Noncommutative gauge theory of generalized (quantum) Weyl algebras

Tomasz Brzeziński

Swansea University \& University of Białystok

WGMP XXXV, 2016

References:

TB, Noncommutative differential geometry of generalized Weyl algebras, SIGMA 12 (2016) 059.
TB, Circle and line bundles over generalized Weyl algebras, Algebr. Represent. Theory 19 (2016), 57-69.

Aims:

- To construct (modules of sections of) cotangent and spinor bundles over noncommutative surfaces (generalized Weyl algebras).
- To construct real spectral triples (Dirac operators) on noncommutative surfaces.

The classical construction

- Let M be a surface.
- Construct a principal bundle

such that $T^{*} P$ is a trivial bundle, and

$$
T^{*} M \cong P \times_{U(1)} V
$$

as (non-trivial) vector bundles, and

$$
S M \cong P \times_{U(1)} W
$$

as (trivial) vector bundles.

- Example: $M=S^{2}, P=S^{3}$.

Algebraically

We need to consider:

- an algebra \mathcal{B} (of smooth functions on M),
- an algebra \mathcal{A} (of smooth functions on P).
- P is an $U(1)$-principal bundle over M means that \mathcal{A} is strongly graded by \mathbb{Z}, the Pontrjagin dual of $U(1)$, and \mathcal{B} is isomorphic to the degree-zero part of \mathcal{A}.
Further we need:
- A first-order differential calculus $\Omega \mathcal{A}$ on \mathcal{A} (sections of $T^{*} P$) such that $\Omega \mathcal{A}$ is free as a left and right \mathcal{A}-module (triviality of $T^{*} P$).
- Restriction of $\Omega \mathcal{A}$ to a calculus $\Omega \mathcal{B}$ on \mathcal{B}.
- Identification of $\Omega \mathcal{B}$ in terms of sums of homogeneous parts of \mathcal{A} (sections of $T^{*} M \cong P \times U_{(1)} V$).
- A candidate for a Dirac operator from the canonical connection on \mathcal{A}.

Algebraically

We need to consider:

- an algebra \mathcal{B} (of smooth functions on M),
- an algebra \mathcal{A} (of smooth functions on P).
- P is an $U(1)$-principal bundle over M means that \mathcal{A} is strongly graded by \mathbb{Z}, the Pontrjagin dual of $U(1)$, and \mathcal{B} is isomorphic to the degree-zero part of \mathcal{A}.
Further we need:
- A first-order differential calculus $\Omega \mathcal{A}$ on \mathcal{A} (sections of $T^{*} P$) such that $\Omega \mathcal{A}$ is free as a left and right \mathcal{A}-module (triviality of $T^{*} P$).
- Restriction of $\Omega \mathcal{A}$ to a calculus $\Omega \mathcal{B}$ on \mathcal{B}.
- Identification of $\Omega \mathcal{B}$ in terms of sums of homogeneous parts of \mathcal{A} (sections of $T^{*} M \cong P$
- A candidate for a Dirac operator from the canonical
connection on \mathcal{A}.

Algebraically

We need to consider:

- an algebra \mathcal{B} (of smooth functions on M),
- an algebra \mathcal{A} (of smooth functions on P).
- P is an $U(1)$-principal bundle over M means that \mathcal{A} is strongly graded by \mathbb{Z}, the Pontrjagin dual of $U(1)$, and \mathcal{B} is isomorphic to the degree-zero part of \mathcal{A}.
Further we need:
- A first-order differential calculus $\Omega \mathcal{A}$ on \mathcal{A} (sections of $T^{*} P$) such that $\Omega \mathcal{A}$ is free as a left and right \mathcal{A}-module (triviality of $T^{*} P$).
- Restriction of $\Omega \mathcal{A}$ to a calculus $\Omega \mathcal{B}$ on \mathcal{B}.
- Identification of $\Omega \mathcal{B}$ in terms of sums of homogeneous parts of \mathcal{A} (sections of $T^{*} M \cong P \times{ }_{U_{(1)}} V$).
- A candidate for a Dirac operator from the canonical connection on \mathcal{A}.

Algebraically

We need to consider:

- an algebra \mathcal{B} (of smooth functions on M),
- an algebra \mathcal{A} (of smooth functions on P).
- P is an $U(1)$-principal bundle over M means that \mathcal{A} is strongly graded by \mathbb{Z}, the Pontrjagin dual of $U(1)$, and \mathcal{B} is isomorphic to the degree-zero part of \mathcal{A}.
Further we need:
- A first-order differential calculus $\Omega \mathcal{A}$ on \mathcal{A} (sections of $T^{*} P$) such that $\Omega \mathcal{A}$ is free as a left and right \mathcal{A}-module (triviality of $T^{*} P$).
- Restriction of $\Omega \mathcal{A}$ to a calculus $\Omega \mathcal{B}$ on \mathcal{B}.
- Identification of $\Omega \mathcal{B}$ in terms of sums of homogeneous parts of \mathcal{A} (sections of $T^{*} M \cong P \times{ }_{U_{(1)}} V$).
- A candidate for a Dirac operator from the canonical connection on \mathcal{A}.

Algebraically

We need to consider:

- an algebra \mathcal{B} (of smooth functions on M),
- an algebra \mathcal{A} (of smooth functions on P).
- P is an $U(1)$-principal bundle over M means that \mathcal{A} is strongly graded by \mathbb{Z}, the Pontrjagin dual of $U(1)$, and \mathcal{B} is isomorphic to the degree-zero part of \mathcal{A}.
Further we need:
- A first-order differential calculus $\Omega \mathcal{A}$ on \mathcal{A} (sections of $T^{*} P$) such that $\Omega \mathcal{A}$ is free as a left and right \mathcal{A}-module (triviality of $T^{*} P$).
- Restriction of $\Omega \mathcal{A}$ to a calculus $\Omega \mathcal{B}$ on \mathcal{B}.
- Identification of $\Omega \mathcal{B}$ in terms of sums of homogeneous parts of \mathcal{A} (sections of $T^{*} M \cong P \times{ }_{(1)} V$).
- A candidate for a Dirac operator from the canonical connection on \mathcal{A}.

Principal bundles vs. strongly graded algebras

- Let G be a compact Lie group and M a compact manifold.
- A compact manifold P is a principal G-bundle over M provided that G acts freely on P and $M \cong P / G$.
- If G is abelian, freeness of action on M is equivalent to the strong grading of the algebra of functions on P by the Pontrjagin dual of G.
- $U(1)$-principal bundles correspond to strongly \mathbb{Z}-graded (commutative) algebras.
- Noncommutative $U(1)$-principal bundles \equiv strongly Z-graded (noncommutative) algebras.

Strongly graded algebras

- Let G be a group. An algebra \mathcal{A} is G-graded if

$$
\mathcal{A}=\bigoplus_{g \in G} \mathcal{A}_{g}, \quad \mathcal{A}_{g} \mathcal{A}_{h} \subseteq \mathcal{A}_{g h}, \quad \forall g, h \in G
$$

- \mathcal{A} is strongly G-graded provided, for all $g, h \in G$,

$$
\mathcal{A}_{g} \mathcal{A}_{h}=\mathcal{A}_{g h}
$$

- Strong grading is equivalent to the existence of a mapping

$$
\ell: G \rightarrow \mathcal{A} \otimes \mathcal{A},
$$

such that

$$
\ell(g) \in \mathcal{A}_{g^{-1}} \otimes \mathcal{A}_{g}, \quad m(\ell(g))=1
$$

- ℓ is called a strong connection.

Strongness of the \mathbb{Z}-grading

- A \mathbb{Z}-graded algebra \mathcal{A} is strongly graded if and only if there exist

$$
\omega=\sum_{i} \omega_{i}^{\prime} \otimes \omega_{i}^{\prime \prime} \in \mathcal{A}_{-1} \otimes \mathcal{A}_{1}, \quad \bar{\omega}=\sum_{i} \bar{\omega}_{i}^{\prime} \otimes \bar{\omega}_{i}^{\prime \prime} \in \mathcal{A}_{1} \otimes \mathcal{A}_{-1}
$$

such that

$$
\sum_{i} \omega_{i}^{\prime} \omega_{i}^{\prime \prime}=\sum_{i} \bar{\omega}_{i}^{\prime} \bar{\omega}_{i}^{\prime \prime}=1
$$

- Construct inductively elements: $\ell(n) \in \mathcal{A}_{-n} \otimes \mathcal{A}_{n}$ as

$$
\ell(0)=1 \otimes 1, \quad \ell(n)= \begin{cases}\sum_{i} \omega_{i}^{\prime} \ell(n-1) \omega_{i}^{\prime \prime} & \text { if } n>0 \\ \sum_{i} \bar{\omega}_{i}^{\prime} \ell(n+1) \bar{\omega}_{i}^{\prime \prime} & \text { if } n<0\end{cases}
$$

Strong \mathbb{Z}-connections and idempotents

- In a strongly \mathbb{Z}-graded algebra $\mathcal{A}, \mathcal{A}_{n}$ are projective (invertible) modules over $\mathcal{B}=\mathcal{A}_{0}$; they are modules of sections of line bundles associated to \mathcal{A}.
- Write $\ell(n)=\sum_{i=1}^{N} \ell^{\prime}(n)_{i} \otimes \ell^{\prime \prime}(n)_{i}$.
- Form an $N \times N$-matrix $E(n)$ with entries

$$
E(n)_{i j}=\ell^{\prime \prime}(n)_{i} \ell^{\prime}(n)_{j}
$$

- $E(n)$ is an idempotent for \mathcal{A}_{n}.

Algebras we want to study: Quantum surfaces

- Let p be a polynomial in one variable such that $p(0) \neq 0$ and $q \in \mathbb{K}, k \in \mathbb{N}$.
- $\mathcal{B}(p ; q, k)$ denotes the algebra generated by x, y, z subject to relations:

$$
\begin{gathered}
x z=q^{2} z x, \quad y z=q^{-2} z y, \\
x y=q^{2 k} z^{k} p\left(q^{2} z\right), \quad y x=z^{k} p(z) .
\end{gathered}
$$

- The algebras $\mathcal{B}(p ; q, k)$ have GK-dimension 2 , and hence can be understood as coordinate algebras of noncommutative surfaces.
- If $\mathbb{K}=\mathbb{C}$ and p has real coefficients, then $\mathcal{B}(p ; q, k)$ is a *-algebra by $y=x^{*}, z=z^{*}$.

Examples of quantum surfaces

- The Podleś sphere: $k=1, p(z)=1-z$.
- The noncommutative torus: $k=0, p(z)=1$.
- The quantum disc: $k=0, p(z)=1-z$.
- Set:

Then
(a) $k=0$ - quantum cones,
(b) $k=1$ - quantum teardrops,
(c) $k>1$ - quantum spindles.

Examples of quantum surfaces

- The Podleś sphere: $k=1, p(z)=1-z$.
- The noncommutative torus: $k=0, p(z)=1$.
- The quantum disc: $k=0, p(z)=1-z$.
- Set:

$$
p(z)=\prod_{l=0}^{N-1}\left(1-q^{-2 l} z\right)
$$

Then
(a) $k=0$ - quantum cones,
(b) $k=1$ - quantum teardrops,
(c) $k>1$ - quantum spindles.

Algebras we want to study: Total spaces

- Let p be a polynomial, $p(0) \neq 0$ and $q \in \mathbb{K}, k \in \mathbb{N}$.
- Let $\mathcal{A}(p ; q)$ be generated by $x_{ \pm}, z_{ \pm}$subject to relations:

$$
\begin{gathered}
z_{+} z_{-}=z_{-} z_{+}, \quad x_{+} z_{ \pm}=q^{-1} z_{ \pm} x_{+}, \quad x_{-} z_{ \pm}=q z_{ \pm} x_{-} \\
x_{+} x_{-}=p\left(z_{+} z_{-}\right), \quad x_{-} x_{+}=p\left(q^{2} z_{-} z_{+}\right)
\end{gathered}
$$

- View it as a \mathbb{Z}-graded algebra with degrees of $z_{ \pm}$being equal to ± 1, and that of $x_{ \pm}$being equal to $\pm k$.
- Define

$$
\mathcal{A}(p ; q, k):=\bigoplus_{n \in \mathbb{Z}} \mathcal{A}(p ; q)_{n k}
$$

- Note that $\mathcal{A}(p ; q, 1)=\mathcal{A}(p ; q)$ with $x_{ \pm}$given degrees ± 1.
- If $\mathbb{K}=\mathbb{C}$ and p is real then $\mathcal{A}(p ; q, k)$ is a $*$-algebra via $z_{ \pm}^{*}=z_{\mp}, x_{ \pm}^{*}=x_{\mp}$.

Examples of $\mathcal{A}(p ; q)$

- $\mathcal{O}\left(S U_{q}(2)\right): p(z)=1-z$.
- Quantum lens spaces :

$$
p(z)=\prod_{l=0}^{N-1}\left(1-q^{-2 l} z\right)
$$

Generalized Weyl algebras

- [Bavula] Let \mathcal{R} be an algebra, σ an automorphism of \mathcal{R} and p an element of the centre of \mathcal{R}. A degree-one generalized Weyl algebra over \mathcal{R} is an algebraic extension $\mathcal{R}(p, \sigma)$ of \mathcal{R} obtained by supplementing \mathcal{R} with additional generators X, Y subject to the following relations

$$
X Y=\sigma(p), \quad Y X=p, \quad X a=\sigma(a) X, \quad Y a=\sigma^{-1}(a) Y
$$

- The algebras $\mathcal{R}(p, \sigma)$ share many properties with \mathcal{R}, in particular, if \mathcal{R} is a Noetherian algebra, so is $\mathcal{R}(p, \sigma)$, and if - $\mathcal{A}(p ; q), \mathcal{B}(p ; q, k)$ are examples of generalized Weyl algebras (over $\mathcal{R}\left[z_{+}, z_{-}\right]$and $\mathcal{R}[z]$, respectively).

Generalized Weyl algebras

- [Bavula] Let \mathcal{R} be an algebra, σ an automorphism of \mathcal{R} and p an element of the centre of \mathcal{R}. A degree-one generalized Weyl algebra over \mathcal{R} is an algebraic extension $\mathcal{R}(p, \sigma)$ of \mathcal{R} obtained by supplementing \mathcal{R} with additional generators X, Y subject to the following relations

$$
X Y=\sigma(p), \quad Y X=p, \quad X a=\sigma(a) X, \quad Y a=\sigma^{-1}(a) Y
$$

- The algebras $\mathcal{R}(p, \sigma)$ share many properties with \mathcal{R}, in particular, if \mathcal{R} is a Noetherian algebra, so is $\mathcal{R}(p, \sigma)$, and if \mathcal{R} is a domain and $p \neq 0$, so is $\mathcal{R}(p, \sigma)$.
- $\mathcal{A}(p ; q), \mathcal{B}(p ; q, k)$ are examples of generalized Weyl algebras (over $\mathcal{R}\left[z_{+}, z_{-}\right]$and $\mathcal{R}[z]$, respectively).

Quantum principal bundles over quantum surfaces

Theorem

View $\mathcal{A}(p ; q, k)$ as a \mathbb{Z}-graded algebra by considering $a \in \mathcal{A}(p ; q, k)$ to be of degree n if it has a degree kn in $\mathcal{A}(p ; q)$. Then
(1) $\mathcal{B}(p ; q, k) \cong \mathcal{A}(p ; q, k)_{0}$, by identification $x:=x_{-} z_{+}^{k}$,

$$
y:=z_{-}^{k} x_{+} \text {and } z:=z_{+} z_{-} .
$$

(2) $\mathcal{A}(p ; q, k)$ is a strongly \mathbb{Z}-graded algebra.

Differential calculi

- A first-order differential calculus on \mathcal{A} is an \mathcal{A}-bimodule $\Omega \mathcal{A}$ with a \mathbb{K}-linear map $d: \mathcal{A} \rightarrow \Omega \mathcal{A}$ such that
(a) d satisfies the Leibniz rule: for all $a, b \in \mathcal{A}$,

$$
d(a b)=d(a) b+a d(b)
$$

(b) $\Omega \mathcal{A}$ satisfies the density condition: $\Omega \mathcal{A}=\mathcal{A d}(\mathcal{A})$.

- If $\mathcal{B} \subset \mathcal{A}$ is a subalgebra, then one can restrict $\Omega \mathcal{A}$ to

$$
\Omega \mathcal{B}:=\mathcal{B d}(\mathcal{B}) \mathcal{B} .
$$

- If \mathcal{A} is a complex $*$-algebra, then the calculus $(\Omega \mathcal{A}, d)$ is said to be a $*$-calculus provided $\Omega \mathcal{A}$ is equipped with an

$$
(a \omega b)^{*}=b^{*} \omega^{*} a^{*} \quad \text { and } \quad d\left(a^{*}\right)=d(a)^{*}
$$

Differential calculi

- A first-order differential calculus on \mathcal{A} is an \mathcal{A}-bimodule $\Omega \mathcal{A}$ with a \mathbb{K}-linear map $d: \mathcal{A} \rightarrow \Omega \mathcal{A}$ such that
(a) d satisfies the Leibniz rule: for all $a, b \in \mathcal{A}$,

$$
d(a b)=d(a) b+a d(b)
$$

(b) $\Omega \mathcal{A}$ satisfies the density condition: $\Omega \mathcal{A}=\mathcal{A d}(\mathcal{A})$.

- If $\mathcal{B} \subset \mathcal{A}$ is a subalgebra, then one can restrict $\Omega \mathcal{A}$ to

$$
\Omega \mathcal{B}:=\mathcal{B d}(\mathcal{B}) \mathcal{B} .
$$

- If \mathcal{A} is a complex $*$-algebra, then the calculus $(\Omega \mathcal{A}, d)$ is said to be a $*$-calculus provided $\Omega \mathcal{A}$ is equipped with an anti-linear operation $*$ such that, for all $a, b \in \mathcal{A}, \omega \in \Omega \mathcal{A}$,

$$
(a \omega b)^{*}=b^{*} \omega^{*} a^{*} \quad \text { and } \quad d\left(a^{*}\right)=d(a)^{*}
$$

Skew derivations

- Noncommutative vector fields do not normally satisfy the Leibniz rule, but often they do satisfy the skew Leibniz rule.
- By a skew σ-derivation on \mathcal{A} we mean a pair (∂, σ), where σ is an algebra automorphism of \mathcal{A} and $\partial: \mathcal{A} \rightarrow \mathcal{A}$ is a linear map such that, for all $a, b \in \mathcal{A}$,

$$
\partial(a b)=\partial(a) \sigma(b)+a \partial(b)
$$

Differential calculi from skew derivations

- Fix a finite indexing set I, and let $\left(\partial_{i}, \sigma_{i}\right), i \in I$, be a collection of skew derivations on an algebra \mathcal{A}.
- Let $\Omega \mathcal{A}$ be a free left \mathcal{A}-module with a free basis $\omega_{i}, i \in I$.
- Define the (free) right \mathcal{A}-module structure on $\Omega \mathcal{A}$ by setting

$$
\omega_{i} a:=\sigma_{i}(a) \omega_{i} .
$$

- Then the map

satisfies the Leibniz rule.

- There is no quarantee in qeneral that the density condition be satisfied.

Differential calculi from skew derivations

- Fix a finite indexing set I, and let $\left(\partial_{i}, \sigma_{i}\right), i \in I$, be a collection of skew derivations on an algebra \mathcal{A}.
- Let $\Omega \mathcal{A}$ be a free left \mathcal{A}-module with a free basis $\omega_{i}, i \in I$.
- Define the (free) right \mathcal{A}-module structure on $\Omega \mathcal{A}$ by setting $\omega_{i} a:=\sigma_{i}(a) \omega_{i}$.
- Then the map
satisfies the Leibniz rule.
- There is no quarantee in qeneral that the density condition be satisfied.

Differential calculi from skew derivations

- Fix a finite indexing set I, and let $\left(\partial_{i}, \sigma_{i}\right), i \in I$, be a collection of skew derivations on an algebra \mathcal{A}.
- Let $\Omega \mathcal{A}$ be a free left \mathcal{A}-module with a free basis $\omega_{i}, i \in I$.
- Define the (free) right \mathcal{A}-module structure on $\Omega \mathcal{A}$ by setting

$$
\omega_{i} a:=\sigma_{i}(a) \omega_{i}
$$

- Then the map

satisfies the Leibniz rule.

- There is no quarantee in qeneral that the density condition be satisfied.

Differential calculi from skew derivations

- Fix a finite indexing set I, and let $\left(\partial_{i}, \sigma_{i}\right), i \in I$, be a collection of skew derivations on an algebra \mathcal{A}.
- Let $\Omega \mathcal{A}$ be a free left \mathcal{A}-module with a free basis $\omega_{i}, i \in I$.
- Define the (free) right \mathcal{A}-module structure on $\Omega \mathcal{A}$ by setting

$$
\omega_{i} a:=\sigma_{i}(a) \omega_{i}
$$

- Then the map

$$
d: \mathcal{A} \rightarrow \Omega \mathcal{A}, \quad a \mapsto \sum_{i \in I} \partial_{i}(a) \omega_{i}
$$

satisfies the Leibniz rule.

- There is no guarantee in general that the density condition be satisfied.

Differential calculi from skew derivations

- Fix a finite indexing set I, and let $\left(\partial_{i}, \sigma_{i}\right), i \in I$, be a collection of skew derivations on an algebra \mathcal{A}.
- Let $\Omega \mathcal{A}$ be a free left \mathcal{A}-module with a free basis $\omega_{i}, i \in I$.
- Define the (free) right \mathcal{A}-module structure on $\Omega \mathcal{A}$ by setting

$$
\omega_{i} a:=\sigma_{i}(a) \omega_{i}
$$

- Then the map

$$
d: \mathcal{A} \rightarrow \Omega \mathcal{A}, \quad a \mapsto \sum_{i \in I} \partial_{i}(a) \omega_{i}
$$

satisfies the Leibniz rule.

- There is no guarantee in general that the density condition be satisfied.

Skew derivations on $\mathcal{A}(p ; q, 1)$

Theorem
Let, for all $a \in \mathcal{A}(p ; q, 1)$,

$$
\sigma_{ \pm}(a)=q^{|a|} a, \quad \sigma_{0}(a)=q^{2|a|} a, \quad c(z):=q \frac{p\left(q^{2} z\right)-p(z)}{\left(q^{2}-1\right) z} .
$$

For all $\alpha_{0, \pm} \in \mathbb{K}$, the maps $\partial_{0, \pm}$ defined on the generators of $\mathcal{A}(p ; q, 1)$ by

$$
\begin{array}{ll}
\partial_{0}\left(x_{+}\right)=\alpha_{0} x_{+}, & \partial_{0}\left(x_{-}\right)=-q^{-2} \alpha_{0} x_{-}, \\
\partial_{0}\left(z_{+}\right)=\alpha_{0} z_{+}, & \partial_{0}\left(z_{-}\right)=-q^{-2} \alpha_{0} z_{-},
\end{array}
$$

and

$$
\partial_{\mp}\left(x_{ \pm}\right)=\partial_{\mp}\left(z_{ \pm}\right)=0, \quad \partial_{\mp}\left(x_{\mp}\right)=\alpha_{\mp} c(z) z_{ \pm}, \quad \partial_{\mp}\left(z_{\mp}\right)=\alpha_{\mp} x_{ \pm} ;
$$

extend to the whole of $\mathcal{A}(p ; q, 1)$ as skew $\sigma_{0, \pm}$-derivations.

Differential calculus on $\mathcal{A}(p ; q, 1)$

Theorem
If $q^{2} \neq 1$ and $p(z) \neq 0$ is coprime with $p\left(q^{2} z\right)$, then the system of skew-derivations (∂_{i}, σ_{i}), $i \in\{+,-, 0\}$, defines the first-order differential calculus $\Omega \mathcal{A}$ on $\mathcal{A}(p ; q, 1)$ with free generators ω_{+}, ω_{-}, ω_{0} and differential

$$
d(a)=\partial_{-}(\mathbf{a}) \omega_{-}+\partial_{0}(\mathbf{a}) \omega_{0}+\partial_{+}(\mathbf{a}) \omega_{+} .
$$

In the case of $p(z)=1-z$, with properly chosen constants α_{i},
$\Omega \mathcal{A}$ is the (left-covariant) 3D calculus on the quantum group
$S U_{q}(2)$ introduced by Woronowicz.

Differential calculus on $\mathcal{A}(p ; q, 1)$

Theorem
If $q^{2} \neq 1$ and $p(z) \neq 0$ is coprime with $p\left(q^{2} z\right)$, then the system of skew-derivations (∂_{i}, σ_{i}), $i \in\{+,-, 0\}$, defines the first-order differential calculus $\Omega \mathcal{A}$ on $\mathcal{A}(p ; q, 1)$ with free generators ω_{+}, ω_{-}, ω_{0} and differential

$$
d(a)=\partial_{-}(a) \omega_{-}+\partial_{0}(a) \omega_{0}+\partial_{+}(a) \omega_{+} .
$$

In the case of $p(z)=1-z$, with properly chosen constants α_{i}, $\Omega \mathcal{A}$ is the (left-covariant) 3D calculus on the quantum group $S U_{q}(2)$ introduced by Woronowicz.

Differential calculus on $\mathcal{B}(p ; q, 1)$

Theorem

(1) For all $a \in \mathcal{B}(p ; q, 1)$,

$$
\partial_{0}(a)=0 .
$$

(2) If $q^{4} \neq 1$ and $p(z) \neq 0$ is coprime with $p\left(q^{2} z\right)$, then

$$
\Omega \mathcal{B} \cong \mathcal{A}(p ; q, 1)_{-2} \oplus \mathcal{A}(p ; q, 1)_{2}
$$

where $\Omega \mathcal{B}$ is the restriction of $\Omega \mathcal{A}$ to the calculus on $\mathcal{B}(p ; q, 1)$.
(3) The cotangent bundle over $\mathcal{B}(p ; q, 1)$ is non-trivial, as the module of sections $\Omega \mathcal{B}$ is not free.

The real spectral triple for $\mathcal{B}(p ; q, 1)$

- A Dirac operator on $\mathcal{B}(p ; q, 1)$ is constructed by following the procedure of Beggs and Majid '15.
- The sections of a spinor bundle are identified with the $\mathcal{B}(p ; q, 1)$-bimodule $\mathcal{A}(p ; q, 1)_{1} \oplus \mathcal{A}(p ; q, 1)_{-1}$,
$\mathcal{S}_{+}=\mathcal{A}(p ; q, 1)_{-1} \mathrm{~s}_{+}, \quad \mathcal{S}_{-}=\mathcal{A}(p ; q, 1)_{1} \mathrm{~s}_{-}, \quad \mathcal{S}=\mathcal{S}_{+} \oplus \mathcal{S}_{-}$,
- As there are idempotents $E(1)$ and $E(-1)$ such that $E(1)+E(-1)=1$, the spinor bundle is trivial.
- Note that, individually, \mathcal{S}_{-}and \mathcal{S}_{+}are not trivial.

The real spectral triple for $\mathcal{B}(p ; q, 1)$

- A Dirac operator on $\mathcal{B}(p ; q, 1)$ is constructed by following the procedure of Beggs and Majid '15.
- The sections of a spinor bundle are identified with the $\mathcal{B}(p ; q, 1)$-bimodule $\mathcal{A}(p ; q, 1)_{1} \oplus \mathcal{A}(p ; q, 1)_{-1}$,
$\mathcal{S}_{+}=\mathcal{A}(p ; q, 1)_{-1} \mathrm{~s}_{+}, \quad \mathcal{S}_{-}=\mathcal{A}(p ; q, 1)_{1} \mathrm{~s}_{-}, \quad \mathcal{S}=\mathcal{S}_{+} \oplus \mathcal{S}_{-}$,
- As there are idempotents $E(1)$ and $E(-1)$ such that $E(1)+E(-1)=1$, the spinor bundle is trivial.
- Note that, individually, \mathcal{S}_{-}and \mathcal{S}_{+}are not trivial.

The real spectral triple for $\mathcal{B}(p ; q, 1)$

- The strong connection forms $\ell(1), \ell(-1)$ define a connection $\nabla: \mathcal{S} \rightarrow \Omega \mathcal{B} \otimes \mathcal{S}$ on the spinor bundle \mathcal{S} by the formula

$$
\nabla\left(a \mathbf{s}_{+}+b \mathbf{s}_{-}\right)=\pi(d(a)) \ell(-1) \mathbf{s}_{+}+\pi(d(b)) \ell(1) \mathbf{s}_{-}
$$

for all $a, b \in \mathcal{A}(p ; q, 1)$, a of degree -1 and b of degree 1 . Here π is the projection of $\Omega \mathcal{A}$ onto horizontal forms

$$
\mathcal{A}(p ; q, 1) d(\mathcal{B}(p ; q, 1)) \mathcal{A}(p ; q, 1)=\mathcal{A}(p ; q, 1) \omega_{+} \oplus \mathcal{A}(p ; q, 1)_{-} \omega_{-} .
$$

- The Clifford action \triangleright of $\Omega \mathcal{B}$ on \mathcal{S} is defined, for all $a, b, c_{ \pm} \in \mathcal{A}(p ; q, 1)$ of degrees $|a|=-1,|b|=1$, $\left|c_{ \pm}\right|= \pm 2$, by

$$
\left(c_{-} \omega_{+}+c_{+} \omega_{-}\right) \triangleright\left(a s_{+}+b s_{-}\right)=\beta_{+} c_{-} b s_{+}+\beta_{-} c_{+} a s_{-},
$$

where $\beta_{+}, \beta_{-} \in \mathbb{K}$

The real spectral triple for $\mathcal{B}(p ; q, 1)$

- The Dirac operator given by

$$
D:=\triangleright \circ \nabla: \mathcal{S} \rightarrow \mathcal{S},
$$

comes out as

$$
D\left(a \mathbf{s}_{+}+b \mathbf{s}_{-}\right)=\beta_{+} q^{-1} \partial_{+}(b) \mathbf{s}_{+}+\beta_{-} q \partial_{-}(a) \mathbf{s}_{-} .
$$

- D is an even Dirac operator with the grading

$$
\gamma: \mathcal{S} \rightarrow \mathcal{S}, \quad a \mathrm{~s}_{+}+b \mathrm{~s}_{-} \longmapsto a \mathrm{~s}_{+}-b \mathrm{~s}_{-} .
$$

The real spectral triple for $\mathcal{B}(p ; q, 1)$

Theorem

Let $\mathbb{K}=\mathbb{C}, q \in(0,1)$ and p be a q^{2}-separable polynomial with real coefficients. Choose $\beta_{ \pm}$such that $\beta_{-}^{*} / \beta_{+}<0$, and let ν be a solution to the equation

$$
\nu^{2}=-q^{3} \frac{\beta_{-}^{*}}{\beta_{+}}
$$

Then the linear map

$$
J: \mathcal{S} \rightarrow \mathcal{S}, \quad a \mathbf{s}_{+}+b \mathbf{s}_{-} \longmapsto-\nu^{-1} b^{*} \mathbf{s}_{+}+\nu a^{*} \mathbf{s}_{-}
$$

equips D with a real structure such that D has KO-dimension two.

