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Aims:

» To construct (modules of sections of) cotangent and spinor
bundles over noncommutative surfaces (generalized Weyl
algebras).

» To construct real spectral triples (Dirac operators) on
noncommutative surfaces.



The classical construction

Let M be a surface.

v

v

Construct a principal bundle
P-——U(1)
M

such that T*P is a trivial bundle, and

T*M=P Xu(1) V,

as (non-trivial) vector bundles, and

SM=P XU(1) W7

as (trivial) vector bundles.
Example: M = S?, P = S8,

v
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Algebraically

We need to consider:
» an algebra B (of smooth functions on M),
» an algebra A (of smooth functions on P).

» Pis an U(1)-principal bundle over M means that A is
strongly graded by Z, the Pontrjagin dual of U(1), and B is
isomorphic to the degree-zero part of A.

Further we need:

» A first-order differential calculus Q.4 on A (sections of T*P)
such that QA is free as a left and right .A-module (triviality
of T*P).

» Restriction of QA to a calculus QB on B.

» |dentification of QB in terms of sums of homogeneous
parts of A (sections of T*"M = P x4y V).

» A candidate for a Dirac operator from the canonical
connection on A.



Principal bundles vs. strongly graded algebras

» Let G be a compact Lie group and M a compact manifold.

» A compact manifold P is a principal G-bundle over M
provided that G acts freely on P and M = P/G.

» If G is abelian, freeness of action on M is equivalent to the
strong grading of the algebra of functions on P by the
Pontrjagin dual of G.

» U(1)-principal bundles correspond to strongly Z-graded
(commutative) algebras.

» Noncommutative U(1)-principal bundles = strongly
Z-graded (noncommutative) algebras.



Strongly graded algebras
» Let G be a group. An algebra A is G-graded if

A=Ay,  AgAnC Agr, Vg, heG.
geG

» Ais strongly G-graded provided, for all g, h € G,
AgAp = Agn
» Strong grading is equivalent to the existence of a mapping
0:G— AR A,
such that
Ug) € Ag-1 ® Ag, m(£(g)) =1.

» [ is called a strong connection.



Strongness of the Z-grading

» A Z-graded algebra A is strongly graded if and only if there
exist

w = Zw,’-@wf’ ceA 1A, ©= Z(D,’-@@?l c A RA 4,
i i

such that

//I /I/
2wl =) 45 =

» Construct inductively elements: ¢(n) € A_, ® A, as

Yiwil(n— 1wy’ ifn>0,
San+ 1)@ ifn<o.

1

(0)=1®1,  £n)= {



Strong Z-connections and idempotents

» In a strongly Z-graded algebra A, A, are projective
(invertible) modules over B = Ay; they are modules of
sections of line bundles associated to A.

» Write £(n) = YN, ¢(n); @ (n);.
» Form an N x N-matrix E(n) with entries

E(n); = ¢"(n);l'(n);.

» E(n) is an idempotent for Aj,.



Algebras we want to study: Quantum surfaces

» Let p be a polynomial in one variable such that p(0) # 0
andge K, keN.

» B(p; g, k) denotes the algebra generated by x, y, z subject
to relations:

Xz =qzx,  yz=q ?zy,

xy = q*2p(q?2),  yx=Z"p(2).

» The algebras B(p; g, k) have GK-dimension 2, and hence
can be understood as coordinate algebras of
noncommutative surfaces.

» If K= C and p has real coefficients, then B(p; g, k) is a
x-algebra by y = x*, z = z*.



Examples of quantum surfaces

» The Podle$ sphere: k =1, p(z) =1 - z.
» The noncommutative torus: k = 0, p(z) = 1.
» The quantum disc: k =0, p(z) =1 — z.



Examples of quantum surfaces

v

The Podles$ sphere: k =1, p(z) =1 - z.
The noncommutative torus: k = 0, p(z) = 1.
The quantum disc: k =0, p(z) =1 — z.

» Set:

v

v

p(z) = (1 - qu’z) .

Then
(a) k =0 —quantum cones,
(b) kK =1 —quantum teardrops,
(c) k > 1 —quantum spindles.



Algebras we want to study: Total spaces

» Let p be a polynomial, p(0) #0and q € K, k € N.
» Let A(p; q) be generated by x., z. subject to relations:

—1
242 =2 Zy, XyZy=Qq ZiXy, X Zy=QZiX,

xpx-=p(ziz-),  x-xy = p(qPz-z;).
» View it as a Z-graded algebra with degrees of z.. being
equal to +1, and that of x. being equal to k.

» Define
A(p; 9, k) = €D A(p;: @)k

nez
» Note that A(p; q,1) = A(p; q) with x. given degrees +1.

» If K =C and pis real then A(p; g, k) is a x-algebra via
Zi = Zv, X{ = Xt.



Examples of A(p; q)

» O(SUqy(2)) i p(z) =1—2z.
» Quantum lens spaces :

p(z) =



Generalized Weyl algebras

» [Bavula] Let R be an algebra, ¢ an automorphism of R and
p an element of the centre of R. A degree-one generalized
Weyl algebra over R is an algebraic extension R(p, o) of R
obtained by supplementing R with additional generators
X, Y subject to the following relations

XY =0(p), YX=p, Xa=oc(a)X, Ya=oc'(a)Y.



Generalized Weyl algebras

» [Bavula] Let R be an algebra, ¢ an automorphism of R and
p an element of the centre of R. A degree-one generalized
Weyl algebra over R is an algebraic extension R(p, o) of R
obtained by supplementing R with additional generators
X, Y subject to the following relations

XY =0(p), YX=p, Xa=oc(a)X, Ya=oc'(a)Y.

» The algebras R(p, o) share many properties with R, in
particular, if R is a Noetherian algebra, so is R(p, o), and if
R is adomain and p # 0, so is R(p, o).

» A(p; q), B(p; q, k) are examples of generalized Weyl
algebras (over R[z;, z_] and R|[z], respectively).



Quantum principal bundles over quantum surfaces

Theorem

View A(p; q, k) as a Z-graded algebra by considering

a € A(p; q, k) to be of degree n if it has a degree kn in A(p; q).
Then

(1) B(p; g, k) = A(p; g, k)o, by identification x := x_z¥,
y=2zKx, andz .=z, z_.

(2) A(p; q, k) is a strongly 7Z.-graded algebra.



Differential calculi

» A first-order differential calculus on A is an A-bimodule Q.A
with a K-linear map d : A — QA such that

(a) d satisfies the Leibniz rule: for all a, b € A,
d(ab) = d(a)b + ad(b);

(b) QA satisfies the density condition: QA = Ad(A).
» If B C Ais a subalgebra, then one can restrict QA to

QB := Bd(B)B.
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(a) d satisfies the Leibniz rule: for all a, b € A,
d(ab) = d(a)b + ad(b);

(b) QA satisfies the density condition: QA = Ad(A).
» If B C Ais a subalgebra, then one can restrict QA to

QB := Bd(B)B.

» If Ais a complex x-algebra, then the calculus (Q.A4, d) is
said to be a x-calculus provided Q2.4 is equipped with an
anti-linear operation * such that, forall a,b € A, w € QA,

(awb)* = b*'w*a* and d(a*) =d(a)".



Skew derivations

» Noncommutative vector fields do not normally satisfy the
Leibniz rule, but often they do satisfy the skew Leibniz rule.

» By a skew o-derivation on A we mean a pair (0, 0), where
o is an algebra automorphismof Aandd: A — Ais a
linear map such that, for all a, b € A,

d(ab) = d(a)a(b) + ad(b);
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» Fix a finite indexing set /, and let (9;,0;), i € I, be a
collection of skew derivations on an algebra A.
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Differential calculi from skew derivations

» Fix a finite indexing set /, and let (9;,0;), i € I, be a
collection of skew derivations on an algebra A.

» Let QA be a free left A-module with a free basis w;, i € I.
» Define the (free) right .A-module structure on QA by setting

wida = (T,'(a)w,'.

» Then the map
d: A= QA am > o(aw;
iel
satisfies the Leibniz rule.

» There is no guarantee in general that the density condition
be satisfied.



Skew derivations on A(p; g, 1)

Theorem
Let, foralla c A(p;q,1),

p(q°z) — p(2)
(@*-1)z =

For all ag 1 € K, the maps 0p + defined on the generators of
A(p;q,1) by

aO(X+) = X4, aO(X*) = _q_zaoxfa

oi(a)=q%a, oo(a)=q¢?¥a, c(z):=q

9o(z4) = apzy, 0o(2-) = —q 2apz_,

and
O5(xx) = 05(2£) =0, 05(xg) = axc(2)z+, 05(z5) = azX;

extend to the whole of A(p; g, 1) as skew oq . -derivations.



Differential calculus on A(p; q,1)

Theorem
If g # 1 and p(z) # 0 is coprime with p(q®Zz), then the system
of skew-derivations (0;, 0}), I € {+,—, 0}, defines the first-order

differential calculus QA on A(p; q,1) with free generators w-,
w_, wo and differential

d(a) = 0_(a)w- + do(@)wo + I+ (@)w+-



Differential calculus on A(p; q,1)

Theorem

If g # 1 and p(z) # 0 is coprime with p(q®Zz), then the system
of skew-derivations (0;, 0}), I € {+,—, 0}, defines the first-order
differential calculus QA on A(p; q,1) with free generators w-,
w_, wo and differential

d(a) = 0_(a)w- + do(@)wo + I+ (@)w+-

In the case of p(z) = 1 — z, with properly chosen constants «;,
QA is the (left-covariant) 3D calculus on the quantum group
SUyq(2) introduced by Woronowicz.



Differential calculus on B(p; g, 1)

Theorem
(1) Forallac B(p;q,1),

60(8) =0.
(2) Ifg* # 1 and p(z) # 0 is coprime with p(g®z), then
QB = A(p;q,1)_2 @ A(p; g, 1)z,

where QB is the restriction of QA to the calculus on
B(p;q,1).

(3) The cotangent bundle over B(p; q, 1) is non-trivial, as the
module of sections QB is not free.



The real spectral triple for B(p; g, 1)

» A Dirac operator on B(p; g, 1) is constructed by following
the procedure of Beggs and Majid ’15.

> The sections of a spinor bundle are identified with the
B(p; q,1)-bimodule A(p; q,1) @ A(p; g, 1)1,

Sy =A(piq,1)-184, S-=A(pig,1)1s-, S=8,8S-,

» As there are idempotents E(1) and E(—1) such that
E(1)+ E(—1) = 1, the spinor bundle is trivial.



The real spectral triple for B(p; g, 1)

v

A Dirac operator on 5(p; g, 1) is constructed by following
the procedure of Beggs and Majid ’15.

The sections of a spinor bundle are identified with the
B(p; q,1)-bimodule A(p; q,1) @ A(p; g, 1)1,

Sy =A(piq,1)-184, S-=A(pig,1)1s-, S=8,8S-,

As there are idempotents E(1) and E(—1) such that
E(1)+ E(—1) = 1, the spinor bundle is trivial.

Note that, individually, S_ and S, are not trivial.



The real spectral triple for B(p; g, 1)

» The strong connection forms ¢(1), ¢(—1) define a

connection V : § — QB ® S on the spinor bundle S by the
formula

V(asi +bs-) =n(d(a)l(-1)s: +x(d(b))l(1)s-,

forall a,b € A(p; g, 1), aof degree —1 and b of degree 1.
Here 7 is the projection of Q2.4 onto horizontal forms

.A(,D, q,1 )d(B(p1 q, 1))“4(:01 q, 1):A(pv q, 1)60+@.A(,0; q,1 )*w*'

» The Clifford action > of QB on S is defined, for all
a,b,cy € A(p; q,1) of degrees |a| = -1, |b| =1,
|c+| = +2, by

(c_wy + crw_)>(as+ +bs_) =prc_bs, + pf_cras_,

where 5, 8- € K



The real spectral triple for B(p; g, 1)

» The Dirac operator given by
D:=poV:§8§—S,
comes out as
D(as; +bs-) =f+q 01 (b)s; + S-q0_(a)s-.
» D is an even Dirac operator with the grading

v:S§S—=S, asy +bs_+——as, —bs_.



The real spectral triple for B(p; g, 1)

Theorem

LetK = C, g € (0,1) and p be a g>-separable polynomial with
real coefficients. Choose /31 such that 5* /5, < 0, and let v be
a solution to the equation

2 30~
Ve =—-q —.
d B+
Then the linear map
J:S—S8, asp+bs_+— —v 'b's, +ra's_,

equips D with a real structure such that D has KO-dimension
two.



