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Abstract. We will discuss the notion of classical Dirichlet forms, quadratic forms giving rise
to Markov semigroups on the spaces of the form L2(X,µ), and its quantum generalizations,
defined in terms of von Neumann algebras. Some very recent applications of such quantum
Dirichlet forms will be presented and further directions of research outlined.
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Plan of the lectures

Lecture 1 C0-semigroups of operators and classical Dirichlet forms: C0-semigroups of
operators and their generators; quadratic forms; Beurling-Deny conditions; some ex-
amples.

Lecture 2 Quantum Dirichlet forms: noncommutative Lp-spaces (tracial and non-tracial
case); quantum Markov semigroups; noncommutative Beurling-Deny conditions.

Lecture 3 Recent applications and perspectives: Haagerup property for von Neumann
algebras; quantum convolution semigroups; open problems.

The lectures should be accessible to the audience having a general functional analytic
background and some knowledge of operator algebras.
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1. Lecture 1

The originating idea of the classical theory of operator semigroups comes from the desire to
describe physical evolutions which are in some sense ‘time-invariant’, in the sense that what
happens to the system between time t and t + s depends only on the time distance s (and
the state of the system at time t). In probability such behaviour is usually called the Markov
property.

Definition 1.1. Let X be a Banach space. A C0-semigroup of operators is a family (Pt)t≥0

of bounded linear operators on X such that

(i) P0 = idX ;
(ii) Pt+s = Pt ◦ Ps, s, t ≥ 0;

(iii) limt→0+ Ptx = x, x ∈ X.

The last property is usually called the strong continuity or point-norm continuity. Some-
times we need to talk about C∗0 -semigroups: if Y is a Banach space then (Pt)t≥0 is called a
C∗0 -semigroup on X = Y ∗ if it is a family of bounded linear weak∗-continuous operators on
Y ∗ such that

lim
t→0+

(Ptx)(y) = x(y), x ∈ X, y ∈ Y.

Definition 1.2. Given a C0-semigroup of operators (Pt)t≥0 on X define

Dom(L) :=

{
x ∈ X : lim

t→0+

Ptx− x
t

exists

}
and further L : Dom(L)→ X by the formula

Lx = lim
t→0+

Ptx− x
t

, x ∈ Dom(L).

We have the following fundamental result.

Theorem 1.3. Let (Pt)t≥0 be a C0-semigroup of operators on a Banach space X. The map
L : Dom(L) → X defined above, called the generator of the semigroup (Pt)t≥0 is a densely
defined, closed, linear operator, determining the semigroup uniquely. Further the following
conditions are equivalent:

(i) Dom(L) = X;
(ii) L is bounded;

(iii) (Pt)t≥0 is norm continuous (or uniformly continuous), i.e. limt→0+ ‖Pt − P0‖ = 0.

In the latter case we have for each x ∈ X the formula

Ptx = exp(tL)(x) =

∞∑
n=0

(tL)nx

n!
.

In general the following question is difficult: when is a closed densely defined operator L a
generator of a C0-semigroup?

Theorem 1.4 (Hille-Yoshida). Let L : Dom(L) → X be a linear operator (Dom(L) ⊂ X).
The following are equivalent:

(i) L is a generator of a C0-semigroup of contractions (i.e. ‖Pt‖ ≤ 1, t ≥ 0);
2



(ii) L is closed, densely defined, and for all λ > 0 we have that the operator λidX − L is
invertible and

‖λ(λidX − L)−1‖ ≤ 1

(i.e. L satisfies a certain spectral condition).

How much easier things are if X is say a Hilbert space (to be denoted H)? Let ξ, η ∈ H.
Then we can ask when do the limits of the form

lim
t→0+

〈
ξ,
η − Ptη

t

〉
exist (obviously this is the case for η ∈ Dom(L)). If further all the operators Pt are self-
adjoint, then the usual polarisation identity implies that all the information is contained in
the densely defined quadratic form

Q(ξ) := lim
t→0+

〈
ξ,
ξ − Ptξ

t

〉
.

Note that then Q : Dom(Q)→ R.

Theorem 1.5. Let H be a Hilbert space. There is a 1-1 correspondence between the following
three classes of objects:

(i) C0-semigroups (Pt)t≥0 of self-adjoint contractions on H;
(ii) (unbounded) positive self-adjoint operators A on H;

(iii) closed, densely defined quadratic forms Q on H.

Very roughly speaking the correspondences are as follows: −A is the generator of (Pt)t≥0; we
have Pt = exp(−tA) (in the sense of the functional calculus for self-adjoint operators), and

Q(·) = ‖A
1
2 · ‖2.

Definition 1.6. Let (Ω, µ) be a space with a (non-negative) measure. A Markov semigroup
on L∞(Ω, µ) is a C∗0 -semigroup (Pt)t≥0 on L∞(Ω, µ) = L1(Ω, µ)∗ such that

(i) Pt1 ≤ 1, Ptf ≥ 0, f ∈ L∞(Ω, µ)+, t ≥ 0;
(ii)

∫
Ω fdµ =

∫
Ω Ptfdµ, f ∈ L∞(Ω, µ)+, t ≥ 0.

Such a semigroup is called symmetric if for all bounded f, g ∈ L2(Ω, µ)∫
Ω
f̄Ptgdµ =

∫
Ω
Ptfgdµ.

It is called conservative if Pt1 = 1, t ≥ 0.

All such semigroups restrict/extend to C0-semigroups of (positivity preserving) contrac-
tions on each of the Lp(Ω, µ)-spaces for p ∈ [1,∞).

Example 1.7. Consider the Euclidean space with the Lebesgue measure: (Rn, λ) and define
for each t ≥ 0, f ∈ L∞(Rn, λ)

(Ptf)(s) = (4πt)−
n
2

∫
Rn

exp(−‖s− r‖
2

4t
)f(r)dr, s ∈ Rn.

This defines a Markov semigroup – a so-called heat semigroup on Rn. In fact it is a translation
invariant conservative Markov semigroup, i.e. one of the form

Ptf = µt ? f, t ≥ 0, f ∈ L∞(Rn, λ),

where µt is a probability measure on Rn.
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The generator of the corresponding L2-semigroup is the Laplace operator : the closure of
the map −∆, where

(∆f)(s) =

n∑
i=1

∂2

∂s2
i

f(s1, . . . , sn)

for f in the Schwarz space S(Rn) ⊂ L2(Rn, λ). The corresponding quadratic form is

Qf =

n∑
i=1

∫
Rn

∣∣∣∣ ∂f∂si
∣∣∣∣2 ds

for f ∈ H1(Rn) = {f ∈ L2(Rn) : ∂f
∂si
∈ L2(Rn), i = 1, . . . , n}.

Definition 1.8. Let (Ω, µ) be a space with a (non-negative) measure. Denote by P∧ the
orthogonal projection onto the closed convex set {f ∈ L2(Ω, µ) : 0 ≤ f ≤ 1}. A densely
defined closed quadratic form Q on L2(Ω, µ) is called Dirichlet if for every f ∈ L2(Ω, µ)R we
have

f ∈ Dom(Q) =⇒ P∧f ∈ Dom(Q) and Q(P∧f) ≤ Q(f).

Theorem 1.9 (Beurling-Deny). Let (Ω, µ) be a space with a (non-negative) measure. There
is a 1-1 correspondence between:

(i) symmetric Markov semigroups on L∞(Ω, µ);
(ii) Dirichlet forms on L2(Ω, µ),

If the measure µ is finite, then the Markov semigroup in question is conservative if and only
if Q(1Ω) = 0.

We can chose whether we prefer to work with real or complex L2(Ω, µ). The closedness
condition can be replaced by lower semicontinuity, and with forms defined everywhere, but
sometimes taking value +∞.

Let G be a locally compact group. A family of probability measures (µt)t≥0 on G is called

a convolution semigroup if we have µ0 = δe, µt+s = µt ? µs, s, t ≥ 0 and
∫
G fdµt

t→0+−→ f(e) for
all f ∈ Cb(G).

Theorem 1.10. Let G be a locally compact group (with the Haar measure denoted dg). Then
there is a 1-1 correspondence between the following classes of objects:

(i) translation invariant symmetric conservative Markov semigroups on (G, dg);
(ii) translation invariant Dirichlet forms on L2(G, dg) (modulo multiplication by a positive

number);
(iii) convolution semigroups of probability measures on G;
(iv) Lévy processes on G, that is G-valued stochastic processes indexed by R+ with inde-

pendent, identically distributed increments.

Note that the maps Pt as above, given by the prescription

(Ptf)(s) =

∫
G
f(r−1s)dµt(r),

map continuous bounded functions into continuous bounded functions: this is usually called
the Feller property and is of big importance in classical probability.
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2. Lecture 2

The aim of this lecture is to present some of the earlier ideas in the quantum setting. We
will first replace the space (Ω, µ) by the algebra L∞(Ω, µ), and then consider general, not
necessarily commutative algebras which ‘look like’ L∞(Ω, µ) – von Neumann algebras.

Definition 2.1. A von Neumann algebra M is a weak*-closed unital *-subalgebra of the
algebra B(H) for some Hilbert space H (equivalently: a ∗-subalgebra M ⊂ B(H) such that
M = M′′ – the algebra is equal to its bicommutant). We say that ϕ : M+ → [0,∞] is a normal
semifinite faithful weight on M, when it is a homogeneous, additive map such that

(i) nϕ = {x ∈ M : ϕ(x∗x) <∞} is weak*-dense in M (semifiniteness);
(ii) when xi ↗ x, then ϕ(x) ≤ lim supi∈I ϕ(xi) (lower semicontinuity/normality)

(iii) ϕ(x∗x) = 0 implies x = 0 (faithfulness).

We call such a weight a state if ϕ(1) = 1. Weights extend to linear functionals on mϕ =
span{x ∈ M+ : ϕ(x) < ∞}; so normal faithful states can be viewed as special subclass of
usual bounded functionals on M. Finally ϕ as above is called tracial if for all x, y ∈ mϕ we
have ϕ(xy) = ϕ(yx).

Example 2.2. Consider the following examples:

(i) M = L∞(Ω, µ) ⊂ B(L2(Ω, µ)), ϕ(f) =
∫
fdµ;

(ii) M = Mn = B(Cn) (the algebra of n by n complex matrices), ϕ = 1
nTr (tracial state),

or ϕ(·) = Tr(D·), where D is a density matrix : positive-definite matrix of trace 1;
(iii) M = B(`2), ϕ(·) = Tr(D·), where D is a density matrix ( positive trace class operator

of trace 1), which yields a non-tracial state; or ϕ = Tr – which yields a tracial weight;
(iv) G-discrete group, H = `2(G). For g ∈ G let λg ∈ B(`2(G)) be a (right) shift operator:

λg(δh) = δgh, h ∈ G. Then define M = VN(G) = {λg : g ∈ G}′′ ⊂ B(`2(G)). Then the
canonical tracial state on VN(G) is ϕ = ωδe , i.e. ϕ(x) = 〈δe, xδe〉, x ∈ VN(G). The
construction of VN(G) generalises to the situation where G is an arbitrary locally
compact group, with ϕ becoming the so-called Plancherel weight. If G is abelian, we
have VN(G) = L∞(Ĝ) and the Plancherel weight of G is simply the Haar measure of

Ĝ.

Given a map Φ : M → M and n ∈ N we can always define ‘entrywise’ a map Φ(n) :
M⊗Mn → M⊗Mn, where M⊗Mn is the von Neumann algebra identified as the algebra of
n by n matrices with entries in M. A map Φ as above is called positive if Φ(M+) ⊂ M+, and

completely positive if each Φ(n) is positive.

Definition 2.3. Let (M, ϕ) be as above. A quantum Markov semigroup is a C∗0 -semigroup
of normal maps (Pt)t≥0 on M = (M∗)

∗ such that

(i) Pt1 ≤ 1, and each Pt is completely positive (t ≥ 0);
(ii) ϕ(f) = ϕ(Ptf), f ∈ M+, t ≥ 0.

The symmetry condition becomes in general more complicated! We can associate to a pair
(M, ϕ) non-commutative Lp-spaces, but the way of doing this is non-trivial.

If ϕ is tracial, the procedure is simpler. We can just consider

m(p) := {x ∈ M : ϕ(|x|p) <∞}, p ∈ [1,∞)

and complete it with respect to the norm

‖x‖p = ϕ(|x|p)
1
p .
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However, when ϕ is not tracial, this is not a norm!
There are several constructions in the non-tracial case, we will use the one due to Haagerup,

based on the Tomita-Takesaki theory, concerning the behaviour of the non-tracial states or
weights. We will just list some properties of the resulting Banach spaces:

• Lp(M, ϕ) are certain spaces of (unbounded) operators on a larger Hilbert space H,
closed under taking adjoints and positive parts;
• we have natural isomorphisms L∞(M, ϕ) ≈ M, L1(M, ϕ) ≈ M∗;
• but there are trivial intersections between different spaces, for example L∞(M, ϕ) ∩
L2(M, ϕ) = {0};
• there are different ways of getting from M into L2(M, ϕ). Advanced Tomota-Takesaki

theory allows us in a sense to write always ϕ(·) = Tr(D·), where D is a certain ‘density-

like’ operator. Symbolically we may describe the GNS-embedding x 7→ xD
1
2 and the

KMS-embedding as x 7→ D
1
4xD

1
4 . We will denote the latter by ι(2) : nϕ → L2(M, ϕ).

All that originates from the automorphism group σt acting on M, the so-called modular
automorphism group, ruling the non-traciality of ϕ:

ϕ(xy) = ϕ(yσi(x)),

for ‘good’ x, y ∈ M. We have in fact

σt = DitxD−it, x ∈ M, t ∈ R.

Consider the following informal computation:

ϕ(xy) = Tr(Dxy) = Tr(yDx) = Tr(y(DxD−1)D) = Tr(Dy(D−1xD))

= ϕ(y(D−1xD)) = ϕ(yσi(x))

Definition 2.4. A quantum Markov semigroup (Pt)t≥0 on (M, ϕ) is said to be KMS-symmetric
if for each t ≥ 0 the prescription

P
(2)
t (ι(2)(x)) = ι(2)(Ptx), x ∈ nϕ

is well-defined and yields a bounded self-adjoint operator on L2(M, ϕ).

Example 2.5. If (M, ϕ) = (L∞(Ω, µ),
∫
·dµ), then quantum Markov semigroups on (M, ϕ)

are precisely the Markov semigroups on (Ω, µ) discussed in Lecture 1.

Example 2.6. Let G be again a discrete group, M = VN(G), ϕ–canonical trace. Suppose
that ψ : G → R is a conditionally negative definite symmetric function, i.e. a function such
that

(i) ∀g∈G ψ(g) = ψ(g−1);

(ii) ∀n∈N∀λ1,...,λn∈C∀g1,...,gn∈G
∑n

i=1 λi = 0 =⇒
∑n

i,j=1 λiλjψ(g−1
i gj) ≥ 0.

Then the family of maps (Pt)t≥0 on VN(G) given by the formulas

Pt(λg) = exp(−tψ)λg, g ∈ G, t ≥ 0,

forms a quantum Markov semigroup of Herz-Schur multipliers.

Example 2.7. If (M, ϕ) = (Mn, tr), then every quantum Markov semigroup on (M, ϕ) ais
norm continuous and we can in fact characterise the generators:

Ptx = exp(tL)x, x ∈Mn, t ≥ 0,
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with L of the Lindblad or Gorini-Kossakowski-Sudarshan form:

Lx = −i[H,x] +
1

2

∑
α

([Vαx, V
∗
α ] + [Vα, xV

∗
α ]) , x ∈Mn.

Here H = H∗ ∈ Mn, Vα ∈ Mn,
∑

α[Vα, V
∗
α ] = 0, and [A,B] := AB − BA denote the

commutators. There are other variations of this form, for example:

Lx = −i[H,x] + E(x)− 1

2
{E(1), x} , x ∈Mn,

where H is as before, E : Mn →Mn is completely positive and {A,B} := AB +BA denotes
the anticommutator.

We are ready to discuss the Dirichlet forms in the quantum context.

Definition 2.8. Let (M, ϕ) be as above. Denote by P∧ the orthogonal projection onto the

closed convex set {f ∈ L2(M, ϕ) : 0 ≤ f ≤ D
1
2 }. A densely defined closed quadratic form Q

on L2(M, ϕ) is called Dirichlet if for every f ∈ L2(M, ϕ)R we have

f ∈ Dom(Q) =⇒ P∧f ∈ Dom(Q) and Q(P∧f) ≤ Q(f).

The form Q as above is called completely Dirichlet if for every n the natural associated
quadratic form on L2(M⊗Mn, ϕ⊗ trn) is Dirichlet.

Theorem 2.9 (Goldstein+Lindsay, Cipriani, AS+ Viselter). Let (M, ϕ) be as above. There
is a 1-1 correspondence between:

(i) quantum KMS-symmetric Markov semigroups on (M, ϕ);
(ii) Dirichlet forms on L2(M, ϕ).

If ϕ is a state, then the quantum Markov semigroup in question is conservative if and only if

Q(D
1
2 ) = 0.
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