On Bogomolny decomposition and some solutions of some Skyrme-like models

Łukasz T. Stępień

1The Chair of Computer Science and Computer Methods
ul. Podchorążych 2, 30-084 Kraków, Poland
Pedagogical University of Cracow
e-mail: sfstepie@cyf-kr.edu.pl , stepien50@poczta.onet.pl,
URL http://www.up.krakow.pl/~lstepien

XXXI Workshop of Geometric Methods in Physics,
Białowieża, Poland, 24 - 30 June, 2012
Outline

1 Motivation
 - Bogomolny equations - an introduction
 - Baby Skyrme model - an introduction
 - Our goals
 - The concept of strong necessary conditions

2 Derivation of Bogomolny decomposition for baby Skyrme models
 - The case of (2+0)-dimensions
 - Ungauged restricted baby Skyrme model
 - An example
 - Gauged restricted baby Skyrme model
 - The case of (1+1)-dimensions

3 Summary

4 Acknowledgements

5 References
Outline

1 Motivation
 - Bogomolny equations - an introduction
 - Baby Skyrme model - an introduction
 - Our goals
 - The concept of strong necessary conditions

2 Derivation of Bogomolny decomposition for baby Skyrme models
 - The case of (2+0)-dimensions
 - Ungauged restricted baby Skyrme model
 - An example
 - Gauged restricted baby Skyrme model
 - The case of (1+1)-dimensions

3 Summary

4 Acknowledgements

5 References
Euler-Lagrange equations of many models in physics are nonlinear partial differential equations of second order

but, in [Bogomolny 1976] Bogomolny derived the equations, called as Bogomolny equations - sometimes called also, as Bogomol’nyi equations (although historically, they were derived earlier in [Belavin, Polyakov, Schwarz, Tyupkin 1975], for another model - SU(2) Yang-Mills theory):
1. scalar field theory - model ϕ^4 with spontaneous symmetry breaking

$$E = \int_{-\infty}^{\infty} \left(\frac{1}{2} \left(\frac{d\phi}{dx} \right)^2 + \frac{\lambda}{2} (\phi^2 - \gamma^2)^2 \right) dx,$$

$$\phi(x) \in \mathbb{R}, \quad \lim_{x \to \pm \infty} \phi(x) = \pm \gamma$$

Euler-Lagrange equations for this model

$$\frac{d^2 \phi}{dx^2} = 2\lambda \phi (\phi^2 - \gamma^2)$$

On Bogomolny decomposition and some solutions of some Skyrme-like...
we may avoid solving of them, namely we write the formula for E in (1), as follows

$$E = \int_{-\infty}^{\infty} \left(\frac{1}{2} \left(\frac{d\phi}{dx} + \sqrt{\lambda}(\phi^2 - \gamma^2) \right)^2 - \sqrt{\lambda} \frac{d\phi}{dx}(\phi^2 - \gamma^2) \right) dx,$$

(total derivative of $\sqrt{\lambda}(\phi^3 - \gamma^2 \phi)$)

(3)
we integrate the underbraced term in (3)

\[E = \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{d\phi}{dx} + \sqrt{\lambda}(\phi^2 - \gamma^2) \right)^2 dx + \frac{2\sqrt{\lambda}}{3} \gamma^2 |Q|, \quad (4) \]

\[Q = \phi(\infty) - \phi(-\infty), \]

where \(Q \) - topological charge.
now we require reaching the minimum by the functional (4), so the first term must vanish

\[
\frac{d\phi}{dx} = \sqrt{\lambda}(\gamma^2 - \phi^2)
\]

(5)

The very-known solution of (5), so called “kink”

\[
\phi(x) = \gamma \tanh (\gamma \sqrt{\lambda}(x - x_0))
\]

(6)

So, the following inequality (Bogomolny bound) is satisfied

\[
E \geq E_{min} = \frac{2\sqrt{\lambda}}{3} \gamma^2 |Q|
\]

(7)

where \(E_{min} \) - the minimum of the functional (4).
Outline

1 Motivation
- Bogomolny equations - an introduction
- Baby Skyrme model - an introduction
- Our goals
- The concept of strong necessary conditions

2 Derivation of Bogomolny decomposition for baby Skyrme models
- The case of (2+0)-dimensions
 - Ungauged restricted baby Skyrme model
 - An example
 - Gauged restricted baby Skyrme model
- The case of (1+1)-dimensions

3 Summary

4 Acknowledgements

5 References
Baby Skyrme model - an introduction I

I Skyrme model - very interesting model, possesses solitonic solutions, useful for describing phenomena in world of baryons; good description of low-energy physics of strong interactions, [Makhankov et al. 1989].

II baby Skyrme model - an analogical model (on plane) to the Skyrme model in three-dimensional space.

III the target space of Skyrme model is $SU(2)$, [Skyrme 1961], [Skyrme 1962], [Skyrme 1971] \Rightarrow the target space of baby Skyrme model is S^2.

IV in these both models: Skyrme and baby Skyrme, static field configurations can be classified topologically by their winding numbers.
anallogically to the Skyrme model, the baby Skyrme model includes:

1. the quadratic term i.e. the term of nonlinear $O(3)$ sigma model,
2. the quartic term - an analogue of the Skyrme term and necessary in order to avoid the consequences of Derrick-Hobart theorem and
3. the potential - its presence in the case of static field configurations with finite energy, in baby Skyrme model, is necessary. However, the form of this potential - not restricted.
VI the lagrangian of baby Skyrme model, [Adam etal. 2009]:

$$\mathcal{L} = \partial_\mu \mathbf{\tilde{S}} \cdot \partial^\mu \mathbf{\tilde{S}} - \beta (\partial^\mu \mathbf{\tilde{S}} \times \partial^\nu \mathbf{\tilde{S}})^2 - V(\mathbf{\tilde{S}}),$$ \hspace{1cm} (8)

where $|\mathbf{\tilde{S}}|^2 = 1$.

VII we consider the energy functional for restricted baby Skyrme model in (2+0) dimensions (the static σ term is absent), of the following form, [Adam etal. 2010]

$$H = \frac{1}{2} \int d^2 x \mathcal{H} = \frac{1}{2} \int d^2 x \left(\frac{\beta}{4} (\epsilon_{ij} \partial_i \mathbf{\tilde{S}} \times \partial_j \mathbf{\tilde{S}})^2 + \gamma^2 V(\mathbf{\tilde{S}}) \right),$$ \hspace{1cm} (9)

where we assume nothing about the form of the potential V (of course, $V \in \mathcal{C}$).
1 Motivation
 - Bogomolny equations - an introduction
 - Baby Skyrme model - an introduction
 - Our goals
 - The concept of strong necessary conditions

2 Derivation of Bogomolny decomposition for baby Skyrme models
 - The case of (2+0)-dimensions
 - Ungauged restricted baby Skyrme model
 - An example
 - Gauged restricted baby Skyrme model
 - The case of (1+1)-dimensions

3 Summary

4 Acknowledgements

5 References
Our goals I

we want to derive Bogomolny equations for ungauged baby Skyrme model in dimensions: (2+0) and (1+1) and for gauged baby Skyrme model in (2+0) dimensions

in contrary to [Adam etal. 2010] (where only special form of potential was investigated), [Speight 2010] (where special class of potentials was investigated) and [Adam etal. 2012]: we derive Bogomolny equations (we call them as Bogomolny decomposition), by applying so called, concept of strong necessary conditions (firstly presented in [Sokalski 1979] and developed in [Sokalski etal. 2001], [Sokalski etal.II 2001], [Sokalski etal. 2002]), for ungauged and gauged versions of restricted baby Skyrme model.
Motivation

- Bogomolny equations - an introduction
- Baby Skyrme model - an introduction
- Our goals
- The concept of strong necessary conditions

Derivation of Bogomolny decomposition for baby Skyrme models

- The case of (2+0)-dimensions
 - Ungauged restricted baby Skyrme model
 - An example
 - Gauged restricted baby Skyrme model
- The case of (1+1)-dimensions

Summary

Acknowledgements

References
The concept of strong necessary conditions I

from the extremum principle, applied to the functional

$$\Phi[u] = \int_{E^2} F(u, u_x, u_t) \, dx dt,$$ \hspace{1cm} (10)

follow the Euler-Lagrange equations

$$F_{,u} - \frac{d}{dx} F_{,u_x} - \frac{d}{dt} F_{,u_t} = 0,$$ \hspace{1cm} (11)
instead of (11) we consider strong necessary conditions, [Sokalski 1979], [Sokalski etal. 2001], [Sokalski etal.II 2001], [Sokalski etal. 2002]

\[
\begin{align*}
F_{,u} &= 0, \\
F_{,u,t} &= 0, \\
F_{,u,x} &= 0,
\end{align*}
\]

(12) \hspace{1cm} (13) \hspace{1cm} (14)

where \(F_{,u} \equiv \frac{\partial F}{\partial u} \), etc.

all solutions of the system of the equations (12) - (14) satisfy the Euler-Lagrange equation (11)

BUT
The concept of strong necessary conditions III

- these solutions, if they exist, are very often trivial.
- a cure:
 A we make gauge transformation of the functional (10)

\[
\Phi \rightarrow \Phi + \ln v, \tag{15}
\]

where \(\ln v \) is such functional that its local variation with respect to \(u(x, t) \) vanishes: \(\delta \ln v \equiv 0 \implies \) E.-L. equations are invariant with respect to the gauge transformation (15).

B non-invariance of the strong necessary conditions (12) - (14) with respect to the gauge transformation (15) \(\implies \) some non-trivial solutions are possible

- now we apply the strong necessary conditions (12) - (14) to the gauged functional: \(\tilde{\Phi} = \Phi + \ln v \)
we obtain so called *dual equations*.
Outline

1 Motivation
 - Bogomolny equations - an introduction
 - Baby Skyrme model - an introduction
 - Our goals
 - The concept of strong necessary conditions

2 Derivation of Bogomolny decomposition for baby Skyrme models
 - The case of (2+0)-dimensions
 - Ungauged restricted baby Skyrme model
 - An example
 - Gauged restricted baby Skyrme model
 - The case of (1+1)-dimensions

3 Summary

4 Acknowledgements

5 References
After making stereographic projection

\[\vec{S} = \left[\frac{\omega + \omega^*}{1 + \omega \omega^*}, \frac{-i(\omega - \omega^*)}{1 + \omega \omega^*}, \frac{1 - \omega \omega^*}{1 + \omega \omega^*} \right], \]

(16)

where \(\omega = \omega(x, y) \in \mathbb{C} \) and \(x, y \in \mathbb{R} \), the density of the energy functional (9) has the form

\[H = -4\beta \frac{(\omega, x\omega^* - \omega, y\omega^*)^2}{(1 + \omega \omega^*)^4} + V(\omega, \omega^*) \]

(17)
Ungauged restricted baby Skyrme model II

now, we make gauge transformation, [Ł. T. S. 2012]:

\[\mathcal{H} \rightarrow \tilde{\mathcal{H}} = -4\beta \frac{(\omega, x\omega^*_y - \omega, y\omega^*_x)^2}{(1 + \omega\omega^*)^4} + V(\omega, \omega^*) + \sum_{k=1}^{3} l_k, \quad (18) \]

where \(l_k \) are the densities of the invariants:
\(l_1 = G_1(\omega, \omega^*)(\omega, x\omega^*_y - \omega, y\omega^*_x) \) is the density of topological invariant, \(l_2 = D_x G_2(\omega, \omega^*) \), \(l_3 = D_y G_3(\omega, \omega^*) \), \(D_x \equiv \frac{d}{dx}, D_y \equiv \frac{d}{dy} \)
\(\omega = \omega(x, y), \omega^* = \omega^*(x, y) \in \mathcal{C}^2 \) and \(G_k = G_k(\omega, \omega^*) \in \mathcal{C}^2 \), \((k = 1, 2, 3) \), are some functions, which are to be determinated.
If we apply the concept of strong necessary conditions to (18), the dual equations are, as follows

\[
\tilde{H}_{, \omega} = 16\beta \frac{(\omega_{, x} \omega_{, y} - \omega_{, y} \omega_{, x})^2 \omega^*}{(1 + \omega \omega^*)^5} + V_{, \omega}(\omega, \omega^*) + \\
G_{1, \omega}(\omega, \omega^*)(\omega_{, x} \omega_{, y} - \omega_{, y} \omega_{, x}) + D_x G_{2, \omega}(\omega, \omega^*) + \\
D_y G_{3, \omega}(\omega, \omega^*) = 0, \tag{19}
\]

\[
\tilde{H}_{, \omega^*} = 16\beta \frac{(\omega_{, x} \omega_{, y} - \omega_{, y} \omega_{, x})^2 \omega^*}{(1 + \omega \omega^*)^5} + V_{, \omega^*}(\omega, \omega^*) + \\
G_{1, \omega^*}(\omega, \omega^*)(\omega_{, x} \omega_{, y} - \omega_{, y} \omega_{, x}) + D_x G_{2, \omega^*}(\omega, \omega^*) + \\
D_y G_{3, \omega^*}(\omega, \omega^*) = 0, \tag{20}
\]
Ungauged restricted baby Skyrme model IV

\[\tilde{H}_{\omega,x} = -8\beta \frac{(\omega,x\omega^*_y - \omega,y\omega^*_x)\omega^*_y}{(1 + \omega\omega^*)^4} + G_1(\omega,\omega^*)\omega^*_y + G_2,\omega = 0, \]
(21)

\[\tilde{H}_{\omega,y} = 8\beta \frac{(\omega,x\omega^*_y - \omega,y\omega^*_x)\omega^*_x}{(1 + \omega\omega^*)^4} - G_1(\omega,\omega^*)\omega^*_x + G_3,\omega = 0, \]
(22)

\[\tilde{H}_{\omega,x} = 8\beta \frac{(\omega,x\omega^*_y - \omega,y\omega^*_x)\omega^*_y}{(1 + \omega\omega^*)^4} - G_1(\omega,\omega^*)\omega^*_y + G_2,\omega^* = 0, \]
(23)
\[\tilde{H}, \omega, \omega^* = -8\beta (\omega, x\omega^*_y - \omega, y\omega^*_x)\omega, x \left(1 + \omega\omega^* \right)^4 + G_1(\omega, \omega^*)\omega, x + G_3, \omega^* = 0. \] (24)

Now, we need to make the equations (19) - (24) self-consistent \(\Rightarrow \) the necessity of the reduction of the number of independent equations by an appropriate choice of the functions \(G_k, (k = 1, 2, 3) \).

usually, such ansatzes exist only for some special \(V(\omega, \omega^*) \) \(\Rightarrow \) in most cases of \(V(\omega, \omega^*) \) for many nonlinear field models, the reduction of the system of corresponding dual equations, to Bogomolny equations, is impossible.
two operations (they were applied firstly in [Sokalski et al. 2002] for the cases of hyperbolic and elliptic systems of nonlinear PDE’s).

At first, integrating the equations (19) - (20) with respect to \(\omega \) and to \(\omega^* \), correspondingly. We get:

\[
-4\beta \frac{(\omega, y \omega_x^* - \omega, y \omega_y^*)^2}{(1 + \omega \omega^*)^4} + V(\omega, \omega^*) + G_1(\omega, \omega^*)(\omega, x \omega_y^* - \omega, y \omega_x^*) + \\
D_x G_2(\omega, \omega^*) + D_y G_3(\omega, \omega^*) = F(\omega, x, \omega, y, \omega_x^*, \omega_y^*),
\]

where \(F \) is some function, which will be determined later.
making the equations (21) - (24) self-consistent: proper choice of the functions $G_k, k = 1, 2, 3$:

proper multiplying of the equations (21) - (24) by $\omega, x, \omega, y, \omega^*, x, \omega^*, y$, correspondingly, and adding by sides obtained equations, we get

$$-8\beta \frac{(\omega, x\omega^*_y - \omega, y\omega^*_x)^2}{(1 + \omega\omega^*)^4} + G_1(\omega, \omega^*)(\omega, x\omega^*_y - \omega, y\omega^*_x) + D_x G_2(\omega, \omega^*) = 0,$$

(26)
Ungauged restricted baby Skyrme model VII

\[-8\beta \frac{(\omega, x\omega^*, y - \omega, y\omega^*)^2}{(1 + \omega\omega^*)^4} + G_1(\omega, \omega^*) (\omega, x\omega^*, y - \omega, y\omega^*) + D_y G_3(\omega, \omega^*) = 0.\]

(27)

Hence:

\[D_x G_2(\omega, \omega^*) = D_y G_3(\omega, \omega^*).\]

(28)
IV now: multiplying again the equations (21) - (24) by \(\omega, x, \omega, y, \omega^*, x, \omega^*, y \) and add by sides, but such, that we get

\[
D_y G_2(\omega, \omega^*) = 0, \quad D_x G_3(\omega, \omega^*) = 0.
\]

(29)

the relations (26), (27) and (29) - so called divergent representation (the divergent representation was derived firstly in [Sokalski etal. 2002] for hyperbolic system of two coupled nonlinear partial differential equations).

V Hence, and from (28)

\[
G_2(\omega, \omega^*) = \text{const}, \quad G_3(\omega, \omega^*) = \text{const}.
\]

(30)
Hence, after inserting (30) into (26), (27) and simplifying, we get:

\[\omega, x \omega^*, y - \omega, y \omega^*, x = \frac{1}{8\beta} G_1(\omega, \omega^*)(1 + \omega \omega^*)^4. \]

(31)

The same result follows from (21)-(24) and all solutions of (31) satisfy the equations (21) - (24)

When the equation (25) is satisfied by the solutions of (31) ? We insert (30) and (31), into the equation (25)

\[V(\omega, \omega^*) + \frac{1}{16\beta} G_1^2(\omega, \omega^*)(1 + \omega \omega^*)^4 = F(\omega, x, \omega, y, \omega^*, x, \omega^*, y). \]

(32)
Now, in order to determining function F, we compare (32) with Hamilton-Jacobi equation, [Rund 1966], [Sokalski etal. 2002]:

$$\tilde{H} = 0,$$

(33)

where, of course \tilde{H} in general, for $\omega = \omega(x^\mu), \omega^* = \omega^*(x^\mu)$, ($\mu = 0, 1, 2, 3$ and $x^0 = t$):

$$\tilde{H} = \Pi_\omega \omega, t + \Pi_{\omega^*} \omega^*, t - \tilde{L},$$

(34)

where $\Pi_\omega = \tilde{\mathcal{L}}_{\omega, t}, \Pi_{\omega^*} = \tilde{\mathcal{L}}_{\omega^*, t}$ - canonical momenta and \tilde{L} - Lagrange density, gauge-transformed on the invariants $I_k, (k = 1, 2, 3)$
Obviously, in our case: \(\tilde{\mathcal{H}} = -\tilde{\mathcal{L}} \). Hence, by inserting into this equation, the relations (30) and (31), and taking into account (33), we get that \(F = 0 \). So, we get

\[
V(\omega, \omega^*) = -\frac{1}{16\beta} G_1^2(\omega, \omega^*)(1 + \omega\omega^*)^4. \tag{35}
\]

Then, of course,

\[
G_1 = \frac{4i\sqrt{\beta}}{(1 + \omega\omega^*)^2} \sqrt{V(\omega, \omega^*)}. \tag{36}
\]
We insert (36) in (31) and we obtain Bogomolny decomposition for the given potential $V(w, w^*)$

$$\omega_x \omega_y^* - \omega_y \omega_x^* = \frac{i}{2\sqrt{\beta}} \sqrt{V(\omega, \omega^*)}(1 + \omega^*)^2. \quad (37)$$

Then, the equation (37) is Bogomolny decomposition (Bogomolny equation) for restricted baby Skyrme model in (2+0) dimensions, for arbitrary potential.

We find an exact solution of Bogomolny decomposition (37) for $V = (\omega \omega^* - \gamma^2)^2$ - “Mexican hat” potential, i.e. it is the model with spontaneously broken symmetry.
Ungauged restricted baby Skyrme model XIV

Figure: The potential
Ungauged restricted baby Skyrme model XV

We use so called “hedgehog” ansatz

\[\omega = \frac{\sin(f(r)) \cos(N\theta) + i \sin(f(r)) \sin(N\theta)}{1 + \cos(f(r))} \]

(38)

After inserting it into the Bogomolny decomposition, and solving obtained ODE, we get exact solution for \(f(r) \) and we present here the figures of: the function \(f(r) \), energy density and the components \(S^i, i = 1, 2, 3 \), for \(\gamma = 5, N = 1 \) and \(\gamma = 5, N = 5 \), correspondingly (of course, \(\omega = u + iv, r^2 = x^2 + y^2 \)):
Ungauged restricted baby Skyrme model XVI

Figure: Function $f(r)$ and energy density
Ungauged restricted baby Skyrme model XVII

Figure: Components of vector \vec{S}
Ungauged restricted baby Skyrme model XVIII

Figure: Function $f(r)$ and energy density
Ungauged restricted baby Skyrme model XIX

Figure: Components of vector \vec{S}
Gauged restricted baby Skyrme model I

- full gauged baby Skyrme model

\[\mathcal{L} = D_\mu \vec{S} \cdot D^\mu \vec{S} + \frac{\lambda^2}{4} (D^\mu \vec{S} \times D^\nu \vec{S})^2 + (1 - \vec{n} \cdot \vec{S}) + F_{\mu\nu}^2, \quad (39) \]

- gauged restricted baby Skyrme model with the potential \(V = (1 - \vec{n} \cdot \vec{S}) \), the special case of gauged full baby Skyrme model (8), when the \(O(3) \)-like term is absent, [Ł. T. S. II 2012]

\[\mathcal{L} = \frac{\lambda^2}{4} (D_\mu \vec{S} \times D_\nu \vec{S})^2 + F_{\mu\nu}^2 + (1 - \vec{n} \cdot \vec{S}), \quad (40) \]

where \(\vec{S} \) is three-component vector, such that \(|\vec{S}|^2 = 1 \) and \(D_\mu \vec{S} = \partial_\mu \vec{S} + A_\mu (\vec{n} \times \vec{S}) \) is covariant derivative of vector field \(\vec{S} \).
we consider gauged restricted baby Skyrme model in (2+0)
dimensions, [Ł. T. S. II 2012]

\[
H = \frac{1}{2} \int d^2x \quad \mathcal{H} = \frac{1}{2} \int d^2x \left(\frac{\lambda^2}{4} (\epsilon_{ij} D_i \vec{S} \times D_j \vec{S})^2 + F_{\mu\nu}^2 + \gamma^2 V(1 - \vec{n} \cdot \vec{S}) \right),
\]

where \(x_1 = x, \ x_2 = y \) and \(i, j = 1, 2 \).

we make the stereographic projection

\[
\vec{S} = \begin{bmatrix}
\frac{\omega + \omega^*}{1 + \omega \omega^*}, & -i(\omega - \omega^*) & \frac{1 - \omega \omega^*}{1 + \omega \omega^*}
\end{bmatrix},
\]

where \(\omega = \omega(x, y) \in \mathbb{C} \) and \(x, y \in \mathbb{R} \).
Gauged restricted baby Skyrme model III

Then (after rescalling, the constants λ_1, λ_2 have been appeared, instead of λ and γ has been included in V):

$$\mathcal{H} = \frac{1}{16\lambda_1} N_1^2 (1 + \omega \omega^*)^4 + \lambda_2 (A_{2,x} - A_{1,y})^2 + V\left(\frac{2\omega\omega^*}{1 + \omega\omega^*}\right),$$

where: $N_1 = \frac{8\lambda_1}{(1 + \omega\omega^*)^4} [i(\omega, x\omega^* - \omega, y\omega^*) - A_1 (\omega, y\omega^* + \omega\omega^*)] + A_2 (\omega, x\omega^* + \omega\omega^*)].$
The Euler-Lagrange equations for this model are, as follows

\[
\frac{d}{dx} [N_1(i\omega^*_y + A_2\omega^*)] + \frac{d}{dy} [N_1(-i\omega^*_x - A_1\omega^*)] + \\
\frac{1}{4\lambda_1} N_1^2 \omega^* (1 + \omega^*)^3 - N_1 (-A_1\omega^*_{,y} + A_2\omega^*_{,x}) - \\
V' \left(\frac{2\omega^*}{1 + \omega^*} \right) \frac{2\omega^*}{(1 + \omega^*)^2} = 0, \text{ c.c.} \tag{44}
\]

\[-2\lambda_2 \frac{d}{dy} (A_2_{,x} - A_1_{,x}) + N_1 \cdot (\omega_{,y}\omega^* + \omega\omega^*_{,y}) = 0\]

\[2\lambda_2 \frac{d}{dx} (A_2_{,x} - A_1_{,x}) - N_1 \cdot (\omega_{,x}\omega^* + \omega\omega^*_{,x}) = 0\]
beside the lagrangian, in order to apply concept of strong necessary conditions, we need also topological invariant (also gauge invariance required), its density, [Schroers 1995], [Yang 2001]:

\[
I_1 = \vec{S} \cdot D_1 \vec{S} \times D_2 \vec{S} + F_{12}(1 - \vec{n} \cdot \vec{S}),
\]

(45)

after making the stereographic projection (42), we have:

\[
I_1 = \frac{1}{(1 + \omega\omega^*)^2} \left[2(i(\omega, x\omega^* - \omega, y\omega^*) - A_1(\omega, y\omega^* + \omega\omega^*)_x + A_2(\omega, x\omega^* + \omega\omega^*)_y) \right] + \frac{2\omega\omega^*}{1 + \omega\omega^*}(A_{2, x} - A_{1, y}).
\]

(46)
Gauged restricted baby Skyrme model VI

- it is useful to generalize the above expression such that there by the term $A_{2,x} - A_{1,y}$, some function of the argument $\frac{2 \omega \omega^*}{1 + \omega \omega^*}$ may be placed.

$$I_1 = \lambda_4 \left\{ \frac{1}{(1 + \omega \omega^*)^2} \left[2 G_1' \cdot (i(\omega,x \omega^* - \omega,y \omega^*,x) - A_1(\omega,y \omega^* + \omega \omega^*,y) + A_2(\omega,x \omega^* + \omega \omega^*,x)) \right] + G_1 \cdot (A_{2,x} - A_{1,y}) \right\} \right.,$$

where $\lambda_4 = const$, $G_1 = G_1 \left(\frac{2 \omega \omega^*}{1 + \omega \omega^*} \right)$ and G_1' denotes the derivative of the function G_1 with respect to its argument: $\frac{2 \omega \omega^*}{1 + \omega \omega^*}$.
we make the following gauge transformation

\[
\mathcal{H} \rightarrow \tilde{\mathcal{H}} = \frac{1}{16\lambda_1} N_1^2 (1 + \omega \omega^*)^4 + \lambda_2 (A_{2,x} - A_{1,y})^2 + V\left(\frac{2\omega \omega^*}{1 + \omega \omega^*}\right) + \sum_{k=1}^{3} I_k, \tag{48}
\]

where \(N_1 = \frac{8\lambda_1}{(1 + \omega \omega^*)^4} [i(\omega, x \omega^* - y, y \omega^*) - A_1 (\omega, y \omega^* + \omega y^*) + A_2 (\omega, x \omega^* + \omega x^*)] \),

\(I_1 \) is given by (47),

\(I_2 = D_x G_2(\omega, \omega^*) \), \(I_3 = D_y G_3(\omega, \omega^*) \), \(D_x \equiv \frac{d}{dx}, D_y \equiv \frac{d}{dy} \) and \(G_k \in \mathcal{C}^2, (k = 1, 2, 3) \), are some functions, which are to be determined.
After applying the concept of strong necessary conditions to (18), we obtain the dual equations

\[
\omega : - \frac{1}{4\lambda_1} N_1^2 \omega^* (1 + \omega \omega^*)^3 + N_1 (-A_1 \omega_{,y} + A_2 \omega_{,x}) + V' \frac{2\omega^*}{(1 + \omega \omega^*)^2} + \\
\lambda_4 \left\{ G_1' \frac{N_1 \omega^*}{2\lambda_1} + \frac{2G_1' (-A_1 \omega_{,y} + A_2 \omega_{,x})}{(1 + \omega \omega^*)^2} - \\
G_1' \frac{N_1}{2\lambda_1} (1 + \omega \omega^*) \omega^* + G_1' \frac{2\omega^*}{(1 + \omega \omega^*)^2} (A_{2,x} - A_{1,y}) \right\} + \\
D_x G_{2,\omega} + D_y G_{3,\omega} = 0
\]

(49)
The case of \((2+0)\)-dimensions

\[
\omega^* : -\frac{1}{4\lambda_1} N_1^2 \omega (1 + \omega \omega^*)^3 + N_1 (-A_1 \omega_y + A_2 \omega_x) + V' \frac{2\omega}{(1 + \omega \omega^*)^2} +
\]

\[
\lambda_4 \left\{ G_1'' \frac{N_1 \omega}{2\lambda_1} + \frac{2G_1' (-A_1 \omega^*_y + A_2 \omega^*_x)}{(1 + \omega \omega^*)^2} -
\right.
\]

\[
G_1' \frac{N_1}{2\lambda_1} (1 + \omega \omega^*) \omega + G_1' \frac{2\omega}{(1 + \omega \omega^*)^2} (A_2, x - A_1, y) \right\} +
\]

\[
D_x G_{2, \omega^*} + D_y G_{3, \omega^*} = 0
\]
Gauged restricted baby Skyrme model X

$$
\omega_x : N_1(i\omega^*_y + A_2\omega^*) + \frac{2\lambda_4 G'_1(i\omega^*_y + A_2\omega^*)}{(1 + \omega\omega^*)^2} + G_{2,\omega} = 0, \quad (51)
$$

$$
\omega_y : N_1(-i\omega^*_x - A_1\omega^*) + \frac{2\lambda_4 G'_1(-i\omega^*_x - A_1\omega^*)}{(1 + \omega\omega^*)^2} + G_{3,\omega} = 0, \quad (52)
$$

$$
\omega^*_x : N_1(-i\omega^*_y + A_2\omega) + \frac{2\lambda_4 G'_1(-i\omega^*_y + A_2\omega)}{(1 + \omega\omega^*)^2} + G_{2,\omega^*} = 0, \quad (53)
$$
Gauged restricted baby Skyrme model XI

\[\omega_{,y} : N_1 (i\omega, x - A_1 \omega) + \frac{2\lambda_4 G'_1 (i\omega, x - A_1 \omega)}{(1 + \omega \omega^*)^2} + G_{3, \omega^*} = 0, \quad (54) \]

\[A_1 : N_1 (-\omega, y \omega^* - \omega \omega_{,y}) + \frac{2\lambda_4 G'_1 (-\omega, y \omega^* - \omega \omega_{,y})}{(1 + \omega \omega^*)^2} = 0, \quad (55) \]

\[A_2 : N_1 (\omega, x \omega^* + \omega \omega_{,x}) + \frac{2\lambda_4 G'_1 (\omega, x \omega^* + \omega \omega_{,x})}{(1 + \omega \omega^*)^2} = 0, \quad (56) \]

\[A_{1, y} : -2\lambda_2 (A_{2, x} - A_{1, y}) - \lambda_4 G_1 = 0, \quad (57) \]
A_{2,x} : 2\lambda_2 (A_{2,x} - A_{1,y}) + \lambda_4 G_1 = 0, \quad (58)

where \(N_1 = \frac{8\lambda_1}{(1+\omega\omega^*)^4} \left[i(\omega, x\omega^* - y, y\omega^*_x) - A_1(\omega, y\omega^* + \omega\omega^*_y) + A_2(\omega, x\omega^* + \omega\omega^*_x) \right] \)

and \(V', G'_1, G''_1 \) denote the derivatives of the functions \(V \) and \(G_1 \) with respect to their argument: \(\frac{2\omega\omega^*}{1+\omega\omega^*} \).

making the equations (49) - (58) self-consistent:
we put:

\[G'_1 = -\frac{N_1}{2\lambda_4} (1 + \omega\omega^*)^2, \quad (59) \]

\[A_{2,x} - A_{1,y} = -\frac{\lambda_4}{2\lambda_2} G_1 \left(\frac{2\omega\omega^*}{1 + \omega\omega^*} \right), \quad (60) \]

\[G_2 = \text{const}, \quad G_3 = \text{const}, \quad (61) \]

where \(N_1 = \frac{8\lambda_1}{(1 + \omega\omega^*)^4} [i(\omega_x\omega^*_y - \omega_y\omega^*_x) - A_1(\omega_y\omega^* + \omega\omega^*_x) + A_2(\omega_x\omega^* + \omega\omega^*_x)]. \]
then, the equations (51)-(58) become the tautologies and we have the candidate for Bogomolny decomposition:

\[
4 \lambda_1 \left[i(\omega,x \omega^*,y - \omega,y \omega^*,x) - A_1(\omega,y \omega^* + \omega \omega^*,y) + A_2(\omega,x \omega^* + \omega \omega^*,x)\right] \lambda_4 (1 + \omega \omega^*)^2
\]

\[
- G'_1,
\]

\[
2 \lambda_2 (A_2,x - A_1,y) + \lambda_4 G_1 \left(\frac{2 \omega \omega^*}{1 + \omega \omega^*}\right) = 0.
\]

(62)
When the equations (49)-(50) are satisfied, if (62) hold? We insert (59)-(61) into (49)-(50). We get the system of ordinary differential equations for V and the solution of it is:

$$V = \frac{\lambda_4^2}{4} \left(\frac{1}{\lambda_1} (G'_1)^2 + \frac{1}{\lambda_2} G_1^2 \right). \quad (63)$$
So, we obtain Bogomolny decomposition for gauged restricted baby Skyrme model in (2+0) dimensions

\[
4\lambda_1 \left[i(\omega, x\omega_y^* - \omega, y\omega_x^*) - A_1(\omega, y\omega^* + \omega\omega_x^*) + A_2(\omega, x\omega^* + \omega\omega_x^*) \right] \frac{\lambda_4 (1 + \omega\omega^*)^2}{\lambda_4 (1 + \omega\omega^*)^2} = -G_1',
\]

\[
A_{2,x} - A_{1,y} = -\frac{\lambda_4}{2\lambda_2} G_1 \left(\frac{2\omega\omega^*}{1 + \omega\omega^*} \right).
\]

for the potential \(V(\frac{2\omega\omega^*}{1 + \omega\omega^*})\), satisfying

\[
V = \frac{\lambda_4^2}{4} \left(\frac{1}{\lambda_1} (G_1')^2 + \frac{1}{\lambda_2} G_1^2 \right),
\]

(64)
where $G_1 = G_1 \left(\frac{2\omega \omega^*}{1 + \omega \omega^*} \right) \in C^2$.
Outline

1 Motivation
 - Bogomolny equations - an introduction
 - Baby Skyrme model - an introduction
 - Our goals
 - The concept of strong necessary conditions

2 Derivation of Bogomolny decomposition for baby Skyrme models
 - The case of (2+0)-dimensions
 - Ungauged restricted baby Skyrme model
 - An example
 - Gauged restricted baby Skyrme model
 - The case of (1+1)-dimensions

3 Summary

4 Acknowledgements

5 References
The case of (1+1)-dimensions I

- the lagrangian:

\[\mathcal{L} = -4\beta \frac{(\omega, t\omega_x - \omega, x\omega_t)^2}{(1 + \omega\omega^*)^4} + V(\omega, \omega^*) \]

(66)

- the gauge transformation of Lagrangian, [Ł. T. S. 2012]:

\[\mathcal{L} \longrightarrow \tilde{\mathcal{L}} = -4\beta \frac{(\omega, t\omega_x - \omega, x\omega_t)^2}{(1 + \omega\omega^*)^4} + V(\omega, \omega^*) + \sum_{k=1}^{3} l_k, \]

(67)

where now: \(l_1 = G_1(\omega, \omega^*)(\omega, t\omega_x - \omega, x\omega_t) \), \(l_2 = D_t G_2(\omega, \omega^*) \), \(l_3 = D_x G_3(\omega, \omega^*) \), \(D_t \equiv \frac{d}{dt}, D_x \equiv \frac{d}{dx} \)
The case of (1+1)-dimensions II

\[\omega = \omega(t, x), \omega^* = \omega^*(t, x) \in C^2 \text{ and } G_k = G_k(\omega, \omega^*) \in C^2, \]

\((k = 1, 2, 3)\), are some functions, which are to be determinated.

Further computations are analogical to the computations in the case of (2+0)-dimensions, i.e. dual equations have very similar form and \(G_2 = const, G_3 = const \) and:

\[
\omega, t \omega^*_x - \omega, x \omega^*_t = \frac{1}{g\beta} G_1(\omega, \omega^*)(1 + \omega \omega^*)^4. \quad (68)
\]

but with one difference: the Hamilton-Jacobi equation has now another form. Namely, let us remind [Rund 1966], [Sokalski et al. 2002]:

\[
\tilde{H} = 0, \quad (69)
\]
The case of (1+1)-dimensions III

where, of course $\tilde{\mathcal{H}}$ in general, for $\omega = \omega(x^\mu), \omega^* = \omega^*(x^\mu), (\mu = 0, 1, 2, 3$ and $x^0 = t)$:

$$\tilde{\mathcal{H}} = \Pi_\omega \omega, t + \Pi_{\omega^*} \omega^*, t - \tilde{\mathcal{L}}, \quad (70)$$

$$\Pi_\omega = \tilde{\mathcal{L}}, \omega, t, \Pi_{\omega^*} = \tilde{\mathcal{L}}, \omega^*, t. \quad (71)$$

Obviously, in the current case:

$$\tilde{\mathcal{H}} = -4\beta \frac{(\omega, t \omega^* x - \omega, x \omega^*, t)^2}{(1 + \omega \omega^*)^4} - V(\omega, \omega^*) = 0. \quad (72)$$
The case of (1+1)-dimensions IV

After taking into account (74) and (72), we have

\[V(\omega, \omega^*) + \frac{1}{16\beta} G^2_1(\omega, \omega^*)(1 + \omega \omega^*)^4 = 0. \] (73)

Thus, we have obtained the same relation between the potential, as in the case of (2+0)-dimensions. The Bogomolny decomposition for this case has the form:

\[\omega, t\omega^*_x - \omega, x\omega^*_t = \frac{i}{2\sqrt{\beta}} \sqrt{V(\omega, \omega^*)(1 + \omega \omega^*)^2}. \] (74)
Summary I

The Bogomolny decomposition (the system of Bogomolny equations) has been derived, by using the concept of strong necessary conditions in:

(2+0)-dimensions, for:

- ungauged restricted baby Skyrme model, for arbitrary form of the potential, in contrary to [Adam et al. 2010] (where only special form of potential was investigated), [Speight 2010] (where special class of potentials was investigated),
- gauged restricted baby Skyrme model, the “gauging” of the model causes the condition for the potential in contrary to ungauged model.
(1+1)-dimensions for ungauged restricted baby Skyrme model, for arbitrary form of the potential.

- The figures of example exact solution of Bogomolny decomposition and corresponding energy densities, for ungauged restricted baby Skyrme model in (2+0)-dimensions, have been presented.

- further investigation of other Skyrme-like models and the further solutions of found Bogomolny decompositions and their physical features: work in progress.
The author thanks to Dr Hab. A. Wereszczyński for interesting discussions about restricted baby Skyrme models, carried out in 2010. The author thanks also to Dr Z. Lisowski for some interesting remarks.

The participation of author in the Conference is possible owing to the financial support, provided by Pedagogical University in Kraków, within the research theme (the Head of the theme: Dr K. Rajchel).

Computational resources:
Some part of computations was carried out by using Waterloo MAPLE Software on computer “mars” (No. of grant MNiSW/IBM_BC_HS21/AP/057/2008) in ACK-CYFRONET AGH in Kraków. This research was supported in part by PL-GRID Infrastructure, too.
W. G. Makhankov, Yu. P. Rybakov and W. I. Sanyuk

Skyrme models and solitons in physics of hadrons,
in Russian

H. Rund,

The Hamilton-Jacobi theory in the calculus of variations,

Y. Yang,

Solitons in Field Theory and Nonlinear Analysis,
References II

T. H. R. Skyrme.

T. H. R. Skyrme.

T. H. R. Skyrme.

R. A. Leese, M. Peyrard, and W. J. Zakrzewski.

P. M. Sutcliffe.

T. Weidig.

References IV

M. Karliner and I. Hen.

C. Adam, P. Klimas, J. Sanchez-Guillen, and A. Wereszczyński.

C. Adam, T. Romańczukiewicz, J. Sanchez-Guillen, and A. Wereszczyński.

C. Adam, T. Romańczukiewicz, J. Sanchez-Guillen, and A. Wereszczyński.
References V

J. M. Speight.

J. Jäykkä and M. Speight.

J. Jäykkä, M. Speight, and P. Sutcliffe.

T. Ioannidou and O. Lechtenfeld.

A. A. Belavin and A. M. Polyakov.

References VI

M. de Innocentis and R. S. Ward.

Ł. T. S.

K. Sokalski.

K. Sokalski, T. Wietecha, and Z. Lisowski.

K. Sokalski, T. Wietecha, and Z. Lisowski.
References VIII

K. Sokalski, Ł. S., and D. Sokalska.

Ł. S.

Bogomolny decomposition in the context of the concept of strong necessary conditions.

Ł. S., D. Sokalska, and K. Sokalski.

J. M. Speight.

Ł. T. S.

B. J. Schroers.
