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Aims:

I To construct (modules of sections of) cotangent and spinor
bundles over noncommutative surfaces (generalized Weyl
algebras).

I To construct real spectral triples (Dirac operators) on
noncommutative surfaces.



The classical construction
I Let M be a surface.
I Construct a principal bundle

P

π
��

U(1)oo

M

such that T ∗P is a trivial bundle, and
I

T ∗M ∼= P ×U(1) V ,

as (non-trivial) vector bundles, and
I

SM ∼= P ×U(1) W ,

as (trivial) vector bundles.
I Example: M = S2, P = S3.



Algebraically
We need to consider:

I an algebra B (of smooth functions on M),
I an algebra A (of smooth functions on P).
I P is an U(1)-principal bundle over M means that A is

strongly graded by Z, the Pontrjagin dual of U(1), and B is
isomorphic to the degree-zero part of A.

Further we need:
I A first-order differential calculus ΩA on A (sections of T ∗P)

such that ΩA is free as a left and right A-module (triviality
of T ∗P).

I Restriction of ΩA to a calculus ΩB on B.
I Identification of ΩB in terms of sums of homogeneous

parts of A (sections of T ∗M ∼= P ×U(1) V ) .
I A candidate for a Dirac operator from the canonical

connection on A.
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Principal bundles vs. strongly graded algebras

I Let G be a compact Lie group and M a compact manifold.
I A compact manifold P is a principal G-bundle over M

provided that G acts freely on P and M ∼= P/G.
I If G is abelian, freeness of action on M is equivalent to the

strong grading of the algebra of functions on P by the
Pontrjagin dual of G.

I U(1)-principal bundles correspond to strongly Z-graded
(commutative) algebras.

I Noncommutative U(1)-principal bundles ≡ strongly
Z-graded (noncommutative) algebras.



Strongly graded algebras

I Let G be a group. An algebra A is G-graded if

A =
⊕
g∈G

Ag , AgAh ⊆ Agh, ∀g,h ∈ G.

I A is strongly G-graded provided, for all g,h ∈ G,

AgAh = Agh

I Strong grading is equivalent to the existence of a mapping

` : G→ A⊗A,

such that

`(g) ∈ Ag−1 ⊗Ag , m(`(g)) = 1.

I ` is called a strong connection.



Strongness of the Z-grading

I A Z-graded algebra A is strongly graded if and only if there
exist

ω =
∑

i

ω′i ⊗ω′′i ∈ A−1⊗A1, ω̄ =
∑

i

ω̄′i ⊗ ω̄′′i ∈ A1⊗A−1,

such that ∑
i

ω′iω
′′
i =

∑
i

ω̄′i ω̄
′′
i = 1.

I Construct inductively elements: `(n) ∈ A−n ⊗An as

`(0) = 1⊗ 1, `(n) =

{∑
i ω
′
i `(n − 1)ω′′i if n > 0,∑

i ω̄
′
i `(n + 1)ω̄′′i if n < 0.



Strong Z-connections and idempotents

I In a strongly Z-graded algebra A, An are projective
(invertible) modules over B = A0; they are modules of
sections of line bundles associated to A.

I Write `(n) =
∑N

i=1 `
′(n)i ⊗ `′′(n)i .

I Form an N × N-matrix E(n) with entries

E(n)ij = `′′(n)i`
′(n)j .

I E(n) is an idempotent for An.



Algebras we want to study: Quantum surfaces

I Let p be a polynomial in one variable such that p(0) 6= 0
and q ∈ K, k ∈ N.

I B(p; q, k) denotes the algebra generated by x , y , z subject
to relations:

xz = q2zx , yz = q−2zy ,

xy = q2kzkp(q2z), yx = zkp(z).

I The algebras B(p; q, k) have GK-dimension 2, and hence
can be understood as coordinate algebras of
noncommutative surfaces.

I If K = C and p has real coefficients, then B(p; q, k) is a
∗-algebra by y = x∗, z = z∗.



Examples of quantum surfaces

I The Podleś sphere: k = 1, p(z) = 1− z.
I The noncommutative torus: k = 0, p(z) = 1.
I The quantum disc: k = 0, p(z) = 1− z.
I Set:

p(z) =
N−1∏
l=0

(
1− q−2lz

)
.

Then

(a) k = 0 – quantum cones,
(b) k = 1 – quantum teardrops,
(c) k > 1 – quantum spindles.
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Algebras we want to study: Total spaces

I Let p be a polynomial, p(0) 6= 0 and q ∈ K, k ∈ N.
I Let A(p; q) be generated by x±, z± subject to relations:

z+z− = z−z+, x+z± = q−1z±x+, x−z± = qz±x−,

x+x− = p(z+z−), x−x+ = p(q2z−z+).

I View it as a Z-graded algebra with degrees of z± being
equal to ±1, and that of x± being equal to ±k .

I Define
A(p; q, k) :=

⊕
n∈Z
A(p; q)nk ,

I Note that A(p; q,1) = A(p; q) with x± given degrees ±1.
I If K = C and p is real then A(p; q, k) is a ∗-algebra via

z∗± = z∓, x∗± = x∓.



Examples of A(p;q)

I O(SUq(2)) : p(z) = 1− z.
I Quantum lens spaces :

p(z) =
N−1∏
l=0

(
1− q−2lz

)
.



Generalized Weyl algebras

I [Bavula] Let R be an algebra, σ an automorphism of R and
p an element of the centre of R. A degree-one generalized
Weyl algebra over R is an algebraic extension R(p, σ) of R
obtained by supplementing R with additional generators
X ,Y subject to the following relations

XY = σ(p), YX = p, Xa = σ(a)X , Ya = σ−1(a)Y .

I The algebras R(p, σ) share many properties with R, in
particular, if R is a Noetherian algebra, so is R(p, σ), and if
R is a domain and p 6= 0, so is R(p, σ).

I A(p; q), B(p; q, k) are examples of generalized Weyl
algebras (over R[z+, z−] and R[z], respectively).
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Quantum principal bundles over quantum surfaces

Theorem
View A(p; q, k) as a Z-graded algebra by considering
a ∈ A(p; q, k) to be of degree n if it has a degree kn in A(p; q).
Then

(1) B(p; q, k) ∼= A(p; q, k)0, by identification x := x−zk
+,

y := zk
−x+ and z := z+z−.

(2) A(p; q, k) is a strongly Z-graded algebra.



Differential calculi

I A first-order differential calculus on A is an A-bimodule ΩA
with a K-linear map d : A → ΩA such that

(a) d satisfies the Leibniz rule: for all a,b ∈ A,

d(ab) = d(a)b + ad(b);

(b) ΩA satisfies the density condition: ΩA = Ad(A).
I If B ⊂ A is a subalgebra, then one can restrict ΩA to

ΩB := Bd(B)B.

I If A is a complex ∗-algebra, then the calculus (ΩA,d) is
said to be a ∗-calculus provided ΩA is equipped with an
anti-linear operation ∗ such that, for all a,b ∈ A, ω ∈ ΩA,

(aωb)∗ = b∗ω∗a∗ and d(a∗) = d(a)∗.
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Skew derivations

I Noncommutative vector fields do not normally satisfy the
Leibniz rule, but often they do satisfy the skew Leibniz rule.

I By a skew σ-derivation on A we mean a pair (∂, σ), where
σ is an algebra automorphism of A and ∂ : A → A is a
linear map such that, for all a,b ∈ A,

∂(ab) = ∂(a)σ(b) + a∂(b);



Differential calculi from skew derivations

I Fix a finite indexing set I, and let (∂i , σi), i ∈ I, be a
collection of skew derivations on an algebra A.

I Let ΩA be a free left A-module with a free basis ωi , i ∈ I.
I Define the (free) right A-module structure on ΩA by setting

ωia := σi(a)ωi .

I Then the map

d : A → ΩA, a 7→
∑
i∈I

∂i(a)ωi ,

satisfies the Leibniz rule.
I There is no guarantee in general that the density condition

be satisfied.
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Skew derivations on A(p;q,1)

Theorem
Let, for all a ∈ A(p; q,1),

σ±(a) = q|a|a, σ0(a) = q2|a|a, c(z) := q
p(q2z)− p(z)

(q2 − 1)z
.

For all α0,± ∈ K, the maps ∂0,± defined on the generators of
A(p; q,1) by

∂0(x+) = α0x+, ∂0(x−) = −q−2α0x−,

∂0(z+) = α0z+, ∂0(z−) = −q−2α0z−,

and

∂∓(x±) = ∂∓(z±) = 0, ∂∓(x∓) = α∓c(z)z±, ∂∓(z∓) = α∓x±;

extend to the whole of A(p; q,1) as skew σ0,±-derivations.



Differential calculus on A(p;q,1)

Theorem
If q2 6= 1 and p(z) 6= 0 is coprime with p(q2z), then the system
of skew-derivations (∂i , σi), i ∈ {+,−,0}, defines the first-order
differential calculus ΩA on A(p; q,1) with free generators ω+,
ω−, ω0 and differential

d(a) = ∂−(a)ω− + ∂0(a)ω0 + ∂+(a)ω+.

In the case of p(z) = 1− z, with properly chosen constants αi ,
ΩA is the (left-covariant) 3D calculus on the quantum group
SUq(2) introduced by Woronowicz.
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Differential calculus on B(p;q,1)

Theorem

(1) For all a ∈ B(p; q,1),

∂0(a) = 0.

(2) If q4 6= 1 and p(z) 6= 0 is coprime with p(q2z), then

ΩB ∼= A(p; q,1)−2 ⊕A(p; q,1)2,

where ΩB is the restriction of ΩA to the calculus on
B(p; q,1).

(3) The cotangent bundle over B(p; q,1) is non-trivial, as the
module of sections ΩB is not free.



The real spectral triple for B(p;q,1)

I A Dirac operator on B(p; q,1) is constructed by following
the procedure of Beggs and Majid ’15.

I The sections of a spinor bundle are identified with the
B(p; q,1)-bimodule A(p; q,1)1 ⊕A(p; q,1)−1,

S+ = A(p; q,1)−1s+, S− = A(p; q,1)1s−, S = S+⊕S−,

I As there are idempotents E(1) and E(−1) such that
E(1) + E(−1) = 1, the spinor bundle is trivial.

I Note that, individually, S− and S+ are not trivial.
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The real spectral triple for B(p;q,1)
I The strong connection forms `(1), `(−1) define a

connection ∇ : S → ΩB ⊗ S on the spinor bundle S by the
formula

∇(a s+ + b s−) = π(d(a))`(−1) s+ + π(d(b))`(1) s−,

for all a,b ∈ A(p; q,1), a of degree −1 and b of degree 1.
Here π is the projection of ΩA onto horizontal forms

A(p; q,1)d(B(p; q,1))A(p; q,1)=A(p; q,1)ω+⊕A(p; q,1)−ω−.

I The Clifford action . of ΩB on S is defined, for all
a,b, c± ∈ A(p; q,1) of degrees |a| = −1, |b| = 1,
|c±| = ±2, by

(c−ω+ + c+ω−).(a s+ + b s−) = β+c−b s+ + β−c+a s−,

where β+, β− ∈ K



The real spectral triple for B(p;q,1)

I The Dirac operator given by

D := . ◦ ∇ : S → S,

comes out as

D(a s+ + b s−) = β+q−1∂+(b) s+ + β−q∂−(a)s−.

I D is an even Dirac operator with the grading

γ : S → S, a s+ + b s− 7−→ a s+ − b s−.



The real spectral triple for B(p;q,1)

Theorem
Let K = C, q ∈ (0,1) and p be a q2-separable polynomial with
real coefficients. Choose β± such that β∗−/β+ < 0, and let ν be
a solution to the equation

ν2 = −q3β
∗
−
β+

.

Then the linear map

J : S → S, a s+ + b s− 7−→ −ν−1b∗s+ + νa∗s−,

equips D with a real structure such that D has KO-dimension
two.


