Quantum Dirichlet forms and their recent applications

Adam Skalski

Białowieża

25 VI 2018

Our aim today is to show how one can encode certain properties of a von Neumann algebra or of a quantum group, using quantum Markov semigroups or/and their associated Dirichlet forms

Haagerup property

A discrete group G has the Haagerup property if it admits a mixing (C_0-) unitary representation which weakly contains the trivial representation.

In other words, we have $\pi: \mathcal{G}
ightarrow \mathcal{B}(\mathsf{H})$ such that

$$\forall_{\xi,\eta\in\mathsf{H}} \langle \xi,\pi(\cdot)\eta\rangle\in\mathsf{C}_0(G),$$

but for some net of unit vectors $(\xi_i)_{i \in I}$ such that

$$\forall_{g\in G} \ \pi(g)(\xi_i) - \xi_i \xrightarrow{i\in I} 0$$

Haagerup property via positive definite functions

 $\varphi: G \to \mathbb{C}$ is positive definite if $\varphi(e) = 1$ and for all $n \in \mathbb{N}$, $g_1, \ldots, g_n \in G, \lambda_1, \ldots, \lambda_n \in \mathbb{C}$

$$\sum_{i,j=1}^n \varphi(g_i^{-1}g_j)\overline{\lambda_i}\lambda_j \ge 0.$$

A discrete group G has the Haagerup property if it admits a net of positive definite functions ϕ_i which belong to $C_0(G)$, and yet converge pointwise to 1.

If G is countable, we can actually arrange $I = \mathbb{R}_+$ and $\phi_t = exp(-t\psi)$.

Haagerup property via positive definite functions

Theorem (Schönberg correspondence)

A symmetric function $\psi : G \to \mathbb{R}$ $(\psi(g) = \psi(g^{-1}), g \in G)$ is conditionally positive definite if and only if for each $t \ge 0$ the function $\varphi_t := e^{t\psi}$ is positive definite.

Theorem

A countable group G has Haagerup property if and only if it admits a proper symmetric conditionally positive definite function.

Considering the associated Herz-Schur multipliers acting on VN(G), i.e. maps of the form

$$M_t(\lambda_g) = \phi_t(g)\lambda_g, \quad g \in G,$$

we get the next reformulation.

Quantum Dirichlet forms Approximation properties of groups – case study

Haagerup property via von Neumann algebraic semigroup approximation

Theorem

A countable group G has Haagerup property if and only if the von Neumann algebra VN(G) admits a symmetric quantum Markov semigroup consisting of L^2 -compact Herz-Schur multipliers.

We build the semigroup, first constructing ψ – which can be viewed as a 'generating functional for the semigroup'.

Haagerup property for von Neumann algebras

The following is one of several equivalent versions.

Definition (Caspers + AS, Okayasu + Tomatsu)

Let (M, ϕ) be a von Neumann algebra with a faithful normal semifinite weight. We say that (M, ϕ) has the Haagerup property if there exists a net of normal completely positive, ϕ -reducing maps $(\Phi_i)_{i \in \mathcal{I}}$ on M such that the KMS-induced maps T_i on $L^2(M, \varphi)$ are compact and the net $(T_i)_{i \in \mathcal{I}}$ converges to $I_{L^2(M, \varphi)}$ strongly.

Theorem (C+S, O+T)

The property above does not depend on the choice of the weight.

Haagerup property via Markov semigroups

Let (M, φ) be a von Neumann algebra equipped with a faithful normal state.

Definition

A quantum Markov semigroup $\{\Phi_t : t \ge 0\}$ on (M, φ) is immediately L^2 -compact if each of the maps $\Phi_t^{(2)}$ with t > 0 is compact.

The next result was inspired by the theorem for finite von Neumann algebras due to Jolissaint and Martin.

Theorem (Caspers + AS)

The following are equivalent:

- (M, φ) has the Haagerup property;
- **(**) there exists an immediately L^2 -compact KMS-symmetric Markov semigroup $\{\Phi_t : t \ge 0\}$ on M.

Haagerup property via Dirichlet forms

Theorem (Caspers + AS)

The following are equivalent:

- (M, φ) has the Haagerup property;
- L²(M, φ) admits an orthonormal basis (e_n)_{n∈N} and a non-decreasing sequence of non-negative numbers (λ_n)_{n∈N} such that lim_{n→∞} λ_n = +∞ and the prescription

$$Q(\xi) = \sum_{n=1}^{\infty} \lambda_n |\langle e_n, \xi \rangle|^2, \quad \xi \in \operatorname{Dom} Q,$$

where Dom $Q = \{\xi \in H_{\varphi} : \sum_{n=1}^{\infty} \lambda_n | \langle e_n, \xi \rangle |^2 < \infty \}$, defines a completely Dirichlet form.

LCQGs

 $\mathbb G$ – locally compact quantum group à la Kustermans-Vaes

 $L^\infty(\mathbb{G})$ – the von Neumann algebra, together with the *coproduct* (carrying all the information about $\mathbb{G})$

 $\Delta: L^\infty(\mathbb{G}) \to L^\infty(\mathbb{G})\overline{\otimes} L^\infty(\mathbb{G})$

and a canonical *right Haar weight* ϕ $C_0(\mathbb{G})$ – the corresponding (reduced) *C**-object $C_0^u(\mathbb{G})$ – the universal version of $C_0(\mathbb{G})$,

 $\mathsf{L}^2(\mathbb{G})$ – the GNS Hilbert space of the right invariant Haar weight ϕ on $\mathsf{L}^\infty(\mathbb{G})$

 $L^{1}(\mathbb{G})$ – predual of $L^{\infty}(\mathbb{G})$, with a natural Banach algebra structure.

$$\mathsf{C}_{0}(\mathbb{G}) \subset \mathsf{L}^{\infty}(\mathbb{G})$$
$$\mathsf{L}^{2}(\mathbb{G}) \approx \mathsf{L}^{2}(\mathsf{L}^{\infty}(\mathbb{G}), \phi)$$

Each LCQG \mathbb{G} admits the dual LCQG $\widehat{\mathbb{G}}$. L^{∞}($\widehat{\mathbb{G}}$), C₀($\widehat{\mathbb{G}}$) – subalgebras of $B(L^2(\mathbb{G}))$

In particular for G – locally compact group

$$L^{\infty}(\widehat{G}) = VN(G), \quad C_0(\widehat{G}) = C_r^*(G), \quad C_0^u(\widehat{G}) = C^*(G)$$

We sometimes write

$$L^{\infty}(\widehat{\mathbb{G}}) = VN(\mathbb{G}), \quad C_{0}(\widehat{\mathbb{G}}) = C_{r}^{*}(\mathbb{G}), \quad C_{0}^{u}(\widehat{\mathbb{G}}) = C^{*}(\mathbb{G})$$

Simplifications in the compact case

Definition

 \mathbb{G} is said to be compact if $C_0(\mathbb{G})$ is unital (so written as $C(\mathbb{G})$), equivalently, the weight ϕ is a state.

Any compact quantum group can be described purely algebraically via the Hopf *-algebra $\operatorname{Pol}(\mathbb{G}) \subset C(\mathbb{G})$, with the counit ϵ .

Convolution semigroups of states on compact quantum groups

A family $(\mu_t)_{t \ge 0_+}$ of states on $\operatorname{Pol}(\mathbb{G})$ is called a convolution semigroup of states if

Such convolution semigroups admit generating functionals:

$$\gamma(a) = \lim_{t \to 0^+} \frac{\mu_t(a) - \epsilon(a)}{t}, \quad a \in \operatorname{Pol}(\mathbb{G}).$$

We associate to it a convolution semigroup of operators $(R_{\mu_t})_{t \ge 0_+}$ on $\operatorname{Pol}(\mathbb{G})$:

$$R_{\mu_t} := (\mathsf{id} \otimes \mu_t) \circ \Delta$$

These extend to operators on $\mathsf{L}^\infty(\mathbb{G})$ which form a Markov semigroup. The corresponding Dirichlet forms contain $\mathrm{Pol}(\mathbb{G})$ in the domain and can be characterised/studied in the purely algebraic manner (see Cipriani, Franz, Kula).

Convolution semigroups of states revisited

 \mathbb{G} – locally compact quantum group

A family $(\mu_t)_{t\geq 0_+}$ of states on $C^u_0(\mathbb{G})$ is called a convolution semigroup of states if

We no longer have the 'algebraic domain' such as $\operatorname{Pol}(\mathbb{G})$. Generating functionals are densely defined, but that is all we know a priori (however: very recently we showed that the domain of the generating functional always contains a dense *-subalgebra).

Convolution operators - revisited once again

 $C_0^u(\mathbb{G})$ admits a canonical involutive operator \mathbb{R}^u , so called universal unitary antipode (playing the role of the inverse operation).

Theorem

Let $\mu \in S(C_0^u(\mathbb{G}))$. The associated operator $R_\mu : L^\infty(\mathbb{G}) \to L^\infty(\mathbb{G})$ (which can be informally thought of as the map $(\mu \otimes id) \circ \Delta$) is unital, completely positive, ϕ -preserving. The map R_μ is KMS-symmetric iff $\mu = \mu \circ \mathbb{R}^u$. Its KMS implementation (acting on L²(\mathbb{G})) is always bounded and belongs to L^{\infty}($\widehat{\mathbb{G}}$).

Convolution semigroups on locally compact quantum groups- main result

Theorem

Let $\mathbb G$ be a locally compact quantum group. There exist 1-1 correspondences between:

- *w*^{*}-continuous convolution semigroups (µ_t)_{t≥0} of R^u-invariant states of C^u₀(G);
- C₀^{*}-semigroups (T_t)_{t≥0} of normal, unital, completely positive maps on L[∞](G) that are KMS-symmetric with respect to φ and satisfy Δ ∘ T_t = (T_t ⊗ id) ∘ Δ for every t ≥ 0;
- Completely Dirichlet forms Q on L²(G) with respect to φ that are invariant under U(L[∞](Ĝ)') (modulo multiplication of forms by a positive number).

Applications to geometric properties of quantum groups

Theorem

Let \mathbb{G} be a second countable locally compact quantum group. Then $\hat{\mathbb{G}}$ has Property (T) of Kazhdan if and only if every convolution semigroup of \mathbb{R}^{u} -invariant states on $C_{0}^{u}(\mathbb{G})$ has a bounded generator.

Theorem

Let \mathbb{G} be a second countable locally compact quantum group. Then $\hat{\mathbb{G}}$ has the Haagerup property if and only if there exists a convolution semigroup of \mathbb{R}^{u} -invariant states on $C_{0}^{u}(\mathbb{G})$ such that the L^{2} -implementations of the associated convolution operators, acting on $L^{2}(\mathbb{G})$, in fact belong to $C_{0}(\hat{\mathbb{G}})$.

In the compact case every 'generating functional', i.e. a hermitian, conditionally positive functional on the algebra $\operatorname{Pol}(\mathbb{G})$, vanishing at 1, indeed generates a convolution semigroup of states.

Suppose we have a dense unital *-subalgebra A in the (unitization) of $C_0^u(\mathbb{G})$, and a functional $\gamma: A \to \mathbb{C}$ with the properties as above – what to assume about A to guarantee that L 'generates' a convolution semigroup of states?