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Recap

The C*-algebra of a row finite directed graph  is the universal C*-algebra 
generated by pairwise orthogonal projections  and partial isometries 

 subject to the relations 

(CK1)  for every , 

(CK2)  for every  that is not a source.

E = (E0, E1, r, s)
{pv ∣ v ∈ E0}

{se ∣ e ∈ E0}

s*e se = ps(e) e ∈ E1

pv = ∑
e∈r−1(v)

ses*e v ∈ E0



We’ve seen a few basic examples:

, continuous functions on the circleC(𝕋)

, matricesMn(ℂ)

, Cuntz algebra 𝒪2

, compact operators𝒦



Gauge action
Before we see some more examples, let us turn to another important feature of graph 
C*-algebras: the gauge action. 

Let  be a (row finite) graph. Let be a Cuntz–Krieger -family.  

For , consider the operators , . It is easy to check that 
these will also satisfy the Cuntz-Krieger relations and that they will generate the same 
C*-algebra as . 

This gives rise to an action of  on , which in C*-world means a strongly 
continuous group homomorphism . 

In particular, . We call this action the gauge action.

E {S, P} E

z ∈ 𝕋 {Pv ∣ v ∈ E0} {zSe ∣ e ∈ E1}

{S, P}

𝕋 C*({S, P})
γ : 𝕋 → Aut(C*({S, P})

𝕋 ↷ C*(E)



Uniqueness theorems
The existence of a gauge action makes life easier! In particular, we have the so-called gauge-
invariant uniqueness theorem: 

Theorem: Let  be a directed graph, and  a Cuntz–Krieger -family in a C*-algebra  with 
each . Suppse there is an action  satisfying 

 ,       

for every . Then  is a *-isomorphism. 

The gauge action also allows one to prove the Cuntz–Krieger uniqueness theorem: 

Theorem. Let E be a row-finite graph such that every cycle has an entry.  Suppose  is a 
Cuntz–Krieger -family in a C*-algebra  with each . Then the *-homomorphism 

 is a *-isomorphism of  onto .

E {T, Q} E B
Qv ≠ 0 β : 𝕋 → Aut(B)

βz(Te) = zTe βz(Qv) = Qv

e ∈ E1, v ∈ E0 πT,Q : C*(E) → C*(T, Q)

{T, Q}
E B Qv ≠ 0

πT,Q : C*(E) → B C*(E) C*(T, Q) ⊂ B



The uniqueness theorems allow us to produce more examples.

Define functions ,  byPvi
, Sei

: 𝕋 → M4(ℂ) 1 ≤ i ≤ 4

,Pvi
(z) = ei,i  Sei

(z) ={  if ei,i+1 1 ≤ i ≤ 3

 if . ze1,4 i = 4

Then  is a Cuntz–Krieger -family and . For , define 

.  

Then  given by  

 

defines a gauge action. It follows that 

{S, P} E C*(S, P) ≅ C(𝕋, Mn) λ ∈ 𝕋
uλ := diag(λ, λ1, …, λ4) ∈ 𝒰(C(𝕋, Mn))

β : 𝕋 → Aut(C(𝕋, Mn))
βλ( f )(z) = Uλ f(w4z)U*λ

C*(E) ≅ C(𝕋, Mn)



To tackle some of the examples from quantum spaces, we will need to go beyond the row finite 
case. 

We immediately run into difficulties with the second Cuntz–Krieger relation: 

(CK2)  whenever  is not a source. 

If we allow  to receive infinitely many edges,  has no chance of converging in any 

C*-algebra, as it is the sum of pairwise orthogonal projections. 

Note, however that (CK2) implies that  for every .  

This still makes sense outside the row finite setting. And whenever  is not an infinite receiver, 
(CK2) still makes sense.

Pv = ∑
e∈r−1(v)

SeS*e v

v ∑
e∈r−1(v)

SeS*e

SeS*e ≤ Pv e ∈ r−1(v)

v

Beyond the row finite case



These two observations lead to the “right” relations outside the row finite setting. 

Definition: Let  be an arbitrary directed graph. The graph C*-algebra  is the 
universal C*-algebra generated by pairwise orthogonal projections  and partial 

isometries  subject to the following relations: 

(E1)  for every , 

(E2)  for every , 

(E3)  for every  which is neither source nor infinite receiver.

E = (E0, E1, r, s) C*(E)
{pv ∣ v ∈ E1}

{se ∣ e ∈ E1}

s*e se = ps(e) e ∈ E1

ses*e ≤ pr(e) e ∈ E1

pv = ∑
e∈r−1(v)

ses*e v ∈ E0

Beyond the row finite case



It turns out that for any graph , there exists a row finite graph  and a full projection 
 such that . 

Recall that for a C*-algebra  and projection , the C*-subalgebra  is called a 
hereditary subalgebra called a corner.  

A projection  is full if  or equivalently, if  is not contained in any proper ideal of . 

A full corner  shares many properties with . 

For example, for a C*-algebra  let  denote the ideals in . There exists a bijection 

 with inverse . 

A C*-algebra and its full corners also have isomorphic K-theory. 

So we can bootstrap many row finite results to the more general case.

E F
p ∈ C*(F) C*(E) ≅ pC*(F)p

A p ∈ A pAp

p ApA = A pAp A

pAp A

B ℐ(B) B

ℐ(A) → ℐ(pAp), I ↦ pIp ℐ(pAp) → ℐ(A), J ↦ AJA

Beyond the row finite case



Now onto some more interesting examples…
The final slides are based on joint work with Tomasz Brzeniński (Białystok/Swansea), 
Ulrich Krähmer (Dresden), and Réamonn Ó Buachalla (Prague)



The meaning of quantum space is a term that usually refers to a so-called -deformation of 
the algebra of functions on a classical space which can be described by generators and 
relations. 

Given a , one replaces certain commutations relations with relations involving 
generators and functions in .  

q

q ∈ (0,1]
q

Quantum spaces



For example,  

 is generated by  satisfying  

 and . 

For , the noncommutative torus  is generated by  satisfying 

  and . 

Similarly we may define the noncommutative n-torus .

C(𝕋2) u, v

u*u = uu* = v*v = vv* = 1, uv = vu

q ∈ (0,1] Cq(𝕋2) u, v

u*u = uu* = v*v = vv* = 1, uv = qvu

Cq(𝕋n)

Noncommutative torus



For compact connected simply connected Lie groups and their homogeneous spaces—
for example the odd dimensional quantum spheres and quantum complex projective 
spaces—one can construct quantum spaces in a very precise way that allows one to 
keep much of the Lie theoretic structure, suitably interpreted.  

For example,  admits a circle action from which one recovers  as the 
fixed point subalgebra. For ,  is the well-known Podleś sphere, a 
-deformation of the -sphere. 

In fact, in the graph C*-algebra of Hong and Szymański, the canonical gauge action is 
precisely this circle action, recovering quantum projective space as the fixed point 
algebra of the corresponding quantum sphere.

Cq(S2n−1) Cq(ℂPn)
n = 2 Cq(ℂP1) q

2

Quantum spaces from Lie groups



Another well-known example is the noncommutative 3-sphere, . 

For , the quantum 3-sphere  is generated by two elements, , subject to the 
relations 

 is a unitary matrix. 

When  it is not difficult to check that this determines the usual sphere relations for .  

One can also define quantum odd-dimensional spheres .

Cq(S3)

q ∈ (0,1] Cq(S3) α, γ

(α −qγ*
γ α* )

q = 1 S3

Cq(S2n−1)

Quantum 3-sphere



Hong and Szymański showed that various quantum spaces could be realised as graph 
C*-algebras, for example:

Cq(S3) Cq(S5)

Cq(ℂP1)
Cq(ℂP3)

quantum odd-dimensional 
spheres

quantum complex projective 
spaces



For compact connected simply connected Lie groups and their homogeneous spaces—
for example the odd dimensional quantum spheres and quantum complex projective 
spaces—one can construct quantum spaces in a very precise way that allows one to 
keep much of the Lie theoretic structure, suitably interpreted.  

For example,  admits a circle action from which one recovers  as the 
fixed point subalgebra. For ,  is the well-known Podleś sphere, a 
-deformation of the -sphere. 

In fact, in the graph C*-algebra of Hong and Szymański, the canonical gauge action is 
precisely this circle action, recovering quantum projective space as the fixed point 
algebra of the corresponding quantum sphere.

Cq(S2n−1) Cq(ℂPn)
n = 2 Cq(ℂP1) q

2

Quantum spaces from Lie groups



Quantum projective spaces are examples of a larger class of quantum spaces called 
quantum flag manifolds.  

In the classical setting, a flag manifold is a simply connected compact homogeneous 
Kähler manifold. In particular, they arise as quotients of simply connected compact 
semisimple Lie groups.  

These Lie groups admit a particularly satisfying -deformation via the enveloping algebra 
of their associated complex semisimple Lie algebra. 

q

Quantum flag manifolds



Given a complex semisimple Lie algebra , its enveloping algebra  has a  -deformation, 
, for , which also admits a Hopf *-algebra structure and has the same 

representation theory as .

𝔤 U(𝔤) q
Uq(𝔤q) q ∈ (0,1)

U(𝔤)

Drinfeld–Jimbo deformations

If  is a Lie algebra of rank , then  is generated by elements ,  subject 
to certain relations, 

 

along with the so-called quantum Serre relations.

𝔤 r Uq(𝔤) Ej, Fj, Kj 1 ≤ j ≤ r

KiEj = qaij
i EjKi, KiFj = q−aij

i FjKi, KiKj = KjKi, KiK−1
i = K−1

i Ki = 1,

EiFj − FjEi = δij
Ki − K−1

i

qi − q−1
i

,



A Hopf algebra structure is defined  on  by 

 

A Hopf *-algebra structure, called the compact real form of , is defined by 

Uq(𝔤)

Δ(Ki) = Ki ⊗ Ki, Δ(Ei) = Ei ⊗ Ki + 1 ⊗ Ei, Δ(Fi) = Fi ⊗ 1 + K−1
i ⊗ Fi,

S(Ei) = − EiK−1
i , S(Fi) = − KiFi, S(Ki) = K−1

i ,
ϵ(Ei) = ϵ(Fi) = 0, ϵ(Ki) = 1.

Uq(𝔤)

K*i := Ki, E*i := KiFi, F*i := EiK−1
i .

Hopf *-algebra structure



If  is a Lie algebra of rank , then the relations for ,  can 
essentially be read off the corresponding Dynkin diagram. 

𝔤 r Ej, Fj, Kj 1 ≤ j ≤ r

Dynkin diagrams for complex semisimple Lie algebras



Dual to the quantum enveloping algebra is the quantum coordinate algebra  
which is a Hopf *-algebra admitting a C*-completion .  

When , this is precisely  for  the simply connected compact semisimple Lie 
group with Lie algbera . While  is no longer a Hopf algebra, the coproduct 

   

does extend to a *-homomorphism, and one can check that it is a compact quantum 
group in the sense of Woronowicz.

𝒪q(G)
Cq(G)

q = 1 C(G) G
𝔤 Cq(G)

Δ : Cq(G) → Cq(G) ⊗min Cq(G)

Coordinate algebras and C*-algebras



For , the Dynkin diagram consists of a single node, so the quantum enveloping 
algebra  is generated by . 

The dual  is generated by  such that  

 is unitary. 

Thus we see that just as in the classical picture, we have   and hence 

also .

𝔤 = 𝔰𝔩2
Uq(𝔰𝔩2) E, F, K

𝒪q(G) = 𝒪q(SU2) α, γ

(α −qγ*
γ α* )

𝒪q(SU2) = 𝒪q(S3)
Cq(SU2) = Cq(S3)

Example: quantum SU2



For a given Dynkin diagram, choose a subset of nodes, .  

Define a subalgebra , generated by  and   if the -th 

node is in .  

 dualizes to a surjection , from which we construct a 
coaction 

 . 

S

Uq(𝔩S) ⊂ Uq(𝔤) Kj, 1 ≤ j ≤ r Ej, Fj j
S

Uq(𝔩S) ⊂ Uq(𝔤) 𝒪q(G) → 𝒪q(LS)

ΔR : 𝒪q(G) → 𝒪q(G) ⊗ 𝒪q(LS)

Constructing quantum flag manifolds

The coordinate algebra of the quantum flag manifold is given by 

,  

which admits a C*-completion, . 

When  , we recover the continuous functions on the associated flag manifold.

𝒪q(G/Ls) := {a ∈ 𝒪q(G) ∣ ΔR(a) = a ⊗ 1}

Cq(G/LS)

q = 1



Detecting graph C*-algebras
Yesterday we saw that (unital) graph C*-algebras are classified by a K-theoretic invariant. 
While this result is remarkable, it unfortunately doesn’t tell us how to tell if a C*-algebra we 
run into in the wild is actually a graph C*-algebra.  

Mistaking a C*-algebra for a graph C*-algebra can sometimes have deadly consquences: 
graph C*-algebras are relatively docile and friendly to humans, while some C*-algebras will 
not hesitate to attack unassuming researcher. 

Luckily, in some instances, it is possible to determine when we are indeed dealing with a 
graph C*-algebra: 

Theorem [Eilers–Ruiz–Sørensen] Let  be a C*-algebra with  finite. Suppose that for 
each , the subquotient , or  .  Then there exists an “amplified 
graph”  such that .

A Prim(A)
x ∈ Prim(A) A[x] ≅ 𝒦 A[x] ≅ ℂ

E A ≅ C*(E)



Some terminology
Recall that a *-representation of a C*-algebra on a Hilbert space  is a *-homomorphism 

. 

A *-homomorphism is irreducible if there are no non-trivial -invariant subspaces in . 

An ideal is primitive if it is the kernel of an irreducible ideal. 

primitive ideals of . 

 is equipped with the hull-kernel topology:  if , then 
 

When  for a compact Hausdorff space , we have .

H
π : A → ℬ(H)

π(A) H

Prim(A) = { A}

Prim(A) X ⊂ Prim(A)
X = {ρ ∈ Prim(A) : ρ ⊇ ∩π∈X π} .

A = C(X) X Prim(A) ≅ X



Theorem (Eilers–Restorff–Sørensen): Let  be a C*-algebra with  finite. Suppose that 
for each , the subquotient , or  .  Then there exists an 
“amplified graph”  such that . 

A graph is called amplified if, for every , we have . 

 is the simple subquotient defined as follows: For any open subset , set 
.  

Let  be a pair of open sets with  and  Set 

A Prim(A)
x ∈ Prim(A) A[x] ≅ 𝒦 A[x] ≅ ℂ

E A ≅ C*(E)

v ∈ E0 |r−1(v) | ∈ {0,∞}

A[x] U ⊂ Prim(A)
A[U] := ⋂p∈Prim(A)∖U p

U, V V ⊂ U {x} = U∖V . A[x] = A[U]/A[V]

Existence



For every , there is a map from   defined on generators 
by ,  and .   

Dually, we get a surjective *-homomorphism .  

For   we define a *-representation by 

 

where  is given by 

1 ≤ i ≤ rank(𝔤) Uq(𝔰𝔩2) → Uq(𝔤)
K ↦ Ki E ↦ Ei F ↦ Fi

σi : Cq(G) → Cq(SU2)

si ∈ WG

πsi
:= ρ ∘ σi : Cq(G) → ℬ(L2(ℤ+)),

ρ : Cq(SU2) → ℬ(L2(ℤ+))

ρ(α)(en) = (1 − q2n)1/2en−1, ρ(γ)(en) = − qnen .

Elementary *-representations of Cq(G)



Given , let  denote the Weyl group of  and  the subgroup of  given 
by 

 

Let  be the set of   coset representatives of minimal length.  

 Given , let  be in reduced form. Define 

 

Dijkhuisen and Stokman (following work of Soibelman) showed  does not depend on 

the choice of reduced word for . Moreover, all *-representations of  are of this 
form.

Cq(G/LS) WG G WS WG

WS := < si ∈ WG ∣ i ∈ S > .

WS W/WS

w ∈ WS w = si1⋯sik

πw := πsi1
⊗ ⋯ ⊗ πsik

∘ Δk−1 : Cq(G/LS) → ℬ(L2(ℤk
+)) .

πw
w Cq(G/LS)

Irreducible *-representations of Cq(G/LS)



From this description of the irreducible *-representations, we see that the primitive ideal space 
is finite, and moreover, it is straightforward to see that  for all but one 
representation which has kernel . 

It follows that  for some amplified graph . 

How do we know if a given graph is the one we’re looking for?

ker(π) ≅ 𝒦
ℂ

C*(G/LS) ≅ C*(E) E

…so now we just need to find the right graphs…

Theorem [Eilers–Ruiz–Sørensen] Let  be a unital C*-algebra with  finite and let  
be an amplified graph with finitely many vertices. Then  if and only if 

.

A Prim(A) E
A ≅ C*(E)

Primτ(A) ≅ Primτ(C*(E))



A graph  satisfies Condition (K) if, for every one of the following is 
satisfied: 

• If , then there is no loop  with . 

• There are two loops  with , and neither  nor  is an initial 
subpath of the other.  

The graphs of the quantum flag manifolds will never have loops, so Condition (K) is always 
satisfied.

E = (E0, E1, r, s) v ∈ E0

r(e) = v μ e ∈ μ

μ1, μ2 r(μ1) = r(μ2) = v μ1 μ2

Let  be a graph.  

The set  is hereditary if  and  implies . 

 is saturated if, whenever  with  and , then
.

E

H ⊂ E0 w ∈ H w ≤ v v ∈ H

S ⊂ E0 v ∈ E0 |r−1(v) | < ∞ s(r−1(v)) ⊂ S
v ∈ S

Ideal ingredients



Given a subset  which is both hereditary and saturated, the breaking vertices of  is 
the set of vertices 

 

Thus the set of breaking vertices for  consists of all infinite receivers with at least one, and at 
most finitely many, paths starting outside of .   

The graphs of quantum flag manifolds will contain infinite receivers, but for any hereditary and 
saturated subset , we have .

H ⊂ E0 S

BH := {v ∈ E0 ∣ |r−1(v) | = ∞ and 0 < |r−1(v) ∩ s−1(E0∖H) | < ∞}

S
H

H BH = ∅



Let  be a saturated and hereditary subset and let . For , define 

 

Let  be the ideal of  generated by .

H B ⊂ BH v ∈ B

pv,H := ∑
r(e)=v,s(e)∉H

ses*e .

JH,B C*(E) {pv ∣ v ∈ H} ∪ {pv − pv,H ∣ v ∈ B}

If  satisfies Condition (K), the ideals of  are in one-to-one correspondence with pairs 
 of saturated and hereditary subsets  and subsets  of breaking vertices.  

If  is an ideal in  then  with  and 
. 

E C*(E)
(H, B) H B ⊂ H

I C*(E) I = JH,B H = {v ∈ E0 ∣ pv ∈ I}
B = {v ∈ BH(E) ∣ pv − pv,H ∈ I}



Let  be a directed graph. A subset  is a maximal tail if it satisfies the 
following three conditions: 

• If  and , and , then . 

• If  is a regular vertex, then there exists an edge such that  and . 

• For any , there is a  such that  and . 

Given a hereditary saturated subset  and , the ideal  is primitive if 
and only if  is a maximal tail. 

E = (E0, E1, r, s) M ⊂ E0

v ∈ E0 w ∈ M v ≤ w v ∈ M

v ∈ M e ∈ E1 s(e) = v r(e) ∈ M

v, w ∈ M y ∈ M v ≤ y w ≤ y

H ⊂ E0 v ∈ BH JH,{v} ⊂ C*(E)
E0∖H



Let  be a quantum flag manifold. The vertices of  are indexed by elements in

, and we draw infinitely many arrows from the vertex corresponding to  to the 
to vertex corresponding to , precisely when  or   for some 

generator  and . 

Cq(G/LS) Es

WS w ∈ WS

v ∈ WS w = siv w = vsi
si ℓ(w) > ℓ(s)

The Dynkin diagram representing  isCq(ℂPn)

We have , so the graph isWS := {e, s1, s2s1, s3s2s1, …, sn⋯s2s1}

es1sn−1⋯s2s1sn⋯s2s1



A second example is the full quantum flag manifold of quantum , , which 
is given by the Dynkin diagram of  with all nodes crossed, so that . 

SU3 Cq(SU3/𝕋2)
A2 S = ∅

We have , which gives us the following graph:WS = S3 = {e, s1, s2, s1s2, s2s1, s1s2s1}



Consequences

From the graph C*-algebra picture, it is immediate to see that the C*-algebra of a quantum 
flag manifold does not depend on the parameter . 

We can also calculate the K-theory, and see that they have same K-theory as their classical 
counterparts.

q ∈ (0,1)



Let  and let  and  denote the 
relevant Hopf algebra surjections. Then 

 ,  

since the Weyl groups are the same.

S ⊂ {1,…, n} 𝒪q(SO2n+1) → 𝒪q(LS) 𝒪q(Sp2n) → 𝒪q(KS)

Cq(SO2n+1/LS) ≅ Cq(Sp2n/KS)

Consequences
We also find interesting isomorphisms. For example, for any fixed , label the nodes of the 

 and  from left to right as .
n

Bn Cn 1,…, n



Using what we know about quotients of graph C*-algebras, we also see some interesting 
things.

The projections  generate an ideal. Quotienting by that ideal gives us the graphpv5
, pv4

, pv3

Quantum (4,2)-Grassmannian

Quantum ℂP2

Consequences



Summary
• C*-algebras lie at the intersection of topology and algebra 

• Any directed graph gives rise to a C*-algebra 

• Many properties of a graph C*-algebra can be read directly from the graph, for example, the ideal 
structure 

• K-theory for C*-algebras is an important invariant which can be used for classification 

• K-theory of a graph C*-algebra can be read directly from a graph 

• Quantum flag manifolds are q-deformations of classical flag manifolds 

• The C*-algebras of quantum flag manifolds are isomorphic to graph C*-algebras 

• Consequently, we can see that they have classical K-theory, find interesting isomorphisms, see that they 
are independent of , find interesting quotients,… 

• What other interesting quantum spaces might we model as graph C*-algebras?

q ∈ (0,1)



Thanks for listening! 
Dziękuję!


