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Quantum Dirichlet forms

Outline

Our aim today is to show how one can encode certain properties of a von
Neumann algebra or of a quantum group, using quantum Markov
semigroups or/and their associated Dirichlet forms
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Approximation properties of groups – case study

Haagerup property

A discrete group G has the Haagerup property if it admits a mixing
(C0−) unitary representation which weakly contains the trivial
representation.

In other words, we have π : G → B(H) such that

∀ξ,η∈H 〈ξ, π(·)η〉 ∈ C0(G ),

but for some net of unit vectors (ξi )i∈I such that

∀g∈G π(g)(ξi )− ξi
i∈I−→ 0
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Approximation properties of groups – case study

Haagerup property via positive definite functions

ϕ : G → C is positive definite if ϕ(e) = 1 and for all n ∈ N,
g1, . . . , gn ∈ G , λ1, . . . , λn ∈ C

n∑
i,j=1

ϕ(g−1
i gj)λiλj ≥ 0.

A discrete group G has the Haagerup property if it admits a net of
positive definite functions φi which belong to C0(G ), and yet converge
pointwise to 1.

If G is countable, we can actually arrange I = R+ and φt = exp(−tψ).



Quantum Dirichlet forms

Approximation properties of groups – case study

Haagerup property via positive definite functions

Theorem (Schönberg correspondence)

A symmetric function ψ : G → R (ψ(g) = ψ(g−1), g ∈ G ) is
conditionally positive definite if and only if for each t ≥ 0 the function
ϕt := etψ is positive definite.

Theorem

A countable group G has Haagerup property if and only if it admits a
proper symmetric conditionally positive definite function.

Considering the associated Herz-Schur multipliers acting on VN(G ), i.e.
maps of the form

Mt(λg ) = φt(g)λg , g ∈ G ,

we get the next reformulation.
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Approximation properties of groups – case study

Haagerup property via von Neumann algebraic
semigroup approximation

Theorem

A countable group G has Haagerup property if and only if the von
Neumann algebra VN(G ) admits a symmetric quantum Markov
semigroup consisting of L2-compact Herz-Schur multipliers.

We build the semigroup, first constructing ψ – which can be viewed as a
‘generating functional for the semigroup’.
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Haagerup property for vNas

Haagerup property for von Neumann algebras

The following is one of several equivalent versions.

Definition (Caspers + AS, Okayasu + Tomatsu)

Let (M, φ) be a von Neumann algebra with a faithful normal semifinite
weight. We say that (M, φ) has the Haagerup property if there exists a
net of normal completely positive, φ-reducing maps (Φi )i∈I on M such
that the KMS-induced maps Ti on L2(M, ϕ) are compact and the net
(Ti )i∈I converges to IL2(M,ϕ) strongly.

Theorem (C+S, O+T)

The property above does not depend on the choice of the weight.
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Haagerup property for vNas

Haagerup property via Markov semigroups

Let (M, ϕ) be a von Neumann algebra equipped with a faithful normal
state.

Definition

A quantum Markov semigroup {Φt : t ≥ 0} on (M, ϕ) is immediately

L2-compact if each of the maps Φ
(2)
t with t > 0 is compact.

The next result was inspired by the theorem for finite von Neumann
algebras due to Jolissaint and Martin.

Theorem (Caspers + AS)

The following are equivalent:

i (M, ϕ) has the Haagerup property;

ii there exists an immediately L2-compact KMS-symmetric Markov
semigroup {Φt : t ≥ 0} on M.
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Haagerup property for vNas

Haagerup property via Dirichlet forms

Theorem (Caspers + AS)

The following are equivalent:

i (M, ϕ) has the Haagerup property;

ii L2(M, ϕ) admits an orthonormal basis (en)n∈N and a non-decreasing
sequence of non-negative numbers (λn)n∈N such that
limn→∞ λn = +∞ and the prescription

Q(ξ) =
∞∑
n=1

λn|〈en, ξ〉|2, ξ ∈ DomQ,

where DomQ = {ξ ∈ Hϕ :
∑∞

n=1 λn|〈en, ξ〉|2 <∞}, defines a
completely Dirichlet form.
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LCQG Applications

LCQGs

G – locally compact quantum group à la Kustermans-Vaes

L∞(G) – the von Neumann algebra, together with the coproduct
(carrying all the information about G)

∆ : L∞(G)→ L∞(G)⊗L∞(G)

and a canonical right Haar weight φ

C0(G) – the corresponding (reduced) C∗-object

Cu
0(G) – the universal version of C0(G),

L2(G) – the GNS Hilbert space of the right invariant Haar weight φ on
L∞(G)

L1(G) – predual of L∞(G), with a natural Banach algebra structure.

C0(G) ⊂ L∞(G)

L2(G) ≈ L2(L∞(G), φ)
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LCQG Applications

Dual groups

Each LCQG G admits the dual LCQG Ĝ.

L∞(Ĝ), C0(Ĝ) – subalgebras of B(L2(G))

In particular for G – locally compact group

L∞(Ĝ ) = VN(G ), C0(Ĝ ) = C∗r (G ), Cu
0(Ĝ ) = C∗(G )

We sometimes write

L∞(Ĝ) = VN(G), C0(Ĝ) = C∗r (G), Cu
0(Ĝ) = C∗(G)
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LCQG Applications

Simplifications in the compact case

Definition

G is said to be compact if C0(G) is unital (so written as C(G)),
equivalently, the weight φ is a state.

Any compact quantum group can be described purely algebraically via
the Hopf *-algebra Pol(G) ⊂ C(G), with the counit ε.
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LCQG Applications

Convolution semigroups of states on compact quantum
groups

A family (µt)t≥0+ of states on Pol(G) is called a convolution semigroup
of states if

i µt+s = µt ? µs := (µt ⊗ µs) ◦∆, t, s ≥ 0;

ii µt(a)
t→0+

−→ µ0(a) := ε(a), a ∈ Pol(G).

Such convolution semigroups admit generating functionals:

γ(a) = lim
t→0+

µt(a)− ε(a)

t
, a ∈ Pol(G).

We associate to it a convolution semigroup of operators (Rµt )t≥0+ on
Pol(G):

Rµt := (id⊗ µt) ◦∆

These extend to operators on L∞(G) which form a Markov semigroup.
The corresponding Dirichlet forms contain Pol(G) in the domain and can
be characterised/studied in the purely algebraic manner (see Cipriani,
Franz, Kula).
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LCQG Applications

Convolution semigroups of states revisited

G – locally compact quantum group

A family (µt)t≥0+ of states on Cu
0(G) is called a convolution semigroup

of states if

i µt+s = µt ? µs := (µt ⊗ µs) ◦∆, t, s ≥ 0;

ii µt(a)
t→0+

−→ µ0(a) := ε(a), a ∈ Cu
0(G).

We no longer have the ‘algebraic domain’ such as Pol(G). Generating
functionals are densely defined, but that is all we know a priori (however:
very recently we showed that the domain of the generating functional
always contains a dense ∗-subalgebra).



Quantum Dirichlet forms

LCQG Applications

Convolution operators – revisited once again

Cu
0(G) admits a canonical involutive operator Ru, so called universal

unitary antipode (playing the role of the inverse operation).

Theorem

Let µ ∈ S(Cu
0(G))). The associated operator Rµ : L∞(G)→ L∞(G)

(which can be informally thought of as the map (µ⊗ id) ◦∆) is unital,
completely positive, φ-preserving. The map Rµ is KMS-symmetric iff
µ = µ ◦ Ru. Its KMS implementation (acting on L2(G)) is always
bounded and belongs to L∞(Ĝ).
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LCQG Applications

Convolution semigroups on locally compact quantum
groups– main result

Theorem

Let G be a locally compact quantum group. There exist 1− 1
correspondences between:

i w∗-continuous convolution semigroups (µt)t≥0 of Ru-invariant
states of Cu

0(G);

ii C∗0 -semigroups (Tt)t≥0 of normal, unital, completely positive maps
on L∞(G) that are KMS-symmetric with respect to φ and satisfy
∆ ◦ Tt = (Tt ⊗ id) ◦∆ for every t ≥ 0;

iii completely Dirichlet forms Q on L2(G) with respect to φ that are
invariant under U(L∞(Ĝ)′) (modulo multiplication of forms by a
positive number).
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LCQG Applications

Applications to geometric properties of quantum groups

Theorem

Let G be a second countable locally compact quantum group. Then Ĝ
has Property (T) of Kazhdan if and only if every convolution semigroup
of Ru-invariant states on Cu

0(G) has a bounded generator.

Theorem

Let G be a second countable locally compact quantum group. Then Ĝ
has the Haagerup property if and only if there exists a convolution
semigroup of Ru-invariant states on Cu

0(G) such that the
L2-implementations of the associated convolution operators, acting on
L2(G), in fact belong to C0(Ĝ).
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LCQG Applications

Ongoing work

In the compact case every ‘generating functional’, i.e. a hermitian,
conditionally positive functional on the algebra Pol(G), vanishing at 1,
indeed generates a convolution semigroup of states.

Suppose we have a dense unital ∗-subalgebra A in the (unitization) of
Cu

0(G), and a functional γ : A→ C with the properties as above – what
to assume about A to guarantee that L ‘generates’ a convolution
semigroup of states?
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