmetry or symmetry ¥ nt under

s i ing Eq. (91) is invaria
. . the ratio of functions entering : .  the
tations t}::(;t}:cj)’ns It is thus well-defined a.e. by‘the spemﬁcatlgr;‘ucl)d t;e
such .perml;:N 5. € A Comparing Eq. (91) w1th_Eq-.(85), w e e
functlonal t Jc;lth): Radcﬁl—Nikodym derivative occurring In Eaq. (85)
square 00

the real-valued 1-cocycle,

N
125 (9x1), -1 80 | 7p0e) (52)
= (@8‘1'5) (X1, o, XN)| §=1
while the unitary 1-cocycle in Eq. (85) is juSt‘
| | M] (03
Xo (E;\;l 5x5) = ph&SE @ga,s) (xl’ . ,XN)

i the wave function describmg.a
L ain 4 ('92')~(93) 'ur;‘r{:;:r? 1ir}\,echanics belongs to the domal.n
oty d as a differential operator in the parti-
t a continuously differentiable fur.xct%on
most everywhere nonvanishing
g are de-

stationary state in S '
of a Hamiltonian that is expresse
cle coordinates. Thus it 18 at leas

f tho 1 : £ O

( 5€ CO( )I‘d.nat S. F T SuCh a Smo‘()‘ i y a] ne
.\ @ ) or ‘pé)) the Ilght‘hand SldeS Of the a.bove equatlou

funct on 0 . )

ﬁned el‘(lep at the TOE Of he wave iunCth]l - that 18 they are deﬁned
t ze 5 t )
Out81de I]Oda.l sur faCeS mn COIlﬁgul atloll SpaCe. In the (to) ba:nv Symme trlcwchase’
it 1s ty plca.lly pOSSlble t0 ChOOSE the gIOuIld Stat:e @0 S0 that it 18 no ere
van h Ilg but thls 18 i L or tally n 1Sym1]letllc wave fu“Ctlons~ Ihus
anisit 3 o1 80 f 78] ant
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the existence of measure zero sets where, in particular, Xo (E_.J,-V:l 0%;) is un-

" defined, and where Eq. (71) for a 1-cocycle fails, is inevitable! However, we
have an explicit handle on these sets — the “almost everywhere” qualifi.

- cation of Eq. (71) has turned out to be not merely an abstract, technica]
restriction, but a condition characterized by the nodal surfaces of fermionic
ground state wave functions. Letting Z C Agg’ be the measure zero set
where @83') vanishes and x, is undefined, we see that Eq. (71) fails pre-
cisely when the configuration ~ belongs to the measure zero set 2 U 2.
Thus we see that there does not exist a single set of measure zero outside
of which Eq. (71) holds for all 91,92 € K(R?); indeed, there may be no
elements of the configuration space where this is so,’

To conclude this subsection, let us discuss the unitary equivalence or in-
equivalence of the representations defined by apparently distinct 1-cocycles,
where the uhderlying quasiinvariant measures on the configuration space
are equivalent. i :

First consider the N-particle symmetric (s) case of Eq. (91), where

N > 2. Let us introduce the multiplication operator My, defined on |

Lfm(,)(A]gj),C) as multiplication by @éa)(xl, XN/ }@és)(xl, v x|
= phase[tbés)(xl, «-»xn)]. Then M, is a well-defined, unitary opera-
tor that commutes with all of the operators U()(f). From Eq. (91),
it follows straightforwardly that the equivalent unitary re-presentation
My QIVE (¢) [QW)™' Mg is the representation associated with the trivial
L-cocycle, xo (B, 6,) = 1. _

Next consider the N-particle antisymmetric (a) case of Eq. (91), with
N > 2. The unitary inequivalence between this representation and the N-
particle symmetric representation depends in an essential way on the dimen-
sionality d of the space. Intuitively, this is because diffeomorphisms that
become trivial at infinity cannot implement an exchange of distinct parti-
cle coordinates on the real line, while they can do so in higher-dimensional
Euclidean space. .

For the case d = 1 we may, as in the symmetric case, let My be the op-
erator of multiplication by the phase of an almost everywhere nonvanishing

wave function fboa)(xl, -,%N). We have dropped the bold face notation
to remind us that with d = 1, the z; are just real numbers. But here, we
specify (z, ...,zx5) to be in the preferred sector x; < ... <z of the

space of ordered N-tuples of distinct particle coordinates. The elements
of KC(R!), being order-preserving diffeomorphisms, act on this space of or-
dered N-tuples so as to leave invariant this preferred sector. Using this
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ther with BEq. (91), we have the perhaps surprising o'bserva,tiOn
8 ticle antisymmetric and symmetric representations of the
that the N‘;Par 1roup K(R%), and hence of the semidirect product group
diﬂe:mor]ghl;n)l gare um’tarily’equz'valent in one space dime'ns‘ion
@) ( di ’tin uish bosons from fermions when d = 1, it is necessary to
Thus, \lzsablegs'that are not fully expressible in terms of the local c1.1r-
refetr :J(;;)ll))rs:r For éxample, consider the kinetic energy operator Hp, which
ren -

fa,C_t )

i () differential operator
" acts on some domain in L% dayduy (Bp1 »C) asadi ,
. ; 2 Mog2 o)
0= -—— ——2 .
2m put 0z;

hen 0 g h
H 1S dellr E(l a leas on ]lllIllIIla.l dOInaln COI]SIStln Of (e]0)
ﬁ a sm t

N 5 ) that VaHIS]l togethel Wlth thEH ﬁISt derlvatlves When

ions ¥(X5=1 0z . : dar
ﬁg}C?:nt par(ticjle coc;rdinates come together; i.c., that satisfy the boundary
.adja -

conditions,
lim (2,6 =0 (i=1..,N-1),
Tj—+ Tj41
. N
i U (i1 bey) _ lim ¥ (B bs,) =0 (j=1,...,N-1).
:leir;lj-}l 3(123' T;FTi41 3(1:9'4_1 (95)

ify the unbounded operator Hy as a .self-a.djomt.: F)pera—
?ottiioélillllin:pse;;c};, it is necessary to widen its domamdf)é crierf;ltmt;(;:ia}é
1s of less restrictive boundary conditions — and' the di ‘e e. p
nllleé:;othen lead to physically inequivalent (bosonic, fermionic, or even
chol
intell‘meilrﬁszlllia):rlt;g: i?:;egs'relax Egs. (95) is to allolw .‘I’(Eﬁ__l dz;) and
8\11(;1-\51 5mj)/aa;j to take on arbitrary v.alues in 'thell}m{;m?: xéq;7a;]+:l
(for e;h j=1,...,N—1), but to require thatdm t;.lz i h,ro deﬁneJS -
Oty s ‘I,(E?l:l 6Ij)ftilr]10tti};i1 oonmtflle space of coordi-
oesponeing t"t)“ltli/la:y;: Zlettﬁg (?Z)af‘rllZin of the usual self-adjoint Hamil-
:;lc?rtl‘ig:n(xoll;ér.z;{ozrl;v and we see that we have a bo.sor'lic system. élter(r;ca);
tively, requiring ¥(SN, 6z;) to be zero in the 11m1t'as z 1—) .a:tﬁr;eans
i = N — 1), with 8¥/0z; = —0¥/0zj41 in thlS. imit, ’
et _hl"c.e. .o,f '\I’(EN’ ,8z,) in the domain of Hg determines a tOt_(ll Zt{
thit' ) Cm(e)zltric wave fqu:ctio;x on the space of coordinates (z1,...,% ;\i) t ;aa
'asni:\sytz?e domain of the usual Hamiltonian operator; and then we hav
1

fermionic system.
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Further discussion of unbounded self-adjoint operators and inequivalent
self-adjoint extensions of symmetric operators is beyond the scope of these
lecture notes; but see, for instance, the discussion of von Neumann’s theory
of deficiency indices in the instructive book by Reed and Simon.”2

But d =1 is a very special case. More generally, for d > 2 and N > 2,
there are diffeomorphisms trivial at infinity that do implement the exchange
of any pair of particle coordinates. Then the (a) and the (s) representations
of Eq. (64) are unitarily inequivalent (we omit the details of the proof),18
We shall see below how such inequivalent representations are obtained from
one-dimensional unitary representations of the symmetric group Sy by in-
ducing, a technique that generalizes to predict more exotic possibilities for
the quantum statistics of particles. _

To sum up, we first wrote down the Bose and Fermi N-particle repre-
sentations in the Fock space of canonical nonrelativistic field theory, where
they are given by Eqs. (64). Now we have explicitly realized them in the
form of Eq. (68), over the configuration spaces Algj) = I‘]g:{), which we
obtained as K-orbits in S'(R?). For distinct IV, the measures on S'(R¢)
corresponding to these representations are supported by mutually disjoint

orbits, and are thus mutually singular; it follows that the representations
for distinct N are mutually inequivalent. For fixed N > 2, and d = 1,
the (s) and (a) representations of (64) are, however, unitarily equivalent:

while for d > 2, they are inequivalent as a consequence of the corresponding
inequivalent cocycles.

Other finite-dimensional orbits

The N-particle orbits are not the only finite-dimensional orbits in -

S'(R*) under the action of K(R?). We may, for instance, construct orbits
containing functionals with terms that are derivatives of Dirac d-functions,
or multiple derivatives of them.” Suppose for specificity that d > 2, and

consider the functional ~\ - Vé, € S'(R?) that is defined on f ¢ S(R?)
by the formula.

(=X~ Ve, f) = A (V1)) | (96)

where x € R? is fixed, and where X # 0 is a d-component, vector. It is
straightforward to determine the action of ¢ € K(R?) on' —\- V4, using
the definition (¢[-X-Vé,],f) = (- Vs, fog). Writing — ) - Vé,0
#l—A - V8y], we obtain

x' = ¢(x),
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N = %(X)’\k (G=1,...,d). (97)

‘ : i ingle
. i f pairs {(x,A), A # 0} labels a sing
from Eq. (97) that the set o , o
We'seencller KC(R?), which we shall label AV ¢ S'(RY). [When d =1,
g?;lt r‘;orphisms cannot act so as to change the sign of{?, il)ld)\WE hoa}v?
e its: A < 0} and {{=,A), A > 0}.
i ce two distinct orbits: {(z, ), .
A t};(?tjoijlsy with the N-particle orbits, we now also have orbits whose
o er%ts are sums of IV derivatives of 5—dist;ibutxons:

N .
AT = 3 ;- oy (A #0, V). (98)

elem

5=1
=1

Comparing Eq. (97) with Eq. (22), we-also see that it is ndatural here t)\?
om (97 : .
7 tor to the manifold R* at x, an

i et )\ as a (non-zero) tangent vec ! .
mterlt;);ngent vector to RY at x'; then X' = [Ad(¢™ 1IN We have, in accct);d
as'tT] our conventions, a right action of the diffeomorphism grm‘:p on g
S ficuration space — diffeomorphisms act as usual on the manifold, arl
(t:}(izyglift by means of the usual derivative map to act on tangent vectors to

anifold. - ’ ) §
the'ﬁle Lebesgue measure dxdA defined on the orbit AV s qu‘asunvam
ant under the action (97) of diffeomorphisms. T};us we hive a utn}:ta;}irur;:
resentation of the semidirect product group S(RY) x L(R?), in the .
space H = L3, 4, (AY(M),C) given by

()TN = explid- (VAT N,
V($)T)(x,N) = ¥(p(x), [Ad7NTs(x) - (99)
In éq (99), we have chosen the cocycle that is identically one. N;)te thatf
: the J :;cobia,n of ¢ occurs here without the square root sign — on;a ac‘;oz o)
/T(x) results from the action of ¢ on x, while another factor o vV Js(x
Its from its action in A. . ]
‘"eS“T;e corresponding representation of the current ‘algebra (43) is ezfisr
ily obtained from Eqs. (65); but we notice immediately thatuttp( I '
iti ite i i ation —
i i be positive definite in this represen 4
S e i i i lowing those equations.
ibili icipated in the discussion following
possibility already anticipa . (hose eduations
i density. Let us inste
Therefore cannot describe the mass ‘ .
charge denzggy) and electric current density operator.s from Ess\.ll(gg), using
()T = (/i) 8 U(af)¥|amo and J(g)¥ = (ah/mi) s V(g5) o=o -
‘We obtain

[p(NT](x, ) = qI/\-(Vf)(X)]‘I’(x,‘%),



68

D000 = T2 (50D 00 + 7 - e, 1)
Lot

3t G v ¢ D N3,
where as usual summation over th
In order to interpret these equatio
representation of S(R?) x K (R¢)
opposite charge. In such a repr
p(f) will likewise fail to be positi
configuration space the X-orbit AP
and with methods that are by no

[U(£)®](x1,%,) =

w familiar, we obtain:

exp {i[ f(xg) = F(x2)]} 8(xy,x,),

where & € L7, (AR .€). Su

except for small particle separat

» we have from the first, of Egs. (101)
LoD B00x2) = gl (x1) - Fx2)] 31, %)

2 q[A - (VA)]E(x1,x,)
where A = (x; — x,) and x = (1/2)(
approximation the first of Egs. (100), w
second of Egs. (101) we write

[V($)2lx,2) =

= B3l00) + 6] #x1) = 01/ Ta (s T |
which approximately equals the second of

are near each other. So for any particular choice of the group element
(f,4) € S(R?) x K(R®), the unitary representation given by Egs. (99) is
an approximation to the representation given by Egs. (101) when acting
on wave functiong describing tightly-bound particles of equal and opposite
charge. This justifies the interpretation of Eqs. (99) as describing a gudn-
tum dipole. The dipole moment ¢) is not fixed but variable; it ranges
over R* ~ {0} (when d n (x, A} is a probability
ampl h dipole moment gA.

(103)
Egs. (99) when x, and Xy

> 2). The wave functio
itude for finding a neutral particle at x wit

(100
e repeated indices j and k is assumed
ns, let us compare them with a, unitary
describing two particles having equal an
esentation, the charge density operator

meﬂGHﬁ))
ve definite when F(x) > 0. We use as the

¢ aeb charge ¢
-1 = {0 ~bxy (%) # X3} C S'(RY);

i ticles can be
corres : trivial, and the resulting par
its i tually quite nontr s
these orbits is ac

1 f three, fOuI‘
(()()d as i]l i g, lg 1V" p 1 y ems O y
' unde S teIeSt n, [ tt, X H)ld compoOSs te s 3N
or more Charged Components.

V() ®)(x1,%;) = ‘P(¢(X1),¢(X2))\/J¢(X1)J¢(X2 ) (103)

Ppose now that ¢ is such that it vanishes
fons. For x, sufficiently close to x, (so that
f changes slowly from X3 t0 xg)

(102)

X1 +x2). Then we have in this
ith ®(x,\) = U(x;,%,). From the
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I 1ge qoq,
(8] deSCrlbe a dlp01e pa'[ “.Cle Y lt’h ﬂ]:ed neh Cha We COIlSEYUCh

. v,(1) _ A Vibelx €
T COSRe) % K(BY) on the orbit, AT = {aobs + 3 - V!
C
a

i ; ical neutral point dipoles in
{(RYY, To describe N identica : . ‘
R A€ " 03 Csi t(}}i Z)rbit AYN) as the quantum con.ﬁgure;\t;o‘g;]:;s;
Y, e naturslty XV'(N ) is defined analogously, and describes N i
1
Then the or

Q0 (N) =

. LAY v, o
d point dipoles. The more complicated orbit Aly," + Ay,
charged P

i 2N point particles
C+ ) - Viy,]} describes
{E;\Izl Go Jx,' + E?J:VN+1 [‘h 5x, + Af X

N 1Cle g 0 (
’ in [Rd O 1ese, N are OIdlllaIY l)alt Cl 5 Wlth ChaI e doq and no d1p01e

hile the remaining N are indistinguishable point dipoles having
while

Y e ipole point particles cor espond to
i ltipol int particl T

imi drupole and higher mu

Similarly, qua

i ism nd
its 1 4\ ynder the diffeomorphism group, &
j of orbits in S '(R*) un
interesting classes

])()] 1€ lng [eplesentabl()ns C)f the local Curr ent algel)] a I he st TU{ ‘11] e Df

. d higher multipole
fops le, quadrupole, an )
tum statistics of dipole, ing orbits.
.The g;sl?as can be described by cocycles on the corr?jplgfjlrzgdesmbed
pOlIIlt pf:ort a great variety of distinct quanturg S);stems I1) S(Y x KR
ns ) . . 1e t product grou
i . Rs of the semidirect p d on
by meqlfn:}a:lentafgclassiﬁed by quasiinvariant measures concentrate
Ma,ny [e) ese

ﬁnlte‘dunenSloual COIlﬁgUFathIl Spa.CeS, that m the case Of 1rrec lllill)le rep-

= i i ! i i nal p SS’X‘
Senta.tions can be reaﬁzed as Single ,C OrbltS m S (IR ) Ad dl
It Y O o}

: H H . s f b . . t,' . 1

Y tuh sta lSt ¢S fln “EI 1 abie
]‘ b)eS pa.I ticu all t! 108€ aSSOCla.ted W1 h e t t 1 9 (hS 1 Sh b
bﬂ 2y C l

i - les on these orbits. ‘

i classified by wnitary 1-cocyc c nd to quas-

pargﬂ:sﬁc?tr ean irreducible CURs of S (Rd)dx LR S)mcgggfzs;%fl’t e
d centrated on & - A

‘ i asures on §'(R°) con i i is described us-
mvainant rI?eﬁ ite pas of indistinguishable point par.tlclels 1sd by Eq. (74).
earlier, an infini i g ace ) which is embedded in S'(R®) by Eq. .
i figuration sp Re 1 Jabie
g the COT'I ° (c0) 4 ingle orbit under K(R?), but an uncoun _
The resulting set A’ is not asing sed to construct quasi-

ion of orbits. Different techniques must t‘.hfan be u ot GURS of
i ¢ measures (see below), leading to stil} more mt- qtical physics.
mvanan‘direct product group that are essential for s'ta tis e toay be do
e ke infinite gas of indistinguishable D?imt P .

Likewise, an > A(V.oo) C S'(R?), defined by
scribed by the configuration space Qg

. i £ kY, (104)
A“Z'“’) = {22, ,\j-V<5x,-"\j7é0’ x; # % forg # }
R ,

j y e 3 the C gura p

X C R 18 IOCa.H ﬁnlte. II re, too ()Il“ L]()]l space 1S an
Wl ere { b}e union o Orblt Under the CthD Of the dlﬂeomorp g P.
uncounta 1 11 l £ a h]sm rou
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4. Induced Representations

In Sec. 3.3, we associated representations describing the different possible

statistics of a system of V identical point particles in R? (for d > 2) with
distinct I-cocycles on the N-particle orbits Agg) C SY(RY). The ALY

naturally identified with the configuration spaces TV

R » Whose elements are
N-point subsets of R?. Next we want to explain how these representationg

r<  are

of the diffeomorphism group occur as induced representations obtained from

the unitary representations of the symmetric group Sy.

4.1. Mackey’s Theory

Inducing is a method developed by George Mackey,57:68:69 that has its or
gin in the study of finite-dimensional Lie groups. It allows one to con
struct CURs of a second-countable, locally' compact group G from CURs
of a closed subgroup H C G. Tts generalization to include the infinite
dimensional groups discussed here remains to some degree incomplete. Nev-
ertheless, extension of this method to infinite-dimensional
further insight into the representations we have constructed. In this sub-
section we outline Mackey’s method, and in Sec. 4.9 we describe its gener-
alization to NV-particle representations of the diffeomorphism group X (R9).
This leads to an understanding of the different statistics that are possible
for a system of V indistinguishable quantum particles. 4
In general let H be a closed subgroup of a greup @, and let A = H\G be
the quotient space whose elements are the distinct right cosets & g,
G. Then g Hg defines a natural projection from G onto A. Moreover,
G acts on A by right multiplication: for ¢, € @, g; : Hg — Hgg . Since
A is to play the role of configuration space, we have defined it here so that
the action of G on A is a right action, consistent with our convention for
diffeomorphism groups as well as with Mackey’s lecture notes.5® We shall
denote an element of A by 7, and write the group action as (g,7) —» gv,
but recalling that gy is here a right action. ' .
The group H is itself a coset, and thus it is also a particular element
Yo € A. With regard to the group action on A, the elements of H are
precisely those that leave the element, ~o fixed in A. Therefore we refer to
H as the stability subgroup of G for the point 7. For any « € A, define
the stability subgroup G, = {9eCGlgy= v }; in particular, H = Gyt
Note that G acts transitively on A. This means that any element of A
can be reached by applying some element of G to the fixed element Yo;
and thus A itself, if it is a subset of some larger space, is a single G-orbit

forg €

groups provides
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hat space. For v € A, let ¢ be any element of G such that v = gvo;
in tha ; . ‘
we observe that Gy=9"'Hg.

If G is a second-countable, locally compact Lie group, it is equipped

I a Borel o-algebra of measurable sets, and with unique left- and right-
with &

casures defined on this o-algebra. Then
inveriant measzsreas :lf:uigg sT;L:,ce {equipped with the Borel o-a,lge.bra
o also l?ec;IH{G’ from the Borel structure in G). An important technical
induce_d o istence of a Borel section in G; ie., a measurabl‘e subset
QOint p tkile : )i(rlltersects each right coset of H in precisely one point.
Boct ! 120 be shown that there is a unique class of measures on A that
g Ca]}' - nt under the group action. Let v be a.ny such measure on
are the transformed measure satisfying v,(B) = v(gB)
8, and 1}§ere,i :eetnoge in A. Then, just as in the discussion leading up to
for any

Eq. (70), we have the Radon-Nikodym derivative oy = dv,/dv defined as a
* Bq. (70),

urable function on A, and satisfying the cocycle equation ag, g2 (7) =
meas | |
s 1) aiel (gczw that T(h) is a CUR of the subgroup H., acting in an
Sup]r)gsuct space W. Here W may be the ane-dimensional space C,
inner p .

S . Thert
he finite-dimensional vector space C", or an 1nﬁn1t.e-d1men51orv1alVl—éllband
: ece et ¥ be a measurable function on G taking values in W,
space.

having the property of equivariance under the representation T'(h); that is,
a
~ - ‘
T (hg) = T(h)¥(9) (105)

.
. ] . ) . G

al ll()st eveI‘yWheIe (Wlt IeSPECt to the II&aI measure) 1mn . ()bse] ve t,l a

T(”) aCts here on the UCCt07 'Ulllue Of \IJ, tvIaIleOIIIllng it by le’t lnultlph—

tion of its argument by h. If T(g) is an equivariant function, we have
cati

the desired formula _ i
T(h) (T (h2) (9] = T () ¥ (hag) = L(hahag) = T(haha)¥(g).
» . . - . t
We then define a representation of G acting in the space of equivarian

is 1 T. For
functions. This is the representation we shall say is induced by

9,01 € G, let '
(7 (91)F)(9) = T(g91) /g, (H 9) - (106)

. ) o~y . a’s
That is, V(g,) acts by right multiplication of the argu.men.t of \I;. It E:she;,wey
to verif;/ that V(gl)\i is likewise an equivariant function; indeed, w

T ()7 (91)F)(0) = T(h)T(9g1)/ @ (Ho)
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= ¥(hgg1)\/eq (Hg) = [7(g,)F](h)

as desired, where the last equality uses the fact that Hhg = Hg. It i5

equally straightforward to verify that Eq. (106) respects the group law in

G, using the cocycle equation satisfied by «.

Finally, the measure v allows us to . define an inner product on the
space of equivariant functions. Given two measurable, equivariant, func-
tions &,%: G — W, consider the function (3(q), T(g))y which is defined
for each g using the inner product in W. This is a measurable, complex-
valued function on G. Furthermore, for any element h € H, we have
(&(hg), T(hg))yy = (T(h)®(g), T(h)¥(9))w, using the definition of equiv-
ariance. Since T'(h) is unitary, this is again (:I;(g), \j(g_))w. Thus the latter
expression is a complex-valued function on G that for any g is constant on
the right coset v = Hg. That is, it is actually a well-defined complex-valued
function on the configuration space A. Set

@9 = [ @0, Fowavty), ()

and let H be {\i[(‘i, @) < o0 }. Restricting ‘7(91) in Eq. (106) to act
in 7, we obtain the unitary representation of G that is induced by the
representation T of H. : :

Let us look next at how a unitary 1-cocycle is associated with this
induced representation. As in Sec. 3.1, let H = L3, (A,W); with the inner
product in % given as in Eq. (67) by (&, T) = [, (307, T (V) dv (), for
@,V € 7. Note that there is no equivariance condition on functions in H.
Choose a fized Borel section Ay ¢ G. For convenience, we shall select A,
so that its intersection with H itself is the identity element. Define the
unitary operator Q : H — H by Q¥ = ¥, where U(v) is defined to be
equal to \f'(g) with g selected as the particular element belonging to A,
for which Hg = +. ' '

Now let us write V(g,) = QV(gl)Q“‘, in order to define the unitary
operator V(g,) acting in H. For ¢ ¢ Ay, the product gg; may or may
not be an element of Ao; but there exists a unique element h € H such
that hggy € A,. Evidently A is determined by g and g;, and in turn
g€ Ayis specified uniquely by the coset Hg = v. Thus we may write

our element h as hy, (7). Then we have for ¥ ¢ M, and for g € Ay with
Hg = «, the action

V(0¥ = [QV(9)Q ¥)(7) = (V(g1)@ " ()

and from Eg. (105),

" intersects H at the identity element.
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= [Q 1 ¥](gg)/ g (1)

' definition of @,
using Eq. (106). From the de

[Q1¥](hg, (1)991) = ¥(Hg) = ¥(517);

(@1 E](hg, (1)g81) = T (R (MR 1(g91) -

~ Thus

(@™ ¥)(991) = T* (hy, (1)) [Q 71 ¥ (g, (M991) = T (hg, (M) ¥(g17) -

Finally, we obtain

[V (g)B)(7) = T" (hay (M) R (g17)y/ @ (7) - (108)

Notice that if g17 = 7 ha (M on .g (where g € A(L an~d1 Iji;qlce g?),
‘ = ggTlg71 If g170 = Yo, then hg, (Y0) = g1

so that hg, (7) = 991 e e o Tt
we have written the induced representation in a form parz.a.ll}tlal
b Sur;'}l?,lp, (68). We have the configuration space A = H\G of right
o et 3\7 }?z'ive th.e real cocycle a, = dv,/dv, where v is a measur.e on
e ii . iant under the right group action. And we' have the umta;y
" quasll lrlvar( ) = T*(hg, (7)) acting on the representatlon-spac? w (;1f .
1_Coliyiz Zti(aé.’ilg}’;iforward to check that Eq. (71) holds for xg (); t.e., that

T (hgyg2 () = T*(hy, ('Y))T*(hgz(gl’)'))- (109)

A hich Hg = +, so that
in) be the element of 40 for w.
e &5 (agiz)g’ be the element of Ao for which Hg' = g1, so that

h Y EOA. S nce H = ‘ Y we have =h . Therefore
. Egz );I!]‘Z A 0. Si gg1 g1, gl g1 (’Y)ggl
92

hs (17 gy (Y)99192 € Ay, and we have the equation

h.‘]\gz(v) = h‘;qz(glf)’) h91 (’Y) ’ (110)

Eq. (109) immediately follows, since T is a representation of H. .

4.2. Some Induced Diffeomorphism Group Representatlions

i i t belon
Now the groups of diffeomorphisms that we are discussing dIo nc;tr ticularg
to the category of second-countable, locally compact groups. In p ,

y v i i d rep-
they have no Haar measures. Thus extension of the concept of induce P
.

: res constructed
resentations to diffeomorphism groups must rely-on measu
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by other means — e.g., the cylinder set measures on N-particle orbits anl;")
described in Sec. 3.3. Here we describe some results for these orbits, with
N>landd>1. In doing so we clarify the role of label and value permy.
tations, which was left rather obscure in earlier worl.70.74

Consider the action of (let us say) the diffeomorphism group K(R%)
on Pgr). For a fixed clement Yo € Fu(z]:,) » the stability subgroup K., (RY
is {n € KRY |9y = }. We have that k., (RY) is a closed subgroup
of K(RY). While both groups are infinite-dj
Ky(RY in K(RY) is finite; and the configuration space Fw) is identified
with the quotient space X, (RO\C(RH) of right cosets,

Let v = {¥1,- ., ¥yn} C RY be a fixed N-point subset of B¢, ¥ > |,
One way for a diffeomorphism n of R¢ to leave v fixed Is, of course,
for it to leave each of the points v; individually fixed. But when d > 1,
1 € Ky (RY) can also implement any permutation of the points that belong
to 7. Thus the stability subgroup K., (R4), for d > 1, maps naturally
onto the symmetric group S(vs) whose elements are permutations of the
set {yl,...,yN}. For 61,64 € S{v0), we define {&152](yj) = 62(61(y5)).
Given 75 ¢ K1 (RY), the corresponding permutation 67 S(vo) is then
defined by o ™(y;) = n(y;), and 7= 6" is a group homomorphism from
Koo (R) onto S(yp). |

Now a permutation 5 ¢ S{v0), like a diffeomorphism 7 ¢ Ky (RY),
acts only on the values of the Y; as elements of R?; it does not “see”
the index 7 we are using to label

the elements of Y. To relate such
value permutations to index permutations, we here let Sy denote the
group of permutations of the set con

taining the first NV counting numbers
{I,...,N}. For 91,03 € Sy, we take the group law in Sy to be defined
by (o1a9)[j] = a3(0, (5]} for 5 = 1,...,N. In writing Y = {y;,...,yN},
let us index the elements of % in such a way that y; < ... « YN with
respect to the lexicographical orderin

Then a permutation & of the elements of ~; acts on the lezicographically

ordered N-tuple (y,,... ,¥N) to give the (non-lexicographically) ordered
N-tuple (ynm,...,y,,m)), where o € Sy. For 01,62 € S(7p), we have
[0102](y;) = 62(5:(y;)) = 52(Yor()) = Yaylops)] = Y(o102)[j), establish-
ing the desired isomorphism S(7v) 2 Sy. We also have the corresponding
group homomorphism from K1 (R to Sy, which we denote by 7 — o7,
Note, however, that the isomorphism between S(v0) and Sy is not canoni-

cal; it depends explicitly on our introduction of the lexicographical ordering
of the points in Y.

-
A k) Dis called the diagonal in [R*)
J ! .

mensional, the codimension of

g in R* we introduced in Sec. 33,
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: f points
) diN denote the space of all ordered N-tuples (x1,. - XN)(?orpsome
Let (K] [R?]™ be the set of N-tuples where x; = x, (for
in ¢, and let b N There is a natural projection

o N
p:_[R}N—D—)IR(d)

X ) - {Xl XN} =7 Thus [JR ]N— D is a covering
- XN 3

: : 1ati ions
given by P ! (X1 - sheets, corresponding to the distinct permutatio
7 .

o s N! ' -
- Qf e . Pa in T, More specifically, let us consider as in Sec. 3.3
of each configuration in Tpa -

b
the preferred sector of {Rd]N — D defined to be .
Ro={(x1,....xn) €[RN = D |x; < ... <xn}

N d

' i i ing. The points in the preferre

here we again use the lexicographical ordering P g rererees
w

H I‘ d
with the elements of Rd 3
: - respondence wi
: n one-to-one cor
sector are 1

in in the covering space. Again we hz‘ive an
A serves as a fundamental‘donjamA in :t e A.O
isomorph'ism o EasSs]Z;:i:;zz zv(i)tc}Jx) thex;dhelxtity element ip the s_ymmrelattx;z
(Convenmonal'?gezseach ele‘ment & € S(v) may be regarded as af:t;_ng fsheet
swoup S0 of the covering space (RN — D to generate a dxz ;;r; Shee
prefirie(:;:(f:orThe preferred sector A, will play the role tha
in thal .

(&1 p ye m the I) USSt p
C110Y A ].a. d reCedng dISC sion Of lIldUCed re Ieselltatlous
S 0

W]llle trhe COVGIJIIg SPB.CG R N D pla- S the rOle fOI HleIl la. ed b ie
.

< 41N _ D, given

group G. . the action of Sy on Ag C [R ] )
Thus far we have described xo(wy)- But we have not yet fieﬁned .the
by 0+ (X1, ooy XN) 7 {Xetn) o,n tghe full space [R4]Y—D, which requires

. or of S(70) L nstruct
B ac?lim :(fti));’of o on the other sectors. This is needed to co
defining the

ivari nctions on [R¢]N — D. Moreover
e le ?;é?j;li?ttl?;a;itf:)lncof the full diffeomorphism gr)ou_[:
Xt h"ave e nI;‘i(t}:’])rato all of [R4]N — D, given by ¢ : (xg[‘;], ...,H);Zi%]—D.
) o ‘R; )). This defines a right action ofd}C(R ) odn h[( il
(‘?(xcmt e ;ié ;e[évilefined any left action of K, (R?) on {R?] :
But WE aL‘t{,he correct way to take these steps: e e La
e ) be fixed as before, with y1 < .
e (yl"”’)ygendﬁe a general element of [R¢]Y — D, where

e i hat s < - < oy a0d 0 € e ?Ric)hlermv}vlhf(\:’h
dices are Sltlc articular diffeomorphism et xetvi) € K(
tuple, Seh?i - -}~)-1xa[Nl)( i); i-e., such that
Xofy) = 47700 Vi te (113)
(ot %o = S, y).
ollly:*
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Now for n € Ky (R?) we write a left action of n on RN — D g follows, -
in analogy with the left multiplication by elements of the stability subgroup .

H C G in Mackey’s theory:

n: (XU[U’ T XU[N]) -+ [7]¢(xa(1]r-~:de])](-yl’ S YN) =
— ¢(xq[1],...,xa[N])(n (y1,... YN)) = ¢(x¢m,...,x,(m)(y”qm’ . ’er"[N])

= (Ka(enl1])s -+ Xo(aminyy) = Caro)ith)s -+ Xy - (112)

In short, the action of o € Sy on RN — D s as a label permutation,
and the desired left action of 7 € K., on [RUY — D is by way of the
label permutation 7. Notice that the result in Eq. (112) is independent

of the particular diffeomorphism @(*-ta1: Xeiny) selected to obey Egq. (111).-

The (arbitrary) lexicographical ordering enters only in the choice of the
homomorphism 7 — a”; it does not otherwise affect the result,

Let us stress carefully this distinction between value and label permuta-
tions. Diffeomorphisms, in their right action on [RAN ~ D, “gee? only the
values of the points. Say that n € Ky (RY) exchanges the two lowest val-
ues of the lexicographically ordered set v n(y1) = y9 and n(y2) = y1, so
that ¢” = (12). When N acts in its right action on the permuted N-tuple
(Yorys- - 1¥5[N]) it exchanges the two lowest values of the entries, not the
first two entries; and when 7 acts in its right action on some other, general
element of [R?)™ — D it does not typically implement a permutation at
all. But this is not the action with respect to which equivariance is defined.
The left action of 5 on R4V — p, given by Eq. (112), exchanges the first
two entries of any N-tuple of points, even when 5 does not belong to the
stability subgroup of the corresponding conﬁguration.‘ This label action
defines the equivariance of wave functions on the covering space.

The (continuous) homomorphism from Ky (R%) onto Sy, that was
given by n — ¢”, means that any unitary representation 7' of Sy also
defines a CUR of K,,(R%). That is, there is a certain class of CURs of
the stability subgroup that factor through unitary representations of S.
Suppose then that T'is an irreducible unitary representation of Sy acting in
an inner product space W. Let ¥ be a measurable function on [R¢]Y — D
taking values in W, equivariant under the representation T; that is, for
X1, xn) € RN =D (not necessarily lexicographically ordered)

b

F((aa)s - Xora))) = T(0)E(xa, .. ) (113)
in [RY}" —D. This is the analogue of Eq. (105) in the preceding subsection.

equivarlant (

Oﬁly on Yy = p(xla'
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i asurable,
t given any two me
i i alogy, observe Eha /e . . ol
ollow ™8 e anluegil functions ® and ¥, their V.V—mner pro u;s
N is a (scalar-valued) function that depen
-’X)N))?)x xn}. Let 7{ be the Hilbert space
CLXN) = 1, oo

T is in-
i \IIX1"')XN)1‘IJ(x11-'-1‘xN))W
e 1- .dxy. In analogy with Eq, (1086),

(‘é(xl, e ,XN), ‘y(XI, .o

i fo

11 such functions ¥ :

O'f zﬁbsle over I‘R]Z) with respect to dx) e
f;ige representation of K(R4) induced by g

N .
I RCH D

=1

(@1, oxw) = Bl o6xw)

i i esentation unitarily

in thé preceding subsection, we may wrlti a Ll;epr (F(I‘;'),W) i
A.A‘sll t to Eq. (114) in the Hilbert space H = dxlmdx: % e
o . it in define a unitary operator (¢ : .
ivari _condition. Again 2 .
o qulva“anczcon T({x1,...,xN}}) is set equal to ¥(x1,... ,);Aé)omain
by Q¥ =¥, W e v tal,ies the value of ¥ on the fundamental o
o < XNy LEy h QV((?)Q—I For (xl,---,xN) ¢ Ag an \
N permutation ¢ € Sy such that the N-tup}e
Here o is determined by v = {X1,.. ., XN
). We then have, for ¥ € H,

x <
Z&lo. Then write V(9)

K(R?%), there exists a unique
(d’(xa’[l])v RN ¢(X0[N])) E A‘O- (

nd by ¢, 50 we may write it as gely
al i

(V($)T)(y) = [QV($QT () = V()@ T)(F1,- - %XN)

= [Q~1W](¢(X1),. r e 5¢(XN))

= T* (oM@ W ((xa, (mir)): -+ $(Xo s (nIND)

N
11 Jotxs)

j=1

= T*(o4(7)) (1)

N . ‘
Jo(x5) . (115)

ion i to that
en the induced representation in a form parallel

i the
= T*(o4(7)) acting on
i i 1-cocycle x¢{v) . : '
o s umtfa;‘y T):e cyocycle of Eq. (93) is the Sp(.?CIal :a;e o |
e he;l T is & 1-dimensional representation ol onN-

We have thus writt

representation-space
this cocycle that occurs w



5. Bosons, Fermions, Paraparticles, Anyons and Plektons

 We have seen that for the configuration space Pg:’) of N-point subsets
T={x. . XN} C R (d > 1) —or, equivalently, the configuration space
Agj) of generalized functions of the form v = E;-Vzl Ox;r With x; # x;
for j % k — a unitary representation of Sy provides a CUR' of the sta-
bility subgroup K., (R¢) c K(R?), and induces a unitary representation
of K(R?). The latter is characterized either by an equivariance condition
satisfied by wave functions on a covering space. of 1“;{;” (the “coordinate
space” on which wave functions obey a Symmetry condition), or by a uni-
tary l-cocycle for the diffeomorphism group action on I"gj) or Ag:’) (the
“configuration space” where the permutations themselves act trivi
addition, it can be shown that unitarily inequivalent representatio
induce inequivalent representations of the diffeomorphism group (which, in
general, describe physically inequivalent quantum-mechanical systems).70
The identity representation of Sy thus leads to the {bosonic) Hilbert
space of square-integrable wave functions on the covering space, symmetric
under exchange of particle coordinates. The alternating representation of
Sn similarly gives us the (fermionic) space of antisymmetric wave func-
tions. In this manner, the one-dimensional unitary representations of SN
(M > 1) induce those representations of K(R?) which are just the N-
particle Bose and Fermi representations described earlier by Egs. (64). But
these are not the ounly representations of Sy
sentations exist (for N > 2)
and these may also be used t
elementary example is a 2-
of S3. In general we obtai
tions on the covering spa

ally). In

Higher-dimensional repre-
associated with the possible Young tableaux;
O construct induced representations; The most
dimensional, irreducible unitary representation
1 a Hilbert space of multicomponent wave func-
ce, transforming under coordinate permutations
according to a higher-dimensiona] unitary representation of S, and a cor-
responding induced representation of the group of diffeomorphisms of R9.
These describe paraparticles that obey the Parastatistics of Messiah and
Greenberg. 19 '

The classification of inequivalent unitary representations of the diffeo-
morphism group thus yields both the quantum kinematics associated with
different spaces of configurations (e.g., N-particle quantum mechanics for

distinct values of V), and the different possible quantum statistics (Bose,

Fermi, or para-) usually associated with systems of N indistinguishable
particles. What we have done so far is

with K(R?) or Diffe(R¢).

not sensitive to whether we work _
Furthermore, - the results are not limited to

18 OfSN .

- relation among arcs; if B : (0,27}
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d. they extend to more general spatial manifolds, as long as the
= R : ey ey . .
. ’ hism group acts gransitively on the mam.fold T
e the framework we have constructed leads directly to a 1 iy
; ) i ce M,
o thi:sentations associated with the topology of the physica szsema_
duCEdtre‘prsituations when M is not simply connected; and to repr
in certain

i i i istics, when the spatial dimension
ciated with exotic particle statlst711 ,

M

ions asso ; .
fi = 9. Let us next see how this can occur

1. Diffeomorphisms and the Fundamental Group
5.1.

' i from elemen-
i re shall need some ideas

tructions that follow, we : e
o e e 175 Two (continuous, directed) arcs in a smoot}}, f:fonze ted
tary.topOl?V%y'having the same end points are called h?motopic i (? o can

manifo formed into the other. This establishes an eq.uw
be contimiousy <25 —y M is such an arc, we denote its homo-
b dat y is an

topy equivalence class by 8. For y e M, a pointed loop base y

opy

inning and ending at y. Two pointed loops i, B, based at y may
ginnin

e ., — and reparamaterized,

be traversed in succession — I ;olliv;z:dbzt ﬁy; e ﬂll
YiEIdi;g taat/t;;rsidp;);r?}?: olggzsif; dzirection, yielding t}l:eti:{/ersztl(;cf)ph oﬂr; Oi
e ope ivalence, so that the s
e o .'riizeizdk;(;?s ti? ybzqsztli at y becomes a group 7r1(]\/__ff) l—d—
oy e derl ental group or first homotopy group of the mani g t(.)
i b th? f“? a”cl)f ointed loops that can be cont'muouhsly d‘eforme )
o 'hom'owp}}rlc alssss 01? utrivial” loops) corresponds to the ldentltl}; etler;[eris
R EaalL roup. If all loops in M are trivial, we say t : JL
ir% th? fu;l:::clte; Nintriﬁal homotopy classes of loop? T(rig associate ‘
e ' i i cted manifold. _
windings alt)out }(Iocljjelrr;nz I:;Z;zlrj\l’/lf)l};fcoMnn;ay be constructed ?.stthe sepa]\\;e
oo lasses of arcs in M originating at a fixed pom‘ }; aé
s hf)mompy Cto class of arcs originating at ¥y jnd termm;‘a 1ng;ace
o1 homz)[ﬁ]l))yz x defines the projection p : M —_91 M. The spond
)EVE' M" N cted. while the distinct elements of p 62 corr;;pis :
. L S'lmplylgr?::;l:s of,the fundamental group w1 (M). If Qth e
- dl?tht . I, simply-connected neighborhood of the pomh ylements>
summem‘ly e ,E\\J/ is the disjoint union of neighborhoods of the (.e s
ot (OY) f\\c/f anld these neighborhoods may again be placed in cor
in M;

= : lement
of p~1(y) M). We may think of each e
ith the elements of m (M). _ ithin p—1(0,), as
Slzondf?c)e \:Illd likewise each connected neighborhood within p~_(Oy
of p~(¥),

( ]V Whe[e
bE1O g to a dlﬁe ent heet n M. Finally, note tha.t f T ﬂ S 1 (
ngln T § (¢}
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B is an arc from y to x) and B] € mm) (
based at y ), we may form the homotopy class
from y to x, traversing first the loop 8, and ¢
a left action of 7, (M) on M.

Consider for example the manifold M/ = [R3
cylinder (interior together with boundary)
axis. Let ¥ € M be a fixed base point.
We may assign a winding number n(f},

circles the missing cylinder 2 in (let us say} a counterclockwise direction
looking down from positive-z3, Homotopic loops clearly have the same
winding number, so that n(f1) depends only on the class [1); and when
two loops are traversed successively, their winding numbers add: n(f18,) =
n(B1) + n{fs). Thus we have in this case m (M) = Z (the additive group
of integers). '

Now consider the stability subgroup Diff o (M) of compactly-supported
diffeomorphisms of M = R3 — 2 leaving y fixed. Imagine further a fixed
radial path fu coming in from oo, perpendicular to the z3-axis, and

terminating at y. For a diffeomorphism n € Diff (M), let 5o B be
the path obtained by acting on 8

— Z, where Z is an infinite

To any loop 8; based at y

oo With 7. Since 7 becomes trivial at
infinity, 70 B coincides with Bos far away from the missing cylinder; bug
7° B may wind around the excluded region some number of times — e,
the (homotopy class of the) composite path Blno B, (beginning at y,
traversing first G3! and then 7o o) belongs to the fundamental group.
Hence we have the map 5 — Bt 108ss = B, where By’ is a pointed loop
based at y. This map defines a group homomorphism Diff ;(M ) = my (M),
which we denote 5 — [47]. Thus the left action of 7 (M) on M defined
above gives us a left action of the stability subgroup Di (M) on M,
while an irreducible unitary representation T of 7, (M) likewise defines a
CUR of Diffe(M).

Moreover, we have a natural liftin
Diff (M} from M to M as follows,
base point y to x ¢ M, sothat [B] € M. The composite path fBa, 8 comes
in from a fixed direction at infinity, and terminates at x. For an arbitrary
diffeomorphism ¢ € Diffe(M }, the path do(8,, B) comes in from the same
fixed direction at infinity, and terminates at {x),; s0 that B3' ¢ o (B, B)
originates at y and terminates at #(x). Thus define ¢: M — M by

$8) = [} b0 (B0 8)]. , (116)
Ewwmwéﬁ%=$@;mep@uﬂ»=¢@am»—¢my

g of the right action of the full group
As before let 8 be an arc from the

where 3 is a pointed loop
of the composite arc [ﬁlﬁ} :
hen the arc 8. This defineg

of fixed radius about the z3.

the net number of times the loop

© lifting of the action of Diffe(M
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the representation induced by T is given by ’ -
[V ($)T)(a]) = F(glal) \/ Te(¥) (

In the present example we ﬁ).c g E ]{O, 27;)1; a;:l:le :te;
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X, We may write ) = B4(x). Then let % be the Hilbert space of Square
integrable functions on M taking values in W, and

QW = ¥, where ¥(x) takes the value E’([ﬂ]) for [A]

€ Mo and p([g)) = x,
We have the representation in H that is

unitarily equivalent to v,

V(AUI(x) = T*(B4(x))¥(p(x)) To(x) - (118)

5.2. The Aharonov-Bohm Effect
The well-known Aharonoy
a charged particle circles

tightly-wound solenocid o
produce an approximate

~Bohm effect in quantum mechanics occurs whep

a region of magnetic flux.7® Imagine an idealized,

f infinite length within the cylinder Z, 50 as to

ly uniform magnetic field in the z3-direction in

the interior of the solenoid, but effectively zero magnetic field outside the
solenoid. Consider a single charged particle confined to the spatial region
outside Z where the magnetic field strength is Zero; e.g., by a high poten-
tial barrier. Solving the time-independent Schrédinger equation leads to
the conclusion that the spectrum of Lg, the z®-component of the orbital
(kinetic) angular momentum, is shifted from its usual values by an amount
proportional to the magnetic flux through the solenoid.

In the presence of an external magnetic field B(
operator field but as an ordinary vector field on three-dimensional physical
space, the expression for the commutator [J(g1), J(g2)] in the equal-time,
nonrelativistic current algebra describing charged particles is modified from
Eq. (43) by the addition of a term proportional to p(B - [g x g,]).77
However, in the region outside the cylinder Z, we have B(x) =0, so that
even when the magnetic field behind the barrier is non-zero, the Lie algebra
of local currents describing the quantum kinematics is unchanged,

As we saw earlier, angular momentum can be expressed in terms of
the local, self-adjoint current density operators in a representation of this
algebra. The currents, in turn, derive from a representation of the. dif-
feomorphism group. The different possible shifts in the spectrum of . [,
may be obtained from the distinct (s.e., unitarily Inequivalent) represen-
tations of the Lie algebra of currents induced by characters of the fun-
damental group of M = R® — z. I fact, the local current operator in
such a representation describing a single particle takes the familiar form
JI(g)¥(x) = (B/20)[g(x) -V + V - 8(x)]¥(x); but the domain of defini-
tion of J'(g) consists of wave functions ¥(x) on R® — satisfying the
boundary condition (in cylindrical coordinates)

x), considered not as an

U(r,2m,2) = e Y(r 0, 2), (119)

Q:?:Zh)?-lbegivenby :
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configuration space and the physics of charged particles circling regions of
magnetic flux (as in the Aharonov-Bohm effect). .

Subsequently Wilczek introduced the term “anyon” to describe such
particles, and proposed a model for them based on charged-particle/Aux-
tube composites.3:82 Jackiw and Redlich pointed out that in such models
it is the kinetic angular momentum (not the canonical angular momentum)
for which the spectrum shifts away from integer multiples of #,33 which is
consistent with my earlier development with Menikoff and Sharp. Wilczek
also proposed an association between anyons and fractional spin in two
space dimensions. This is very natural, since bosons are associated with
integer spin and fermions with half-integer spin; and the latter associations
are among the most important rigorous results of axiomatic (relativistic)
quantum field theory in 3 4+ 1 dimensions.?? Some applications of ideas
about anyons to surface phenomena and related domains of physics followed
rapidly.84.85 :

As in the preceding development, the unitary representations of
Diff°(R?) describing anyons are obtained as induced representations. Here
the fundamental group of the configuration space an;l) is Artin’s braid
group Bp; and this is the group whose one-dimensjonal representations
describe the anyonic wave function symmetry.

A braid b € By may be visualized as a set of woollen strands connecting
arow of N fixed posts to another row of NV posts, where different crossings
of the strands above or below each other distinguish different braids. The
product of two braids is formed by operating with them suceessively, while
the identity element e is the braid where strands do not cross. Let b,
denote an elementary crossing of strand j over strand j + 1, for j =
1,..., N~1; then the inverse braid b7 is the elementary crossing of strand
7+ 1 over strand j. The braid group itself may be constructed as the free

group generated by the elements b; and b]«_l, modulo the (Yang-Baxter)
equivalence relations,

bibrr by = by bybiyy (j=1,.. G N -2). (120)

For N =1 the braid group is trivial; for N
additive integers Z; while for N > 3, it is an infinite, non-Abelian group.
In analogy with our discussion of R — Z, a braid may also be associ-
ated with (the homotopy class of) aset of N nonintersecting paths in K2,
coming in from infinity in a specified direction and terminating at the fixed

points {y1,...,yn} =. As in earlier discussions, we have here a homo-
morphism from the stability subgroup Diffs (R?)

= 2 it is isomorphic to the

onto By — in general,
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compactly-supported diffeomorphism leaving vo ﬁket,d ac.ts ‘:(Z ::ansform
?he homotopy class of the original set of paths from mﬁmty. J Thusha
- "tar‘y representation of By defines a CUR of the stability subgroup. The
?mciucing construction proceeds in parallel with the development fo'r SN..
" The one-dimensional unitary representations of By are spemﬁed. k;y
the single parameter ¢ € {0,27), with each b;. re_,presented as mulh;.) i
ation by €. Only the values § = 0 and 8 = 7 actu?ﬂly determn;e
Ce resentations of Spy; the other values of lead to the. mducled' reprI-
refltamtions of the diffeomorphism group describing anyomc. statistics. In
Sontrast unitary representations of Cy allow distln?t relative phasesA g:s;
:i ned C(;nsistently) when different pairs of particles c1rcle8 sigh other\.N e
wg had identified the braid group as the relevant_ group,® % Y, S.ld u ar;
ed that on-ly the one-dimensional representations of By shou o}(icu]
‘gu uantum mechanics.8® However, the diffeomorphism group appr?acd i -
i:)l“?ed us also to predict the possibility of quantum syst.erns describe z
higher-dimensional unitary representations of By (particles later terme
“nlektons™).8¢ o .
P There iz also a riatural homomorphism hy from By onto S~, obzaldn;d
by disregarding the braiding and attending only to the' p(l)lsts Zonnec e th};
ituting the braid. Mathematically, hy maps
the woollen strands constituting : atl
enerator b; to the exchange permutation (7 j + 1-). The kem.el ?i}hNe
.g t'he set ofJ braids b for which hpn(b) is the identity permutartIl‘in,k 1es1
. its initial position. The kerne
j i t return each post to its initial p
are just the braids tha ! pon e e
ivi the colored braid group. 'Lh
forms a nontrivial subgroup Cn, . roup ot meane
i stinguishable particles in K* can also acq
t the wave function for distinguis ' ‘
tha“:nyo:ic” relative phase, as one particle circles another and returns to
an ,
: iiap 86
its original position. '
. I\jllfny details and much subsequent development has been omlt;ctle: zl;rs,
. co-
i i i ideas to Chern-Simons quantum iie
including the relation of these i . o A e Hal
e i ication i ibing the integer and fractional quan
ries, their application in descri _ . : S—
, i i ibi ssible mechanisms for superc
cts, and their role in describing po hanism
Ef\fzty ,The reader is referred to more recent review articles, as well as the
' 91,92,93 . .
books by Wilczek and by Khare.?%?!

5.4. Fields Intertwining Current Algebra Representations

i i i nism
“The N-particle unitary Bose or Fermi representations of the dlﬁeorzlorgzlds
roup, and the corresponding representations of the algebra of vector esen,
. . i resen-
ivider;tly form distinct hierarchies in a certain sense the Bose rep
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tations “belong” together, as do the Fermi representations. Likewise the
anyonic representations of Diff °(R*) for any fixed value of @ form a hier-
archy. To make precise the sense in which this is so, we regard the creation
and annihilation fields as intertwining operators between N -particle sub-
spaces (for adjacent values of NV ), and consider the commutation relations
that these fields satisfy with the local currents. In effect, we are combining
Eqs. (34) or (37) with Egs. (44)~(45), and generalizing the resulting system
to include anyons and possibly other kinds of quantum configurations {e.g.,
extended objects).
Let Un(f) and Vn(#) be systems of unitary operators satisfying
Eq. (62) in Hilbert spaces Hy, describing systems of N identical par-
ticles (or N identical configurations of some other sort} in a manifold M.
Let pn(f) and Jn(g) be corresponding systems of self-adjoint operators
in Hy, satisfying Eaqs. (43). Let h e Hi, and let ¢*(h) and (k) be in-
tertwining operators labeled by A. That is, take *(h) : 4y — Hn+1 and
B(h) : Hyi1 = Hy, with ¥(h) annihilating the vacuum state (Y € Hg.
These assumptions assert that the configuration space on whick H, is mod-
eled establishes the nature of the configuration that 1* is taken to create,
and ¢ is taken to annihilate; while the state vector A describes the acthial
state in which the configuration is created or annihilated.
Sharp and T proposed that the necessary and sufficient conditions for
the indexed set of representations to form a hierarchy should be

Un+1(f)9" (B) = ¥* (Un=i (R)UN(S) /
Vi1 (9™ () = 4* (V=1 (8)h) Vv (6) (121)

where the corresponding relations for the annihilation field v are obtained
as the adjoint of these equations.% Equations (121) are very natural geo-
metrically. Let us think of ¥" as creating a. particle at x in M or, more
generally, as creating a possibly extended configuration o embedded in M .
We think of h as an averaging function, defin
configurations. The first relation in Eqs. (121)
both act locally in M. The second relation a.
creating a, single new configuration and then t
by a diffeomorphism of M, is the same as the
the diffeomorphism, and then creating the tr
the transformation law for singleton configur
the action of Viv=;(¢) on #,.

In anticipating that thig
particles (including bosons,

ed on the space of singleton
then asserts that U and P
sserts that the result of first
ransforming the state vector
esult of first transforming by
ansformed new cbject. Here
ations is given, of course, by

general structure occurs not only for point
fermions, and anyons), but also for extended

-
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tion and anni-
expect that the crea
; h as filaments or tubes, we. : ; o
ObJe?ts S; Clds are not necessarily distributions over the. physical space;lduj
bil at.lgln oevef a space of spatially extended conﬁglfratzons. But p a
possit yo erator-valued distributions over the physxca} szceil Cmente of
e ro I;E) (121), we obtain the brackets between 1 an‘IIt ee o
From P.q. ) e o
the current algebra. Defining p(f) and J(g) sothat p(f)¥n =p

J(g)¥n= Jn(g)¥ N, we have
(5, 0 (W) = ¥ (ow= (D)

(J(g), v (W] =¥ (In=(8)h), (122)

i i are given by the adjoint of these.
Whersoilgsai%;;lﬁc&rii(celjlsa’;gr? 1c‘:volzgrrlnps thatgthe canonical Bose and Fermi
equations. :

o ﬁeld's Sa’::i‘}c, ]LE))SL;J (s:fri)'r;mtator brackets occur here and 'in

Yy emphaéme tation or g-commutation relations. The pomtv
B O P erin with the. dexed family of N-particle Bose or Fermi
or, alternatively, the corresponding
we can construct the field

is that if we begin with the in
representations of the current algebra. (¢ )
representations of the semidirect product group ,.t e the
operators that fulfill Bgs. (122) or (121). The:l(;n i o o
priori assump —

ction — no longer an a pre ' - o el
cf)zsiuqual-time commutation relations (=) and Ferrgggiezc\l’ ¢ thiugh >
?’mz anticommutation relations (+) as given by Eqs.d ,d ven Diougt e
alssumed only the commutator brackets _betwe(en) ﬁeldsJa.(r; e e

in Eqs. (41) for p(x) an :

consequence we obtain i
fcl;rrfgr?:cal ﬁelgs which until this point have been ta-bkirsl to be fi
equatidns for the local currents i.n these repgiiigtzifa“.nihuaﬁon elde for
construct explicit anyon cre | ang pelce o

i 2).84:%° The result,
i Rqs. (121) and (12 ‘
i in two-space, obeying ° resul, o
IZ'artlrcrl:;sny interesting details, is that the anyon ﬁeldfs obgihciscgne uiation
H;itions where g = exp i is a complex number o r{xok = exc,hange "
Ii' e ph;Lse change associated with a single countergtot.: W
iv -

:wo anyons. With (4, B], defined by Eq. (14), we obtai

[0, 8,90y, )]y = [0 (x,8), 97 (v, 8, =0,

Similarly, we

W(Yaﬂﬂ/"(xxt)lq :5\(}(_},)' (123)

: the latter correspond to
st two relations of

These are, of course, generalizations of Eqs. f;)) N
the choices ¢ = 1 or ¢ = ~1. When ¢ # :
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Eq. (123) should be i
. € interprete .
(x,¥) in a half-space of ;;R . xd Hitz)r consisten
~ space we have the (1/g)-bracket

cousis ¢y as holding for ordered Pairs
, in the complement of that, half:

We also have the fact that Eqs ?213’)02 clonﬁguration spaces.
' - (41) hold, whereby p(x)
and J(x) are

EXPtessed m terlns Of the aII&OIl ﬁelds. Beglmllllg Wlth theSe equat]()][ﬂ
together Wlth t-he a-lgebl axc Ideﬂtlty
.

[AB,C]. = A[B,C), + 4[4, 0),, B (124)

which relates the .
ordinary co

t}Tat the brackets of ¥ and :Zlmutat()r to the ¢-

with Egs. (122).

with o comlmutator, one verifieg
. are in fact in accordance

6. Conclusion

In th
- eselle;tures, we have reviewed at an int
uo ;nltary representations of an infinjte ;
iiteomorphisms of physical space — g,
— an

oductory level how the contin-

m . :
echanics, especially measur

1 t y I 34 Ie m ny excitl g eVe(i[)“le[ S arn(
cont nues ()eU()]Ve rapldl . he € A aa]SO a CITIn d

partial results fo
T gu
tion spaces, Theseqinilrismfthéo.ry on other infinite-dimensional
solf. e families of quasiinvariant @ configusa-

Hopefully lectures at future COP

some of these important topics, ROMAPH conferences will address

carrying the development further.
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